C2浓度升高与硝化抑制剂对冬小麦田间N2O排放量的影响

2016-10-24 09:35:02李豫婷林树基冯永祥林而达李迎春
生态学报 2016年15期
关键词:吡啶冬小麦硝化

李豫婷,林树基,韩 雪,冯永祥,林而达,李迎春,陈 曦

1 中国农业科学院农业环境与可持续发展研究所,农业部农业环境重点实验室, 北京 100081 2 黑龙江八一农垦大学农学院农学院, 大庆 163000 3 Crop and Soil Science Section, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Victoria 3010 Australia 4 北京市平谷区气象局,北京 101200



C2浓度升高与硝化抑制剂对冬小麦田间N2O排放量的影响

李豫婷1,2,林树基3,韩雪1,*,冯永祥1,2,林而达1,李迎春1,陈曦4

1 中国农业科学院农业环境与可持续发展研究所,农业部农业环境重点实验室, 北京100081 2 黑龙江八一农垦大学农学院农学院, 大庆163000 3 Crop and Soil Science Section, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Victoria 3010 Australia 4 北京市平谷区气象局,北京101200

以冬小麦中麦175为供试品种,利用农田开放式CO2浓度增高(FACE)系统,研究未来大气高CO2浓度对冬小麦田间N2O排放的影响,以及施用硝化抑制剂(2-氯-6-三氯甲基吡啶)是否可以起到抑制冬小麦田间N2O的排放量升高的潜能。试验结果表明:CO2浓度升高显著提高冬小麦田间N2O的排放增幅达到67.6%,追肥灌溉后小麦田N2O排放量较大,随着冬小麦生育进程的推进N2O的排放量逐渐减少,硝化抑制剂对中麦175田间N2O排放量的影响并不明显。因此,在未来高CO2浓度环境条件下,可以通过采取相应的耕作制度和栽培技术措施等来降低冬小麦田N2O的排放量。试验结果对冬小麦田间是否选择施用2-氯-6-三氯甲基吡啶来控制N2O的排放起到一定的参考作用。

FACE(开放式CO2浓度增高系统); 冬小麦; 硝化抑制剂; N2O排放量

温室气体排放量日益增加导致全球气候变暖,这一世界性话题已经成为当今学术界研究的热点。CO2、N2O和CH4是三大主要温室气体,截止到2013年5月,地球大气层中的CO2浓度已超过400μL/L,N2O的浓度已经上升至323.2nL/L,较1750年水平增长20%[1]。与CO2相比,虽然N2O在大气中的含量很低,但其单分子增温潜势却是CO2的310倍,而且由于N2O在大气中可输送到平流层,对臭氧层造成破坏[2],已经成为人类排放的首要消耗臭氧层物质,所以N2O浓度的增高已引起了广泛的关注。人类活动是造成N2O排放量增高的主要原因,其中农业生产排放的N2O占人类活动N2O排放总量的60%—75%[3]。小麦(TriticumaestivumL.)是我国重要粮食作物之一, 2013年小麦播种总面积为3.6亿亩, 其中冬小麦播种面积约占小麦总面积的84%和90%[4],所以冬小麦田的N2O排放量不容忽视。土壤中N2O主要是由硝化和反硝化作用产生的,反硝化细菌受到土壤中可用碳含量的影响很大,因为其以碳为能量源,所以大气CO2浓度升高促进了土壤中反硝化细菌的活跃性,从而导致N2O的排放量升高[5,6]。第五次IPCC评估报告显示,大气CO2浓度将持续升高,预计到2050年,CO2浓度将上升到550μL/L[1]。所以,研究高CO2浓度下冬小麦田间N2O排放量以及排放规律,对于今后冬小麦生产中采用相应的耕作措施控制N2O的排放,以及对温室气体减排都会起到一定的贡献作用。

一般的硝化抑制剂是通过释放毒性化合物,直接影响硝化菌群落及硝化活性来抑制土壤硝化作用[7],而2-氯-6-三氯甲基吡啶是一种代谢灭活剂,其活性位点是吡啶环上的氮原子,通过对氨氧化细菌的竞争性抑制而对硝化作用进行抑制[8]。目前施用硝化抑制剂被认为是最有效的减排N2O技术之一,对减轻大量施肥造成的环境污染和浪费资源有重要的意义。本文利用FACE系统,研究①)CO2浓度升高是否会促进冬小麦田间N2O的排放,②) CO2浓度升高对麦田土壤N2O排放通量季节变化的影响,③) 硝化抑制剂2-氯-6-三氯甲基吡啶是否对冬小麦田间N2O排放起到抑制作用,为我国气候变化条件下农田N2O减排提供理论依据。

