董志兵,刘 方,王 敏,刘 敏,曾梦甜,许 万
武汉工程大学化学与环境工程学院,湖北 武汉 430074
席夫碱的一锅法合成及还原
董志兵,刘方,王敏,刘敏,曾梦甜,许万
武汉工程大学化学与环境工程学院,湖北 武汉 430074
席夫碱是一种应用广泛的配体,它能与元素周期表中的大多数金属形成配合物,部分席夫碱配体稳定性差,但席夫碱还原化合物的稳定性普遍较好,所以研究高效合成席夫碱还原化合物的方法对拓宽席夫碱在配位化学中的应用具有重要意义.研究报道了一种“一锅法”合成及还原席夫碱的方法,使用的还原剂为醋酸硼氢化钠,反应条件温和,反应快捷(只需2~3 h即可完成反应),产率高,中间体席夫碱可以不用分离而直接进行还原,反应的底物适用性广,且可以用于大剂量的目标化合物的制备中.用该方法合成了8种席夫碱还原物,其中三种为邻碘芳基席夫碱还原化合物,它们是许多医药、农药的重要组成部分.
一锅法;席夫碱;醋酸硼氢化钠;还原
席夫碱最早是由Schiff H在1964年发现的,他在研究伯胺与活泼羰基的反应时发现了席夫碱(图1).
图1 席夫碱的合成Fig.1 Synthesis of Schiff base
席夫碱可以和元素周期表中的大多数金属形成不同的配合物,是应用非常广泛的配体.但在席夫碱金属配合物的研究过程中,化学工作者发现部分席夫碱配体的稳定性差.席夫碱的这一缺陷制约了它在配位化学中的应用范围.席夫碱的还原产物是将席夫碱配体选择性地还原,这样可以在一定程度上解决部分席夫碱稳定性差的问题.席夫碱还原化合物柔韧性较席夫碱有较大提高,在参与配位时有更大的自由度,而且芳香族席夫碱还原化合物还是高分子化合物、医药以及农药的重要组成部分[1].邻碘芳香族席夫碱还原化合物还是合成内酰胺[2]、喹唑啉[3]、吲哚衍生物[4]、苯并噻唑[5]等的重要原料,也能作为分子内芳基化反应[6]、分子内Heck反应[7]的底物.
文献中的合成席夫碱还原化合物的方法一般涉及到使用剧毒的氰化物[8]以及昂贵的钴-铑合金催化剂[9],而且反应时间长,选择性低.本研究报道了一种“一锅法”合成席夫碱还原化合物的方法,该反应条件温和、底物普适性广,反应快捷(2 h~3 h),合成的席夫碱还原化合物产率高(83%~92%).
2.1化学试剂与材料
所有底物都是来自Merck或Aldrich或Alfa Aesar,所有试剂都严格按照标准方法处理;GC(气相色谱,流动相为氢气)用带自动注射器GC-8130 (Fisons)色谱仪测定详细信息为:1个FI检测器和1个-1710毛细管柱(0.25 μm×25 m×0.25 mm,Macherey-Nagel);核磁采用Agilent 400MR型核磁共振波谱仪,以CDC13为溶剂,TMS为内标;高分辨质谱用Finnigan MAT 95Q质谱仪测定,轰击源为EI.
2.2席夫碱还原化合物的合成
典型操作(TP):1 C的合成,见图2.
向溶有化合物(苯胺,4.66 g,50 mmol;苯甲醛,5.31 g,50 mmol;乙酸,6.00 g,100 mmol)的100 mL二氯乙烷溶液中分3次加入醋酸硼氢化钠(31.78 g,150 mmol),反应液在室温条件下搅拌2 h.TLC显示原料完全反应,反应液真空条件下浓缩,浓缩得到的油状物用水洗涤,二氯甲烷萃取水相,无水硫酸镁干燥,浓缩有机相得白色固体8.42 g(1 C).
本实验中所有合成的席夫碱的还原化合物归纳在表1中.
图2 席夫碱还原化合物的合成路线Fig.2 Synthesis route of the reduced Schiff base compounds
2.2.11 C的合成(Tab.1,Entry 1)根据(TP),浓缩有机相得白色固体8.42 g(1 C),收率92%.熔点39oC;1H NMR(400 MHz,CDCl3)δ:7.39~
7.21(m,5H),7.15(t,J=7.8Hz,2H),6.70(t,J= 7.3Hz,1H),6.61(d,J=7.8Hz,2H),4.29(s,2H),3.97(s,1 H);13C NMR(100 MHz,CDCl3)δ:148.24,139.54,129.36,128.72,127.59,127.31,117.64,112.93,48.39;HRMS(ESI):m/z calcd for C13H13N:183.104 8,found183.105 6.
