郝运轻,宋国奇,周广清,李 政,王伟庆,李 博,张存霞
(1.中国石化 石油勘探开发研究院,北京 100083;2.中国石化 胜利油田分公司,山东 东营 257015)
济阳坳陷古近系泥页岩岩石学特征对可压性的影响
郝运轻1,宋国奇2,周广清2,李政2,王伟庆2,李博2,张存霞2
(1.中国石化 石油勘探开发研究院,北京100083;2.中国石化 胜利油田分公司,山东 东营257015)
摘要:济阳坳陷古近系泥页岩蕴含着丰富的油气资源,但针对性的压裂未取得预期效果。立足于岩石学特征,从脆性矿物类型、含量、产状及成因、黏土矿物组成、有机质含量、成岩作用强度、天然裂缝发育程度等方面对泥页岩可压性的影响进行了剖析,并与美国相关盆地的页岩有关参数进行了对比。研究认为:济阳坳陷古近系沙三下亚段—沙四上亚段泥页岩脆性矿物以硬度较低的方解石为主,总体抗嵌入能力较差;陆源的石英碎屑颗粒弥散状分布,影响压裂应力集中造缝,但含量仍与岩石脆性正相关;结晶形成的碳酸盐纹层导致岩石纵、横向非均质性增强,不利于压裂形成复杂网状裂缝;有机质含量与岩石脆性负相关,与源岩质量正相关,有利可压层段的选择需辩证综合分析;地层年代新、成岩时间短使岩石相对呈塑性,岩石脆性破裂难度增加。泥页岩可压性的影响因素非常复杂,既取决于岩石学特征又受围压条件及地应力差异等地质条件影响;压裂效果还受压裂液体系及施工参数的选择等方面的影响。
关键词:泥页岩;岩石学特征;脆性矿物;可压性;古近系;济阳坳陷
可压性是页岩在水力压裂中能够被有效压裂的基本性质,是页岩油气开发最关键的评价参数之一[1]。国外一般用矿物组成或岩石力学参数来表征可压性[2-4];国内学者在借鉴国外经验的基础上,基于矿物组成、岩石脆性、成岩作用及其他因素分析,尝试对岩石可压性进行了定量评价及应用[5-11]。
济阳坳陷古近系有800余口钻井在泥页岩段见油气显示,并有35口井获得工业油流,说明页岩油气资源具有一定勘探前景[12-13]。2010年以来,胜利油田针对页岩油气在济阳坳陷先后实施钻探了4口直井、3口水平井,且在泥页岩段均见到油气显示。但对渤页平1、渤页平2和樊页1 井进行的压裂试油及试采效果不理想,虽获得油流,但产量远不及预期。针对研究区泥页岩油气压裂效果不理想的问题,本文从岩石物质基础出发,分脆性矿物类型、含量、产状及成因、黏土矿物组成、有机质含量、地层时代及成岩作用、天然裂缝发育程度等多个方面对岩石可压性影响因素进行了剖析。
1岩石力学参数特征
选取牛页1井等4口系统取心井共16块岩石样品,利用Terra Tek岩石力学三轴应力测试系统进行了单轴(表1)和围压条件下共计60个岩心柱状样品的岩石力学参数测试,结果表明研究区沙三下—沙四上泥页岩杨氏模量和泊松比变化范围较大,说明岩石力学性质非均质性强,不同围压下杨氏模量测试范围为1.636~43.574 GPa,泊松比测试范围为0.16~0.362,杨氏模量和泊松比的优势范围分别为15~25 GPa和0.18~0.28之间。据Schlumberger公司测井结果,东营凹陷泥页岩杨氏模量一般10~30 GPa,泊松比一般0.20~0.35。
和北美地区相比,济阳坳陷沙三下—沙四上泥页岩部分层段脆性能够达到美国页岩气储层评价岩石力学参数的基本要求[14],即泊松比小于0.25、杨氏模量大于20 GPa,但总体脆性偏低,压裂效果难以准确预测。
2脆性矿物组成与可压性
脆性矿物含量影响页岩基质孔隙和微裂缝发育程度,脆性矿物含量越高,岩石脆性越强,易形成天然裂缝或诱导裂缝[15]。Jarvie等[3]、Sondergeld等[16]采用石英含量计算岩石脆性;Slatt[17]将石英和白云石作为脆性矿物;Nelson等[18]认为除石英外,长石和白云石也是页岩储层中的易脆组分;杜金虎等[19]和康玉柱[20]将石英、长石和方解石等碳酸盐矿物均作为脆性矿物。
