闫素辉,杨兵兵,许 峰,邵庆勤,张从宇,李文阳
(安徽科技学院农学院,安徽凤阳 233100)
稻茬晚播小麦胚乳淀粉粒度分布的粒位差异
闫素辉,杨兵兵,许 峰,邵庆勤,张从宇,李文阳
(安徽科技学院农学院,安徽凤阳 233100)
摘要:为研究稻茬晚播小麦胚乳淀粉粒分布的粒位差异,以小麦品种山农1391和藁城8901为材料,设适期播种和晚播2种播期处理,研究小麦强势、弱势籽粒胚乳淀粉粒粒度分布特征。结果表明,小麦强、弱势籽粒中均具有A、B型淀粉粒,但淀粉粒的分布因不同处理具有显著差异。不同小麦品种、播期和粒位下,淀粉粒的体积分布均呈双峰分布,峰值分别为4.878~6.453 μm和21.7~23.82 μm;淀粉粒数目分布呈单峰分布,峰值为0.520~0.571 μm。藁城8901的B型淀粉粒的体积、数目、表面积占比均显著高于山农1391;山农1391的A型淀粉粒的体积、数目、表面积百分比显著高于藁城8901。晚播处理使小麦B型淀粉粒占比显著升高,A型淀粉粒占比显著降低;弱势粒中B型淀粉粒占比降低,A型淀粉粒占比显著上升。晚播处理对山农1391的影响大于藁城8901。
关键词:晚播小麦;淀粉粒;强势粒;弱势粒
小麦籽粒的淀粉含量大约占小麦胚乳干重的70%左右。小麦淀粉的品质主要取决于其体积、形态与结构[1-2]。前人对小麦胚乳淀粉粒型、粒径分布、化学成分等已经做了大量的研究。研究认为,成熟的小麦胚乳含有A型和B型淀粉粒。A型淀粉粒似透镜状,颗粒较大,直径一般在10 μm以上,约占小麦总淀粉粒数的十分之一;B型淀粉粒似多边形,颗粒体积较小,直径一般在10 μm以下,约占小麦总淀粉粒数的88%[3-7],因颗粒体积较小,具有更大的表面积[8-9]。小麦淀粉中A型和B型淀粉粒的组成差异对小麦食品加工品质有重要影响[9-10]。
由于土壤墒情、种植的前茬作物、天气情况、农业机械及劳动力的原因,容易造成小麦的播种期推迟,从而形成晚播小麦。对于晚播小麦的生长发育特点前人已经做了大量的研究,发现在稻麦两熟制的地区,晚播小麦的主茎叶龄总数和各时期的叶龄总数均比正常播期的少,晚播小麦的生育期比正常播期的小麦推迟,营养物质的积累减少,有效穗数减少,产量降低[11]。
禾本科作物的强、弱势粒具有明显不同的发育特性,强势粒激素水平较高,胚乳细胞的增殖快、数目多,库的活性高,淀粉合成能力更强,小麦穗的强势粒和弱势粒具有典型的禾本科作物强、弱势粒的发育特征[12-17]。目前关于播期对小麦淀粉粒度分布的研究较为鲜见。为此,本研究以两个小麦品种为试验材料,分析了两种播期条件下小麦强、弱势籽粒的淀粉粒度分布特征,以期为改善晚播小麦的淀粉品质提供理论依据。
1材料与方法
1.1试验材料与设计
试验以山农1391(SN 1391)和藁城8901(GC 8901)两个小麦品种为试验材料,于2013年10月-2014年6月在安徽科技学院种植科技园进行。试验地前茬作物为水稻。设适期播种(Normal sown,NS)和晚播(Late sown,LS)两种播期处理,播期分别为2013年10月16日与11月15日。采用随机区组设计,小区面积7.5 m2(2.5 m×3 m )。小麦成熟期取麦穗,将麦穗中部小穗籽粒分成强势粒(小穗第1、2位籽粒)和弱势粒(小穗第4位籽粒),分别取50粒左右,置70 ℃烘箱烘至恒重,用于淀粉粒的提取与分析。
1.2淀粉粒提取及测定
参照Peng等[17]的方法提取小麦胚乳淀粉粒,利用LS 13320 激光衍射粒度分析仪(美国Beckman Coulter公司)进行淀粉粒径分析。
1.3数据处理
采用DPS 7.05进行统计分析,采用LSD法测验差异显著性。
2结果与分析
2.1不同播期淀粉粒的体积分布
由图1可知,小麦淀粉粒的体积分布呈双峰分布,峰值分别为4.878~6.453 μm和21.70~23.82 μm。淀粉粒平均粒径主要受品种的影响,播期和粒位对小麦平均粒径亦有显著影响(表1)。山农1391平均粒径显著高于藁城8901。山农1391晚播处理的淀粉粒平均粒径较适播显著降低。
淀粉粒体积的33.55%~48.10%由小于10 μm的B型淀粉粒组成,淀粉粒体积的51.90%~66.45%是大于10 μm的淀粉粒。小于5.6 μm的淀粉粒占总体积的19.55%~31.85%,5.6~10 μm的淀粉粒占总体积的12.50%~20.90%。藁城8901小于10 μm的B型淀粉粒的体积占比显著高于山农1391,A型淀粉粒体积占比显著低于山农1391。晚播使山农1391的B型淀粉粒体积占比显著升高。两个品种弱势粒的B型淀粉粒体积占比显著低于强势粒(藁城8901晚播除外),A型淀粉粒体积反之。
