王宏涛 张宝强 孟莹梅
摘要:设计了一种基于同步开关和中间电容的接口电路——SSIC(Synchronized Switch and Intermediate Capacitor)接口电路,完成了该接口电路在恒定激振位移和恒定激振力条件下回收功率的理论分析和计算,并将其与压电振动能量回收技术中4种常用的接口电路标准、SECE、串联-SSHI、并联-SSHI进行了比较。计算和实验结果均表明SSIC和SECE接口电路均具有回收功率与负载变化无关的优点,此外SSIC接口电路显著提高了回收功率,在恒定位移激励情况下其回收功率约是SECE的2倍。
关键词:
能量回收; 压电效应; 接口电路; 机电转换
中图分类号:TN712+.5; TK01文献标志码: A
文章编号: 1004-4523(2016)03-0386-09
DOI:10.16385/j.cnki.issn.1004-4523.2016.03.003
引言
压电能量回收技术是指利用压电材料将周围环境的机械振动能转换为电能[1-4],其基本原理是将压电材料黏贴在振动结构表面,当振动结构在外界的激励下发生振动时,压电材料特有的压电效应使其上下表面产生交变电压,接口电路将该交变电压转换为直流电并储能回收于电容或电池中,回收的能量可为微型机电系统和无线传感设备提供能量,可见,接口电路是压电能量回收系统的重要组成部分。接口电路具有较好的性能主要表现为回收功率大且不随负载变化,标准(Standard)、SECE (Synchronous Electric Charge Extraction)、串联-SSHI(Parallel Synchronized Switch Harvesting on Inductor)和并联-SSHI(Series Synchronized Switch Harvesting on Inductor)接口是4种常用的接口电路技术[5],其中,仅SECE接口电路的回收功率与负载变化无关,并联-SSHI的回收功率最大但与负载变化相关。由4种接口技术还衍生出了SSHI-MR(Synchronized Switch Harvesting on Inductor using Magnetic Rectifier)[6],hybrid SSHI[7],DSSH(Double Synchronized Switch Harvesting)[8],ESSH(Enhanced Synchronized Switch Harvesting)[9]以及一些能自动产生控制信号的自供能接口技术[10-13]。
本文提出了一种基于同步开关和中间电容的SSIC接口技术,该接口技术的优势在于回收功率与负载的变化无关且回收功率约是SECE接口技术的2倍。
5结论
随着无线传感网络的快速发展,利用压电片回收环境中的振动能量为无线传感器节点供电的技术得到了广泛的关注,而接口电路是压电能量回收技术的重要组成部分,因此先后出现了Standard、SECE、串联-SSHI、并联-SSHI 4
[HJ*3/5]种基本接口电路。本文设计了SSIC接口电路,该接口电路主要由两个同步开关和中间电容组成,理论分析和实验均验证了该接口电路的回收功率与负载无关,而且约是SECE接口电路的2倍,有着优越的性能。但是,实验中的单片机和光电耦合器都需要外接电源,回收的能量没有考虑它们的功耗,因此,设计一个自供能的接口电路,实现用回收的能量给单片机和光电耦合器供电是今后工作的主要研究重点。
参考文献:
[1]Badel A, Guyomar D, Lefeuvre E, et al. Piezoelectric energy harvesting using a synchronized switch technique[J]. Journal of Intelligent Material Systems and Structures, 2006, 17(8-9): 831—839.
[2]Shu Y, Lien I. Analysis of power output for piezoelectric energy harvesting systems[J]. Smart Materials and Structures, 2006, 15(6):1499—1512.
[3]边义祥,杨成华. 基于压电材料的振动能量回收技术现状综述[J]. 压电与声光,2011,33(4): 612—622.
[KG2*2]Bian Yi-xiang, Yang Cheng-hua. A review of current research for energy harvesting based on vibration of piezoelectric materials[J]. Piezoelectrics and Acoustooptics, 2011, 33(4): 612—622.
[4]Guyomar D, Badel A, Lefeuvre E, et al. Toward energy harvesting using active materials and conversion improvement by nonlinear processing[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2005, 52(4):584—595.
[5]Guyomar D, Lallart M. Recent progress in piezoelectric conversion and energy harvesting using nonlinear electronic interfaces and issues in small scale implementation[J]. Micromachines, 2011, 2(2): 274—294
[6]Garbuio L, Lallart M, Guyomar D, et al. Mechanical energy harvester with ultralow threshold recti?cation based on SSHI nonlinear technique[J]. IEEE Transactions on Industrial Electronics, 2009, 56( 4):1048—1056.
[7]Lallart M, Richard C, Garbuio L, et al. High efficiency, wide load bandwidth piezoelectric energy scavenging by a hybrid nonlinear approach[J]. Sensors and Actuators A: Physical, 2011,165(2): 294—302.
[8]Lallart M, Garbuio L, Petit L, et al. Double Synchronized Switch Harvesting (DSSH): A new energy harvesting scheme for efficient energy extraction[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2008, 55(10): 2119—2130.
[9]Shen H, Qiu J, Ji H, et al. Enhanced synchronized switch harvesting: A new energy harvesting scheme for efficient energy extraction[J]. Smart Materials and Structures, 2010,19(11): 115017.
[10]Lallart M, Guyomar D. Piezoelectric conversion and energy harvesting enhancement by initial energy injection[J]. Applied Physics Letters, 2010, 97(1): 014104—3.
[11]Lallart M, Lefeuvre E, Richard C, et al. Self-powered circuit for broadband, multimodal piezoelectric vibration control[J]. Sensors and Actuators A: Physical, 2008,143(2):377—382.
[12]曹军义,任晓龙,周生喜,等. 基于并联电感同步开关控制的振动能量回收方法研究[J]. 振动与冲击,2012,31(17):56—60.
[KG2*2]Cao Jun-yi, Ren Xiao-long, Zhou Sheng-xi, et al. Vibration energy harvesting based on synchronized switch control of parallel inductor[J]. Journal of Vibration and Shock, 2012, 31(17): 56—60.
[13]Junrui L, Wei-Hsin L. Improved design and analysis of self-Powered synchronized switch interface circuit for piezoelectric energy harvesting systems[J]. IEEE Transactions on Industrial Electronics, 2012, 59(4):1950—1960.
[14]Badel A, Lagache M, Guyomar D, et al. Finite element and simple lumped modeling for flexural nonlinear semi-passive damping[J]. Journal of Intelligent Material Systems and Structures, 2007, 18(7): 727—742.
[15]Lefeuvre E, Badel A, Richard C, et al. A comparison between several vibration-powered piezoelectric generators for standalone systems[J]. Sensors and Actuators A: Physical, 2006, 126(2):405—416.