表1 济阳坳陷重点井泥页岩单轴力学参数统计Table 1 Rock mechanical parameters measured using axial tests, Jiyang Depression
2.1脆性矿物组成面貌对比性分析
石英是北美地区页岩储层的主要脆性矿物。据统计,北美地区页岩油气产层[19-23]脆性矿物总量在60%左右,以石英等硅质矿物为主,含量多在40%~60%之间,碳酸盐矿物较少,一般小于20%;Eagle Ford页岩较为特殊,其碳酸盐含量可达50%,而石英等硅质矿物含量约20%[21]。
济阳坳陷沙河街组泥页岩以普含碳酸盐矿物为特征[24-25](图1),脆性矿物相应以方解石为主,少量石英,长石和白云石少量或微量。据统计,脆性矿物总量一般大于60%,其中方解石含量一般大于30%,石英等碎屑矿物含量一般小于20%。因此,脆性矿物组成明显不同于北美地区。
2.2脆性矿物力学性质差异性分析
对比方解石和石英矿物的物理力学性质,有助于理解济阳坳陷古近系泥页岩脆性总体较低的原因。方解石和白云石摩氏硬度分别为3和3.5~4,而石英摩氏硬度为7,远高于方解石和白云石;石英弹性模量为96 GPa,泊松比为0.08,方解石弹性模量为81 GPa,泊松比为0.30,即石英抗压强度明显高于方解石,方解石更易于发生塑性形变。朱彤等[26]对比了Barnett页岩和Eagle Ford页岩矿物组成对可压性的影响,认为前者矿物组成以硅质为主,岩石脆性强,易于形成复杂裂缝网络;后者矿物组成以钙质为主,岩石脆性较弱,岩石相对柔软,容易引起支撑剂嵌入。综上,以方解石为主要脆性矿物组成的济阳坳陷泥页岩总体上杨氏模量偏低、泊松比偏高,相对塑性较强,在压裂施工过程中不易形成脆性裂缝,支撑剂容易发生嵌入效应。
2.3脆性矿物含量与可压性
统计分析泥页岩力学参数测试结果与脆性矿物含量相关性,发现方解石、白云石含量与岩石脆性关系没有明显规律,原因可能在于碳酸盐矿物的产状变化较大(详见后文论述);石英含量与岩石脆性明显正相关(图2),说明研究区泥页岩石英含量虽然总体较低,但对岩石压裂仍有重要贡献。
图1 济阳坳陷沙河街组泥页岩X衍射全岩矿物组成Fig.1 Triangular diagram of mineral composition by X-ray diffraction analysis, Jiyang Depression
图2 济阳坳陷罗69井石英含量与力学参数关系Fig.2 Relationship between quartz content and mechanical parameters of well Luo69, Jiyang Depression
3韧性组分与岩石可压性
和脆性矿物相对,韧性组分会增加岩石塑性,主要包括黏土矿物和有机组分。
3.1韧性组分含量与岩石可压性
根据文献资料统计,北美地区页岩黏土矿物总量在25%~45%,富含碳酸盐的Eagle Ford页岩相对黏土矿物含量较低,在15%左右[21];济阳坳陷沙三下—沙四上泥页岩黏土矿物总量一般15%~30%;黏土矿物类型以伊利石或伊/蒙间层矿物为主。
统计岩石中黏土矿物和有机碳含量与测井力学参数关系可见,黏土矿物含量和有机碳含量正相关,二者均与杨氏模量负相关(图3),即黏土含量、有机碳含量越高,则岩石脆性越差。需要指出的是,有机碳含量是页岩油气地质评价的重要参数,和源岩质量正相关,因此页岩油气有利可压层段的选择需要综合考虑多因素抗压强度。
抗压强度反映岩石在无侧束状态下受力破碎的难易程度,抗压强度越大,脆性越强。以牛页1井3 389.10 m岩心为例,岩性为泥质灰岩,呈层—纹层状构造;矿物平均组成为:黏土矿物13%,石英23.5%,长石1.5%,方解石52.5%,白云石7%,黄铁矿2%,菱铁矿0.5%;全尺寸岩心强度连续测试结果表明(图4),富碳酸盐的浅色纹层抗压强度大,一般在120~190 MPa,均值约140 MPa,而富含泥质及有机质的暗色纹层岩心抗压强度较小,一般30~80 MPa,均值约50 MPa。