1 材料与方法

1.1试验地基本概况

本试验在中国农业科学院作物科学研究所昌平实验基地进行,该试验基地位于北京市昌平区沙河镇与马池口镇交界处,地理坐标为40°10′10″—40°10′40″N,116°13′40″—116°14′04″E,基地海拔31.3m,属暖温带、半湿润大陆性季风气候,土壤为壤质褐潮土,有机质含量14.10g/kg,全氮0.82g/kg,速效磷20.0mg/kg,速效钾79.8mg/kg,土壤容重为1.30g/cm3,pH 8.33,田间最大持水量为24.9%。

1.2试验设计

本试验采用开放式CO2浓度升高(FACE)系统,系统构成和控制同郝兴宇等的方法[9]。FACE圈的直径为4m,正八边形。圈中心设有CO2传感器和风速风向传感器,由主控计算机根据圈内CO2浓度控制气体的释放,FACE圈内CO2目标浓度为550μL/L。采取裂区试验设计,CO2浓度为主处理,硝化抑制剂为副处理,每处理3次重复。FACE圈和对照圈的CO2浓度分别为(550±60)μL/L和(400±40)μL/L;硝化抑制剂采用2-氯-6-三氯甲基吡啶(24% N-serve;施用量10m/kg)和无硝化抑制剂处理。

施氮量为188kg/hm2(其中底肥含N 118 kg/hm2,追肥含N 70 kg/hm2)、磷肥和钾肥仅作底肥,使用量分别为165 kg/hm2(P2O5)和90kg/hm2(K2O)。底肥于播种前一天(2013- 10-05)施用,追肥于小麦拔节期(2014-04- 18)施用。冬小麦拔节期追肥次日,首次施用硝化抑制剂,间隔30d后再次施用硝化抑制剂。供试冬小麦品种为中麦175。

1.3测定内容及方法

试验采用静态箱法[10]进行温室气体的采集,静态箱成圆柱形,高0.15m,直径0.16m。将取气箱底座安置在选取好的试验区域内,取气时用水进行液封,以保证取气箱的密封性。

气样采集时间及方法如下,首次施用硝化抑制剂的第2天开始连续进行7d气样采集,然后每隔1周取气1次直到第2次施吡啶,重复与第1次相同的操作直到小麦成熟收获后停止取气。取气时间在10:00—12:00之间进行,扣箱抽取后0、20和40min气样,取样量30mL。同时记录箱内温度。气样返回实验室采用气相色谱仪(Agilent 7890B GC)测定分析气样中N2O的浓度。

N2O的排放通量计算公式[11]:

F=K×(Δc/Δt)×V/A×273/(273+T)

式中,F为气体排放通量,即单位时间单位面积土壤表面的N2O排放通量(μgN m-2h-1);K为计算N2O排放通量的单位换算系数(1.25 μgN/μL);Δc/Δt为单位时间静态箱内的N2O气体浓度变化率(mL m-3h-1));V为取样箱的体积(m3),A为取样箱的底面积(m2);T为测定时箱体内的平均温度(℃)。

1.4数据处理

采用SPSS 18.0 软件对数据进行统计分析,一般线性模型LSD检验法对各处理进行差异显著性检验;Excel进行图表绘制。

2 结果与分析

2.1CO2浓度升高对麦田N2O排放通量的影响

CO2浓度升高对麦田N2O排放起到了明显的促进作用。小麦拔节至收获、施肥灌溉后7d和再次施硝化抑制剂后7d,FACE圈的N2O排放通量比对照圈平均高出67.6%、58.1%和78.7%,均达到显著水平(P<0.05)(表1)。

表1 CO2浓度升高对麦田N2O排放通量的影响

*代表P<0.05,CO2浓度处理之间有显著差异

2.2CO2浓度升高与硝化抑制剂对麦田土壤N2O排放量的影响

本试验结果表明,2-氯-6-三氯甲基吡啶的施用和其与CO2浓度升高的交互作用对麦田N2O排放都没有显著的影响,在小麦拔节至收获、施肥灌浆后7d和第2次施硝化抑制剂后7d均没有达到显著性水平(表2)。