2.2.22 C的合成(Tab.1,Entry 2)根据(TP),浓缩有机相得无色油状物13.91 g(2 C),收率90%.1H NMR(400 MHz,CDCl3)d 7.68(dd,J=7.8,1.4 Hz,1H),7.38~7.26(m,5H),7.18~7.13(m,1H),6.54(dd,J=8.0,1.2Hz,1H),6.45(td,J=7.6,1.5 Hz,1H),4.63(brs,1H),4.41(d,J=5.6 Hz,2H);13C NMR(100 MHz,CDCl3)d 147.00,139.01,138.65,129.42,128.73,127.30,127.21,118.83,111.04,85.32,48.30.HRMS(ESI):m/z calcd for C13H12IN:309.001 4,found 309.000 7.
2.2.33 C的合成(Tab.1,Entry 3)根据(TP),浓缩有机相得淡黄色油状物16.83 g(3 C),收率87%.1H NMR(400 MHz,CDCl3)d:7.50(d,J= 8.3 Hz,1H),7.29~7.40(m,5H),6.67(d,J=1.9Hz,1H),6.59(dd,J=8.1,2.2 Hz,1H),4.63(br s,1H),4.36(d,J=5.4 Hz,2H);13C NMR(100 MHz,CDCl3)d:148.21,139.83,137.82,128.85,127.61,127.33,123.62,121.61,113.63,83.00,48.32.HRMS (ESI):m/z calcd for C13H11BrIN:386.912 0,found 386.912 6.
2.2.44 C的合成(Tab.1,Entry 4)根据(TP),浓缩有机相得得淡黄色油状物14.92 g(4 C),收率88%.1H NMR(400 MHz,CDCl3)d:7.27~7.40(m,5H),6.79(dd,J=8.8,2.9 Hz,1H),6.49(d,J= 8.8 Hz,1H),4.36(d,J=5.4 Hz,2H),4.28(br s,1H),3.71(s,3H);13C NMR(100 MHz,CDCl3)d:152.00,141.91,139.02,128.71,127.22,124.65,115.52,111.51,85.33,56.01,49.15.HRMS (ESI):m/z calcd for C14H14INO:339.012 0,found 339.012 5.
2.2.55 C的合成(Tab.1,Entry 5)根据(TP),浓缩有机相得黄色固体9.05 g(5 C),收率85%.熔点50℃;1HNMR(400Mz,CDCl3)δ:7.35(m,4H),7.27(d,J=6.9Hz,1H),6.77(d,J=8.8Hz,2 H),6.60(d,J=8.8 Hz,2 H),4.28(s,2 H),3.77(s,1 H),3.74(s,3 H);13C NMR(100 MHz,CDCl3)δ:152.30,142.58,139.81,128.73,127.68,127.30,115.03,114.22,55.94,49.38.HRMS(ESI):m/z calcdforC14H15NO:213.115 4,found213.115 9.
2.2.66 C的合成(Tab.1,Entry 6)根据(TP),浓缩有机相得白色固体10.33 g(6 C),收率85%.熔点97℃;1H NMR(400 MHz,CDCl3)δ:7.28(d,J=8.4 Hz,2 H),6.87(d,J=8.5 Hz,2 H),6.77(d,J=8.8Hz,2H),6.59(d,J=8.8Hz,2H),4.19(s,2 H),3.79(s,3 H),3.73(s,3 H);13C NMR(100 MHz,CDCl3)δ:158.78,152.12,142.52,131.66,128.81,114.87,114.09,113.96,55.79,55.28,48.70.HRMS(ESI):m/z calcd for C15H17NO2:243.125 9,found 243.125 1.
2.2.77 C的合成(Tab.1,Entry 7)根据(TP),浓缩有机相得白色固体9.76 g(7 C),收率86%.熔点107℃;1H NMR(400 MHz,CDCl3)δ:7.26(d,J=7.8 Hz,2 H),7.15(d,J=7.8 Hz,2 H),6.77 (d,J=8.8 Hz,2 H),6.60(d,J=8.8 Hz,2 H),4.23 (s,2 H),3.74(s,4 H),2.34(s,3 H);13C NMR (100 MHz,CDCl3)δ:152.24,142.65,136.91,136.72,129.38,127.66,115.01,114.19,55.93,49.11,21.23.HRMS(ESI): m/zcalcdfor C15H17NO:227.131 0,found 227.131 8.
2.2.88 C的合成(Tab.1,Entry 8)根据(TP),浓缩有机相得黄色油状物11.66 g(8 C),收率83%.1H NMR(400 MHz,CDCl3)δ:7.56(d,J= 8.1 Hz,2 H),7.45(d,J=8.0 Hz,2 H),6.76(d,J= 8.9Hz,2H),6.55(d,J=8.9Hz,2H),4.33(s,2H),3.88(s,1 H),3.71(s,3 H);13C NMR(100 MHz,CDCl3)δ:152.49,144.17,142.00,129.44(q,J= 32.4 Hz),127.59,125.60(q,J=3.8 Hz),122.99,115.04,114.24,55.83,48.73.HRMS(ESI):m/z calcd for C15H14F3NO:281.102 7,found 281.103 6.