图3 济阳坳陷罗69井岩心测试有机碳含量、 黏土矿物含量与测井解释杨氏模量关系Fig.3 Relationship between Young’s modulus and content of measured TOC and clay minerals from well Luo69, Jiyang Depression
图4 济阳坳陷牛页1井3 389.10 m岩心强度连续测试结果Fig.4 Unconfined strength of a core sample from well Niuye1, Jiyang Depression
3.2黏土矿物类型与岩石脆性
据Schlumberger公司对济阳坳陷沙三下—沙四上泥页岩力学参数测井解释结果,东营凹陷和沾化凹陷罗家地区杨氏模量差别较大而泊松比相对较为接近。前者杨氏模量一般20~30 GPa,泊松比一般0.20~0.35;后者杨氏模量一般10~20 GPa,泊松比一般在0.25左右,即东营凹陷沙三下泥页岩脆性比罗家地区强。而据X衍射分析测试结果,罗家地区沙三下泥页岩方解石等脆性矿物含量高于东营凹陷(图1),二者脆性程度发生反转的原因可能在于黏土矿物类型的不同(图5),罗家地区黏土矿物以伊/蒙间层矿物为主,东营凹陷黏土矿物则以伊利石占优势。
4岩石结构与岩石力学各向异性
4.1硅质矿物成因及产状
北美地区页岩油主要产于Barnett和Eagle Ford等页岩地层。Barnett页岩以硅质泥岩相为主,脆性矿物主要为石英等硅质矿物,含量约45%,碳酸盐含量约15%;硅质主要为海绵和放射虫等生物成岩转变形成的蛋白石,含量远高于碎屑石英[23]。济阳坳陷陆相泥页岩中石英主要为陆源碎屑搬运沉积产物,与泥质不均匀相混,主要呈分散状(图6a,b)、部分呈纹层和条带状与泥质相混(图6c)。陆相弥散状的石英抗压强度低于海相硅质泥岩,在岩石压裂中起分散应力的作用,不易形成网状裂缝。
4.2碳酸盐矿物成因及产状
北美地区以Eagle Ford为代表的高碳酸盐含量页岩,碳酸盐主要源自颗石藻和有孔虫,系生物成因[27],岩石结构致密;Barnett页岩中碳酸盐矿物主要赋存于化石分布层[23],以生物骨架和生物碎屑产状产出。济阳坳陷陆相泥页岩中碳酸盐矿物主要为化学或生物化学成因,以泥晶为主,与泥质相混(图6d)或相对富集呈层状及纹层状产出(图6e,f)。纹层状构造易于造成压裂能量顺层释放,垂直层面压裂不利于形成较大的缝高及复杂的裂缝系统。岩石力学参数测试结果表明,纹层状岩石(图7a)与块状、层状样品(图7b)相比,易于塑性变形,即不易形成破裂缝。渤页平2井第2段压裂对纹层状岩相施工,压后裂缝与井筒方向平行,判断裂缝沿层理方向延伸,没有形成网状裂缝。
图5 济阳坳陷沙三下—沙四上代表井X衍射黏土矿物相对组成Fig.5 Relative measured content of clay minerals from the upper section of the fourth member to the lower section of the third member of Shahejie Formation in the Jiyang Depression
图6 济阳坳陷湖相泥页岩脆性矿物产状Fig.6 Distribution of brittle minerals (quartz and calcite) in lacustrine shale, Jiyang Depression