表2 CO2浓度升高与硝化抑制剂对N2O排放通量影响

*代表P<0.05;NS代表没有显著性差异

2.3CO2浓度升高对麦田土壤N2O排放通量季节变化的影响

N2O的排放通量从拔节到成熟的变化范围是16.4—409.1μgN m-2h-1,排放峰出现在追肥灌溉后,随着冬小麦生育进程的推进N2O的排放量逐渐减少。追肥灌溉后7d土壤N2O排放通量平均达到293.9μgN m-2h-1,是第2次施2-氯-6-三氯甲基吡啶后7d平均77.8μgN m-2h-1N2O排放通量的3倍左右。

从拔节到成熟,FACE圈内的N2O排放通量比对照圈内的N2O排放通量平均增高67.6%(P<0.05)(图1),说明CO2浓度升高显著促进土壤N2O的排放。硝化抑制剂2-氯-6-三氯甲基吡啶对N2O的排放没有显著的影响。CO2浓度与2-氯-6-三氯甲基吡啶交互作用对麦田土壤N2O排放通量的影响,没有达到显著性水平。

图1 冬小麦拔节后各处理土壤N2O排放量的季节变化Fig.1  The emission of N2O with and without Nitrapyrin application since the elongation stage of winter wheat eCO2为FACE圈CO2浓度处理:elevated CO2 concentration(550μL/L);aCO2为对照圈大气CO2浓度处理ambient CO2 concentration(400μL/L);施硝化抑制剂(+吡啶)与不施硝化抑制剂(-吡啶)+Nitrapyrin;-Nitrapyrin

3 结论与讨论

(1)CO2浓度升高促进冬小麦田间N2O排放(增幅为67.6%),该结论与许多研究成果一致,Ineson等利用瑞士FACE试验系统研究发现,高CO2浓度下C3作物多年生黑麦草地的N2O排放量升高了27%[12]。Lam等研究发现,大气CO2浓度升高显著促进了冬小麦田间N2O的排放,增幅达到60%[13- 15]。同时也有研究表明,大气CO2浓度升高对高粱田间N2O的排放量没有明显影响,因为高粱为C4作物对大气CO2浓度变化的响应没有C3作物的响应强烈[16],由此可见,在C4作物田间土壤中,反硝化细菌可利用的碳输入在高CO2浓度条件下没有显著增加。Kettunen等研究发现,土壤N2O的排放量随着作物生长而降低,原因是作物生长对土壤中N素的吸收量增加,有可能减少土壤中无机氮的含量进而降低土壤的硝化和反硝化能力[17]。不同试验结果的产生,可能与各试验中高CO2浓度处理的时间长度有关,长时间或短时间排放高浓度CO2对作物田间N2O排放量的影响不同。此外,土壤原位测定表明,大气CO2浓度升高降低了土壤0—20cm剖面中N2O的产生,从而减少了土壤N2O的排放[18]。

(2)N2O排放通量季节变化结果显示,追肥灌溉后N2O排放量较大,随着冬小麦生育进程的推进N2O的排放量逐渐减少,这是由于施肥后土壤外源N素含量急剧增加,土壤中硝化细菌可利用N素含量升高,养分充足提高了微生物活性促进田间N2O的排放;Kettunen等研究发现,土壤高N2O排放与土壤中可利用氮的含量成正相关[17]。Hall和Matson研究也发现,土壤N2O排放对外源氮输入非常敏感,随着外源氮的增加,N2O排放量增加的速度快于线性增加[23]。此外,作物生长初期对土壤中N的竞争力不强,土壤中的大部分N被硝化细菌利用加速了硝化和反硝化作用的发生,而作物生长发育越旺盛对土壤中N的竞争吸收能力就越强,使土壤中硝化细菌可利用原料减少,N2O的产生和排放速率降低[24],所以在作物生长初期田间N2O排放量较高。灌溉后土壤平均湿度为15.9%,比第二次施硝化抑制剂期的土壤平均湿度高出6.9%。N2O排放通量与土壤水分含量成正比[25],从而灌溉期N2O的排放通量高。

未来大气CO2浓度升高导致冬小麦田间N2O的排放量增大。因此,控制田间N2O的排放对于降低农业生产温室气体排放量至关重要,必须通过进一步系统的研究来降低冬小麦生产乃至整个农业系统所产生的N2O等温室气体,为全球环境和农业可持续发展贡献力量。农业生产中硝化抑制剂的施用,对于田间N2O排放的影响作用受多种外界因素的影响表现复杂,硝化抑制剂的施用方法和配套技术值得深入研究。

致谢:中国农业科学院农业环境与可持续发展研究所农业部农业环境重点实验室对试验平台提供技术支持,居辉、郭李萍、郝兴宇、高霁老师对研究工作给予帮助,姜厚竹、李靖涛、王晨光、曹刚、佘星星帮助试验操作,特此致谢。

[1]IPCC. Summary for Policymakers of Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2013.