表1 合成席夫碱的还原化合物Tab.1 Synthesis of the Schiff base reduction compounds
本文以苯胺与苯甲醛为模板底物对反应条件进行探索,如图3所示,反应条件的摸索采用GC或者GC-MS检测.模板底物在对甲苯磺酸和甲醇或乙醇的反应体系中几乎都没有目标化合物生成,在乙酸和二氯乙烷反应体系中反应无法彻底完成,只有少量目标化合物生成.但在乙酸和二氯乙烷反应体系中加入3个当量的醋酸硼氢化钠后,反应迅速彻底完成(Tab.1,Entry1),反应收率高(92%).醋酸硼氢化钠是一种高效的高选择性的还原试剂,用其对席夫碱进行选择性还原,便可以定量快捷地合成席夫碱还原化合物,所得的产物易分离,产率高.对于空间位阻大的底物(Tab.1,Entry2~Entry4)的收率也可以达到87%以上,本方法的底物适用性较为广泛,能适用于芳基席夫碱还原化合物的大剂量制备,还原产物可以不用分离而直接使用,因此具有较为重要的工业应用价值.
图3 一锅法合成席夫碱还原化合物的反应条件探索Fig.3 Exploration of reaction conditions of one-pot synthesis of the reduced Schiff base compounds
本研究报道了一种一锅法制备芳基席夫碱还原化合物的方法:用醋酸硼氢化钠原位对生成的席夫碱进行快速定量还原,所得的产物产率高,可以不用柱色谱分离而直接使用,该合成方法的底物普适性广,也可以用于目标化合物的大量制备中.本方法合成简单,方便快捷,可以为这类席夫碱还原化合物的合成提供一条重要的参考途径.
[1] KUMAR V,SHARMA S,SHARMA U,et al.Synthesis of substituted amines and isoindolinones:catalytic reductive amination using abundantly available AlCl3/ PMHS[J].Green chemistry,2012,14:3410-3414.
[2]LANG S,CORR M,MUIR N,et al.First organophosphorus radical-mediated cyclisations to afford medium-sized rings:eight-membered lactones and sevenand eight-membered lactams[J].Tetrahedron letters,2005,46:4027-4030.
[3]ZHAO W,DONG X,JIANG M,et al.A facile copper-catalyzed one-pot domino synthesis of 5,12-dihydroindolo[2,1-b]quinazolines[J].Organic letters,2012,14(6):1420-1423.
[4] FIELDING M R,GRIGG R,URCH C J,Novel synthesis of oxindoles from carbamoyl chlorides via palladium catalysed cyclisation-anion capture[J].Chemical communications,2000,22(22):2239-2240.
[5]ZHANG X,ZENG W,LIANG Y,et al.Copper-catalyzed double C-S bonds formation via different paths:synthesis of benzothiazoles from NBenzyl-2-iodoaniline and potassium sulfide[J].Organic letters,2014,16:876-879.
[6] ROMAN D S,TAKAHASHI Y,CHARETTE A B.Potassium tert-butoxide promoted intramolecular arylation via a radical pathway[J].Organic letters,2011,13 (12):3242-3245.
[7]CROPPER E L,WHITE A J P.Ligand effects in the synthesis of N-heterocycles by intramolecular Heck reactions[J].Journal of organic chemistry,2006,71:1732-1735.
[8]LIZOS D E,MURPHY J A.Concise synthesis of (±)-horsfiline and(±)-coerulescine by tandem cyclisation of iodoaryl alkenyl azides[J].Organic biomolecular chemistry,2003(1):117-122.
[9] PARK J W,CHUNG Y K.Hydrogen-free Cobalt-Rhodium heterobimetallic nanoparticle catalyzed reductive amination of aldehydes and ketones with amines and nitroarenes in the presence of carbon monoxide and water[J].American Chemical Society catalysis,2015 (5):4846-4850.
本文编辑:张瑞
Synthesis and Reduction of Schiff Base by One-Pot Method
DONG Zhibing,LIU Fang,WANG Min,LIU Min,ZENG Mengtian,XU Wan
School of Chemistry and Environmental Engineering,Wuhan Institute of Technology,Wuhan 430074,China
Schiff base is a kind of widely-used ligand which can form complexes with most of metals in the periodic table.The stability of Schiff base ligand is bad,but the reduced Schiff base shows much better stability. Thus,it is very important to explore the synthetic method of the reducted Shiff base,which may broaden the applications of these compounds.A facile one-pot synthesis and reduction of Schiff base is reported by using sodium triacetoxyborohydride as the reductant.The reaction underwent in a smooth and rapid manner with high yield,and the intermediate Schiff base is reduced directly without further separation process.The obtained substrate has wide applicability and can be applied in scaled-up synthesis of the target molecular.By using this method,eight kinds of the reduced Schiff base derivatives were synthesized,three of them are ortho-iodinated phenyl amines,which are important starting materials for the drugs and pesticides synthesis.
one-pot;Schiff base;sodium triacetoxyborohydride;reduction
O621
A
10.3969/j.issn.1674-2869.2016.03.001
1674-2869(2016)03-0209-04
2016-04-05
董志兵,博士,教授.E-mail:zhibingdong80@aliyun.com