图7 济阳坳陷罗69井岩心样品差应力—应变关系Fig.7 Curves of stress-strain by triaxial test of core samples from well Luo69 in the Jiyang Depression
5成岩作用与岩石可压性
北美地区含油气页岩为海相沉积产物,时代以中、古生代为主[21],沉积时间均在85 Ma(大部分在170 Ma)以前,成岩时间长,成岩作用强。例如Barnett页岩中由生物捕获的硅质已在成岩过程中形成蛋白石,岩石相对硬、脆;从热演化程度看[19-21],除Antrim页岩和New Albany页岩Ro低于1.0%外,其他代表性页岩Ro均可达到1.3%以上,最高可达4.9%。
济阳坳陷含油气页岩段为古近系陆相沉积,沉积时间距今50.5~32.8 Ma,成岩作用时间短,成岩作用较弱;从热演化程度看,沙三下亚段Ro在1.0%以下,沙四上亚段Ro多在1.0%左右,最高不超过1.4%。
综上,研究区古近系泥页岩热演化程度低于、成岩时间短于、成岩强度弱于北美地区,决定了其整体塑性较强的特点,在压裂过程中不易脆性破裂而形成复杂裂缝系统。
6围压条件与岩石脆性
随埋深增大,围压和地温也随之增加,岩石脆延性相应会有所变化[28-30]。罗69井2 995.00 m岩心样品实验测试数据表明,岩石脆性系数与围压负相关(图8),即随围压(埋深)增大,岩石向延性方向演化。
图8 济阳坳陷罗69井2 995.00 m 岩心样品脆性系数与围压关系Fig.8 Relationship between confining pressure and brittleness of core samples from well Luo69, Jiyang Depression
7天然裂缝与压裂缝继承性发育
渤页平2井水平段实施了5段压裂。成像测井显示天然裂缝发育的第1,5段施工顺利,且第5段获得油流,压后微破裂检测结果显示压裂缝延伸较好、分布范围较广;而天然裂缝不发育的第2,3,4段压裂砂堵。该井压裂实践说明了2个问题:井区泥页岩可压性具有非均质性;压裂缝能够在天然裂缝存在基础上继承发育。
8结论
(1)济阳坳陷沙三下—沙四上泥页岩,与北美地区页岩相比,地层年代新、成岩时间短、热演化程度低、成岩强度弱;脆性矿物以方解石为主,相对硬度低、脆性差、抗嵌入能力弱;层状和纹层状构造发育,岩石纵、横向力学性质非均质性强,不易整体压裂。因此,研究区泥页岩层整体上具有一定塑性,这种塑性会造成压裂过程中压力吸收和颗粒嵌入等不利于形成稳定裂缝的现象,从而影响压裂效果;岩石力学性质的强非均质性,使水平井垂直层面压裂施工时应力可能在单层面扩散,岩层不易被整体压开,增加岩石破裂难度。
(2)泥页岩可压性的影响因素非常复杂,既取决于脆性矿物类型、含量、产状及成因、黏土矿物类型及相对组成、成岩作用强度、岩石天然裂缝发育程度等岩石学特征,又受围压条件及地应力差异等地质条件影响。另外,压裂施工是一项复杂工作,压裂液体体系及施工参数的选择都影响压裂效果。总之,研究区陆相泥页岩本身的非均质性、地质条件的多变性及压裂具体实施的情况共同决定了压裂结果的复杂性。
参考文献:
[1]Chong K K,Grieser W V,Passman A,et al.A completions guide book to shale-play development:A review of successful approaches towards shale-play stimulation in the last two decades[C]//Proceedings of Canadian Unconventional Resources and International Petroleum Confrence.Calgary,Albeta,Canada:CSUG/SPE,2010.