[2]Baggs E M, Richter M, Hartwig U A, Cadisch G. Nitrous oxide emissions from grass swards during the eighth year of elevated atmosphericpCO2(Swiss FACE). Global Change Biology, 2003, 9(8): 1214- 1222.

[3]米松华. 我国低碳现代农业发展研究——基于碳足迹核算和适用性低碳技术应用的视角[D]. 杭州: 浙江大学, 2013.

[4]中华人民共和国国家统计局. 中国统计年鉴. 北京: 中国统计出版社, 2013: 437- 437.

[5]Welzmiller J T, Matthias A D, White S, Thompson T L. Elevated carbon dioxide and irrigation effects on soil nitrogen gas exchange in irrigated Sorghum. Soil Science Society of America Journal, 2008, 72(2): 393- 401.

[6]张玉铭, 胡春胜, 董文旭, 陈德立, 张佳宝. 农田土壤N2O生成与排放影响因素及N2O总量估算的研究. 中国生态农业学报, 2004, 12(3): 119- 123.

[7]刘倩. 硝化抑制剂对土壤的硝化抑制效应及其微生物作用机理[D]. 石河子: 石河子大学, 2011.

[8]Jacinthe P A, Pichtel J R. Interaction of nitrapyrin and dicyandiamide with soil humic compounds. Soil Science Society of America Journal, 1992, 56(2): 465- 470.

[9]郝兴宇, 林而达, 杨锦忠, 居辉, 马占云, 韩雪, 王贺然, 杨万深. 自由大气CO2浓度升高对夏大豆生长与产量的影响. 生态学报, 2009, 29(9): 4595- 4603.

[10]Datta A, Das S, Manjunath K R, Adhya T K. Comparison of two methods for the estimation of greenhouse gas flux from rice ecosystems in India. Greenhouse Gas Measurement and Management, 2012, 2(1): 43- 49.

[11]Ruser R, Flessa H, Schilling R, Steindl H, Beese F. Soil compaction and fertilization effects on nitrous oxide and methane fluxes in potato fields. Soil Science Society of America Journal, 1998, 62(6): 1587- 1595.

[12]Ineson P, Coward P A, Hartwig U A. Soil gas fluxes of N2O, CH4and CO2: The Swiss free air carbon dioxide enrichment experiment. Plant and Soil, 1998, 198(1): 89- 95.

[13]Lam S K, Lin E D, Norton R, Chen D. The effect of increased atmospheric carbon dioxide concentration on emissions of nitrous oxide, carbon dioxide and methane from a wheat field in a semi-arid environment in northern China. Soil Biology & Biochemistry, 2011, 43(2): 458- 461.

[14]Lam S K, Chen D, Norton R, Armstrong R, Mosier A R. Nitrogen dynamics in grain crop and legume pasture systems under elevated atmospheric carbon dioxide concentration: A meta-analysis. Global Change Biology, 2012, 18(9): 2853- 2859.

[15]Lam S K, Chen D, Norton R, Armstrong R, Mosier A R. Influence of elevated atmospheric carbon dioxide and supplementary irrigation on greenhouse gas emissions from a spring wheat crop in southern Australia. The Journal of Agricultural Science, 2013, 151: 201- 208.

[16]De Luis I, Irigoyen J J, Sánchez-Díaz M. Elevated CO2enhances plant growth in droughted N2-fixing alfalfa without improving water stress. Physiologia Plantarum, 1999, 107(1): 84- 89.

[17]Kettunen R, Saarnio S, Martikainen P, Silvola J. Elevated CO2concentration and nitrogen fertilization effects on N2O and CH4fluxes and biomass production ofPhleumpretenseon farmed peat soil. Soil Biology & Biochemistry, 2005, 37(4): 739- 750.

[18]徐仲均, 王迎红, 徐星凯, Boeckx P, Van Cleemput Q, 朱建国, 王跃思. 高浓度CO2处理后土壤N2O排放特征. 农业环境科学学报, 2008, 27(5): 1866- 1869.

[19]Klemedtsson L, Svensson B H, Rosswall T. A method of selective inhibition to distinguish between nitrification and denitrification as sources of nitrous oxide in soil. Biology and Fertility of Soils, 1988, 6(2): 112- 119.

[20]徐仲均. 大气CO2浓度升高对稻-麦轮作农田温室气体排放影响的研究[D]. 北京: 中国农业科学院, 2005.