[2]Richman R,Mullen M J,Petre J E,et al.A practical use of shale petrophysics for stimulation design optimization:All shale plays are not clones of the Barnett shale[C]//SPE Annual Technical Conference and Exhibition.Denver,Colorado,USA:SPE,2008.
[3]Jarvie D M,Hill R J,Ruble T E,et al.Unconventional shale-gas systems:The Mississippian Barnett shale of north-central Texas as one model for thermogenic shale-gas assessment[J].AAPG Bulletin,2007,91(4):475-499.
[4]Leroueil S.Natural slopes and cuts:Movement and failure mechanisms[J].Geotechnique,2001,51(3):197-243.
[5]唐颖,邢云,李乐忠,等.页岩储层可压裂性影响因素及评价方法[J].地学前缘,2012,19(5):356-363.
Tang Ying,Xing Yun,Li Lezhong,et al.Influence factors and evaluation methods of the gas shale fracability[J].Earth Science Frontiers,2012,19(5):356-363.
[6]董浩,王立婷,王丽娜,等.页岩气藏体积压裂数学模型研究[J].断块油气田,2014,21(6):755-758.
Dong Hao,Wang Liting,Wang Lina,et al.Mathematical model research of volume fracturing for shale gas reservoir[J].Fault-Block Oil and Gas Field,2014,21(6):755-758.
[7]李庆辉,陈勉,金衍,等.页岩脆性的室内评价方法及改进[J].岩石力学与工程学报,2012,31(8):1680-1685.
Li Qinghui,Chen Mian,Jin Yan,et al.Indoor evaluation method for shale brittleness and improvement[J].Chinese Journal of Rock Mechanics and Engineering,2012,31(8):1680-1685.
[8]张新华,邹筱春,赵红艳,等.利用X荧光元素录井资料评价页岩脆性的新方法[J].石油钻探技术,2012,40(5):92-95.
Zhang Xinhua,Zou Xiaochun,Zhao Hongyan,et al.A new method of evaluation shale brittleness using X-ray fluorescence element logging data[J].Petroleum Drilling Techniques,2012,40(5):92-95.
[9]王优先.陆相页岩油成藏地质条件及富集高产主控因素[J].断块油气田,2015,22(5):588-593.
Wang Youxian.Geologic conditions of continental shale oil accumulation and main controlling factors of enrichment and high production[J].Fault-Block Oil and Gas Field,2015,22(5):588-593.
[10]李宁,郝加良,秦广胜,等.东濮凹陷泥页岩脆性指示因子地震预测[J].断块油气田,2015,22(3):338-341.
Li Ning,Hao Jialiang,Qin Guangsheng,et al.Prediction of shale brittleness using seismic technology in Dongpu Sag[J].Fault-Block Oil and Gas Field,2015,22(3):338-341.
[11]李玉梅,柳贡慧,李 军,等.页岩储层各向异性对裂缝起裂压力的影响[J].特种油气藏,2014,21(6):133-137.
Li Yumei,Liu Gonghui,Li Jun,et al.Impacts of Anisotropy to Fracturing Pressure in Shale Reservoirs[J].Special Oil & Gas Reservoirs,2014,21(6):133-137.
[12]王勇,宋国奇,刘惠民,等.济阳坳陷页岩油富集主控因素[J].油气地质与采收率,2015,22(4):20-25.
Wang Yong,Song Guoqi,Liu Huimin,et al.Main control factors of enrichment characteristics of shale oil in Jiyang depression[J].Petroleum Geology and Recovery Efficiency,2015,22(4):20-25.
[13]宁方兴.济阳坳陷页岩油富集机理[J].特种油气藏,2015,22(3):27-30.
Ning Fangxing.Mechanism of Shale Oil Enrichment in Jiyang Depression[J].Special Oil & Gas Reservoirs,2015,22(3):27-30.
[14]周守为,姜伟,张春阳,等.美国Eagle Ford页岩气开发对我国页岩气勘探开发的启示[J].中国工程科学,2012,14(6):16-21.
Zhou Shouwei,Jiang Wei,Zhang Chunyang,et al.The enlightenment on shale gas exploration and development in China getting from Eagle Ford in America[J].Engineering Sciences,2012,14(6):16-21.
[15]邹才能,董大忠,王社教,等.中国页岩气形成机理、地质特征及资源潜力[J].石油勘探与开发,2010,37(6):641-653.
Zou Caineng,Dong Dazhong,Wang Shejiao,et al.Geological characteristics,formation mechanism and resource potential of shale gas in China[J].Petroleum Exploration and Development,2010,37(6):641-653.
[16]Sondergeld C H,Newsham K E,Rice M C,et al.Petrophysical considerations in evaluating and producing shale gas resources[C]//SPE Unconventional Gas Conference.Pittsburgh,Pennsylvania,USA:SPE,2010.
[17]Slatt R M,Abousleiman Y.Multi-scale,brittle-ductile couplets in unconventional gas shales:Merging sequence stratigraphy and geomechanics[C]//AAPG Annual Convention and Exhibition.Houston,Texas,USA:AAPG,2011.
[18]Nelson R A.Geologic analysis of naturally fracture reservoirs:Contributions in petroleum geology and engineering[M].Houston:Gulf Publishing Company,1985:320.
[19]杜金虎,杨华,徐春春,等.关于中国页岩气勘探开发工作的思考[J].天然气工业,2011,31(5):6-8.
Du Jinhu,Yang Hua,Xu Chunchun,et al.A discussion on shale gas exploration and development in China[J].Natural Gas Industry,2011,31(5):6-8.
[20]康玉柱.中国非常规泥页岩油气藏特征及勘探前景展望[J].天然气工业,2012,32(4):1-5.
Kang Yuzhu.Characteristics and exploration prospect of unconventional shale gas reservoirs in China[J].Natural Gas Industry,2012,32(4):1-5.
[21]张林晔,李政,李钜源,等.东营凹陷古近系泥页岩中存在可供开采的油气资源[J].天然气地球科学,2012,23(1):1-13.
Zhang Linye,Li Zheng,Li Juyuan,et al.Feasibility analysis of existing recoverable oil and gas resource in the Palaeogene shale of Dongying Depression[J].Natural Gas Geoscience,2012,23(1):1-13.
[22]付小东,秦建中,滕格尔,等.烃源岩矿物组成特征及油气地质意义:以中上扬子古生界海相优质烃源岩为例[J].石油勘探与开发,2011,38(6):671-684.
Fu Xiaodong,Qin Jianzhong,Tenger,et al.Mineral components of source rocks and their petroleum significance:A case from Paleozoic marine source rocks in the Middle-Upper Yangtze region[J].Petroleum Exploration and Development,2011,38(6):671-684.
[23]Loucks R G,Ruppel S C.Mississippian Barnett shale:Lithofacies and depositional setting of a deep-water shale-gas succession in the Fort Worth Basin,Texas[J].AAPG Bulletin,2007,91(4):579-601.
[24]刘惠民,张守鹏,王朴,等.沾化凹陷罗家地区沙三段下亚段页岩岩石学特征[J].油气地质与采收率,2012,19(6):11-15.
Liu Huimin,Zhang Shoupeng,Wang Pu,et al.Lithologic characteristics of lower Es3shale in Luojia area,Zhanhua Sag[J].Petroleum Geology and Recovery Efficiency,2012,19(6):11-15.
[25]郝运轻,谢忠怀,周自立,等.非常规油气勘探领域泥页岩综合分类命名方案探讨[J].油气地质与采收率,2012,19(6):16-19.