[21]Carnol M, Hogenboom L, Jach M E, Remacle J, Ceulemans R. Elevated atmospheric CO2in open top chambers increases net nitrification and potential denitrification. Global Change Biology, 2002, 8(6): 590- 598.

[22]Mosier A R, Pendall E, Morgan J A. Effect of water addition and nitrogen fertilization on the fluxes of CH4,CO2, NOX,and N2O following five years of elevated CO2in the Colorado Shortgrass Steppe. Atmospheric Chemistry and Physics, 2003, 3: 1703- 1708.

[23]Hall S J, Matson P A. Nitrogen oxide emissions after nitrogen additions in tropical forests. Nature, 1999, 400(6740): 152- 155.

[24]宋涛, 郑循华, 王跃思, 徐仲均, 韩圣慧, 朱建国. 开放式空气CO2浓度增高试验中的NO和N2O地-气交换观测研究. 应用生态学报, 2002, 13(10): 1264- 1268.

[25]张岳芳, 陈留根, 王子臣, 朱普平, 盛婧, 郑建初. 耕作方式对太湖地区冬小麦生长季N2O排放的影响. 生态环境学报, 2011, 20(8/9): 1326- 1331.

[26]López N I, Austin A T, Sala O E, Méndeza B S. Controls on nitrification in a water-limited ecosystem: Experimental inhibition of ammonia-oxidising bacteria in the Patagonian steppe. Soil Biology and Biochemistry, 2003, 35(12): 1609- 1613.

[27]孙志梅, 武志杰, 陈利军, 马星行. 硝化抑制剂的施用效果、影响因素及其评价. 应用生态学报, 2008, 19(7): 1611- 1618.

[28]Neufeld J D, Knowles R. Inhibition of nitrifiers and methanotrophs from an agricultural humisol by allylsulfide and its implications for environmental studies. Applied and Environmental Microbiology, 1999, 65(6): 2461- 2465.

Effects of elevated CO2and nitrification inhibitors on N2O emissions from a winter wheat cropping system

LI Yuting1,2, LAM Shu Kee3, HAN Xue1,*, FENG Yongxiang1,2, LIN Erda1, LI Yingchun1, CHEN Xi4

1InstituteofEnvironmentandSustainableDevelopmentinAgriculture,KeyLaboratoryofAgro-environmentandClimateChangeofAgricultureMinistry,ChineseAcademyofAgriculturalSciences,Beijing100081 2CollegeofAgronomy,HeilongjiangBayiAgriculturalUniversity,Daqing163000,China3CropandSoilSciencesSection,FacultyofVeterinaryandAgriculturalSciences,TheUniversityofMelbourne,Victoria3010,Australia4Pinggumeteorologicalbureau,Beijing101200,China

free-air carbon dioxide enrichment (FACE); winter wheat; nitrapyrin; N2O emission

国家科技支撑计划资助项目(2013BAD11B03);国家重点基础研究发展计划项目(973计划)(2012CB955904);The University of Melbourne Early Career Research Grant Scheme 2014;中央级公益性科研院所基本科研业务费专项资助项目

2014- 12- 29; 网络出版日期:2015- 11- 16

Corresponding author.E-mail: hanx@ami.ac.cn

10.5846/stxb201412292597

李豫婷,林树基,韩雪,冯永祥,林而达,李迎春,陈曦.CO2浓度升高与硝化抑制剂对冬小麦田间N2O排放量的影响.生态学报,2016,36(15):4762- 4768.

Li Y T, Lam Shu Kee, Han X, Feng Y X, Lin E D, Li Y C, Chen X.Effects of elevated CO2and nitrification inhibitors on N2O emissions from a winter wheat cropping system.Acta Ecologica Sinica,2016,36(15):4762- 4768.

猜你喜欢
吡啶冬小麦硝化
吡啶-2-羧酸铬的制备研究
云南化工(2021年10期)2021-12-21 07:33:28
勘 误
化工学报(2020年4期)2020-05-28 09:25:24
氯代吡啶发展潜力巨大
今日农业(2019年11期)2019-08-13 00:49:02
MBBR中进水有机负荷对短程硝化反硝化的影响
甘肃冬小麦田
植物保护(2017年1期)2017-02-13 06:44:34
厌氧氨氧化与反硝化耦合脱氮除碳研究Ⅰ:
冬小麦和春小麦
中学生(2015年4期)2015-08-31 02:53:50
海水反硝化和厌氧氨氧化速率同步测定的15N示踪法及其应用
冬小麦——新冬18号
冬小麦—新冬41号