Hao Yunqing,Xie Zhonghuai,Zhou Zili,et al.Discussion on multi-factors identification of mudstone and shale[J].Petroleum Geology and Recovery Efficiency,2012,19(6):16-19.
[26]朱彤,曹艳,张快.美国典型页岩气藏类型及勘探开发启示[J].石油实验地质,2014,36(6):718-724.
Zhu Tong,Cao Yan,Zhang Kuai.Typical shale gas reservoirs in USA and enlightenment to exploration and development[J].Petroleum Geology & Experiment,2014,36(6):718-724.
[27]Robison C R.Hydrocarbon source rock variability within the Austin Chalk and Eagle Ford shale (Upper Cretaceous),East Texas,U.S.A[J].International Journal of Coal Geology,1997,34(3/4):287-305.
[28]胡永全,贾锁刚,赵金洲,等.缝网压裂控制条件研究[J].西南石油大学学报(自然科学版),2013,35(4):126-132.
Hu Yongquan,Jia Suogang,Zhao Jinzhou,et al.Study on controlling conditions in network hydraulic fracturing[J].Journal of Southwest Petroleum University(Science & Technology Edition),2013,35(4):126-132.
[29]赵金洲,王松,李勇明.页岩气藏压裂改造难点与技术关键[J].天然气工业,2012,32(4):46-49.
Zhao Jinzhou,Wang Song,Li Yongming.Difficulties and key techniques in the fracturing treatment of shale gas reservoirs[J].Natural Gas Industry,2012,32(4):46-49.
[30]马超群,黄磊,范虎,等.页岩气井压裂技术及其效果评价[J].石油化工应用,2011,30(5):1-3.
Ma Chaoqun,Huang Lei,Fan Hu,et al.Fracture in shale gas play and the evaluation of its effects[J].Petrochemical Industry Application,2011,30(5):1-3.
(编辑黄娟)
文章编号:1001-6112(2016)04-0489-07
doi:10.11781/sysydz201604489
收稿日期:2015-10-22;
修订日期:2016-06-01。
作者简介:郝运轻(1973—),女,高级工程师,从事油气储层综合研究工作。E-mail: haoyq.syky@sinopec.com。
基金项目:国家重点基础研究发展计划(973计划)项目(2014CB239100)之课题5“陆相页岩油资源潜力与分布规律”(2014CB239105)和“山东省页岩气成矿条件研究和资源潜力预测” 项目(00鲁勘字2013-1号)资助。
中图分类号:TE122.23
文献标识码:A
Influence of petrological characteristics on fracability of the Paleogene shale, Jiyang Depression
Hao Yunqing1, Song Guoqi2, Zhou Guangqing2, Li Zheng2, Wang Weiqing2, Li Bo2, Zhang Cunxia2
(1. SINOPEC Petroleum Exploration and Production Research Institute, Beijing 100083, China;2.PetroleumExplorationandProductionResearchInstituteofSINOPECShengliOilfield,Dongying,Shandong257015,China)
Abstract:The Paleogene shale is rich in oil and gas in the Jiyang Depression. However, the recent fracturing effect of certain exploration wells was not as successful as expected. The influencing factors for shale fracability were analyzed based on petrological characteristics, such as the occurrence and genesis of brittle minerals, types and relative composition of clay minerals, organic content, diagenesis stage and the development degree of natural fractures. The main brittle minerals in shale from the Jiyang Depression are calcites with lower hardness, which determine that the shale is brittle on the whole, but the degree of brittleness is relatively low and the shale shows the characteristics of "plastic". Scattered quartz debris, higher TOC content and younger diagenesis age play a negative role in formation fracturing. The stronger heterogeneity resulting from laminated structure is not conducive to form a complex fracture system during the fracturing process. In addition to the petrological characteristics, the shale fracturing effect is also affected by formation pressure, in situ stress and fracturing scheme, etc.
Key words:shale; petrological characteristics; brittle mineral; fracability; Paleogene; Jiyang Depression