2.2不同播期淀粉粒的数目分布
由图2可看出,淀粉粒数目分布呈单峰分布,峰值为0.52~0.571 μm。小于0.55 μm的淀粉粒数目占总数目的26.80%~36.40%,0.55~3.60 μm的淀粉粒数目占总数目的61.25%~71.65%,小于3.60 μm的淀粉粒数目占总数目的97.75%~98.45%,3.6~10.8 μm的淀粉粒约占1.45%~2.25%(表2)。表明B型淀粉粒是淀粉的主要组成部分。
晚播条件下两个小麦品种强势粒中0.55~3.6 μm的淀粉粒数目较适期播种降低,弱势粒中显著升高。两个品种在晚播条件下弱势粒中,小于0.55 μm的淀粉粒数目显著降低,强势粒中显著升高。藁城8901小于3.6 μm的淀粉粒数目低于山农1391,但3.6 μm~10 μm淀粉粒数目高于山农1391。
NS:适期播种;LS:晚播;S:强势粒;I:弱势粒。表1~3与图2~3同
NS:Normal sown;LS:Late sown;S:Superior grain;I:Inferior grain.The same as table 1-3 and figure 2-3
图1 不同播期小麦胚乳淀粉粒的体积分布
表中数据为平均值±标准误。同列数据后不同的字母表示处理间在0.05水平差异显著,*表示在0.05水平差异显著。下同
Data in the table are mean ± STD. Values followed by different letters are significantly different at 0.05 level. * means significant difference at 0.05 level. The same as below
图2 不同播期下小麦胚乳淀粉粒的数目分布
%
2.3不同播期下淀粉粒的表面积分布
由图3可以看出,不同处理小麦淀粉粒表面积呈三峰分布或双峰分布,峰值分别为0.688~0.829 μm(部分)、2.787~4.444 μm和21.70~23.82 μm。小于5.6 μm淀粉粒的表面积占总淀粉粒表面积的63.70%~73.45%,5.6~10 μm淀粉粒表面积占淀粉粒总表面积的10.95%~17.45%(表3)。小于10 μm的B型淀粉粒表面积占淀粉粒总表面积的77.15%~85.55%,大于10 μm淀粉粒的表面积占淀粉粒总表面积的14.45%~22.85%。
藁城8901的B型淀粉粒的表面积占比显著高于山农1391,A型淀粉粒的表面积占比则显著低于山农1391。山农1391弱势粒中的B型淀粉粒表面积占比显著低于强势粒,A型淀粉粒则相反。晚播使山农1391的B型淀粉粒的表面积占比上升,A型淀粉粒的表面积占比则降低。晚播使藁城8901弱势粒中B型淀粉粒的表面积占比上升;使强势粒中A型淀粉粒的表面积占比显著升高,B型淀粉粒表面积占比显著下降。
图3 不同播期下小麦胚乳淀粉粒的表面积分布
%
3讨 论
淀粉的存在形态主要是颗粒态,淀粉粒大小和分布对其理化性质有显著的影响。前人研究认为,小麦淀粉粒径呈双峰曲线的分布,胚乳最少含有A、B型淀粉粒[16-19]。 在强势粒中,淀粉粒在体积和表面积分布上表现为三峰分布,而在弱势粒中则表现为双峰分布[ 20]。本研究表明,淀粉粒的体积分布呈双峰分布,峰值分别是4.878 ~6.453 μm和21.70~23.82 μm。淀粉粒数目分布呈单峰分布,峰值为0.520~0.571 μm。不同处理下的淀粉粒表面积分布部分呈三峰分布,部分呈双峰分布。
小麦过早播种易造成小麦生育期提前,加速叶片衰老,播期过早和播期过迟都不利于小麦的增产;适当推迟播期,在调节小麦有效穗数与穗粒数的关系结合冬季积温升高的背景下,仍可维持与传统播期相近的小麦产量[21-24 ]。前人研究认为,小麦强势粒在灌浆前、中期含有高含量的蔗糖,其灌浆及达到最大速率的时间早,弱势粒花后长时间生长停滞,花后较长时间才开始灌浆,弱势粒的淀粉合成能力较强势粒弱[25]。本研究发现,山农1391淀粉粒平均粒径显著高于藁城8901,晚播处理平均粒径降低,弱势粒平均粒径上升。藁城8901的B型淀粉粒的体积、数目和表面积占比高于山农1391,A型淀粉粒体积占比低于山农1391。晚播使山农1391的B型淀粉粒体积、数目和表面积占比显著升高,在弱势粒中,B型淀粉粒体积占比显著降低,弱势粒A型淀粉粒体积占比显著上升。
本研究认为,强筋小麦藁城8901和弱筋小麦山农1391[26]相比,藁城8901的B型淀粉粒的体积、数目、表面积占比显著高于山农1391,山农1391的A型淀粉粒的体积、数目、表面积占比显著高于藁城8901。晚播处理使山农1391 B型淀粉粒粒度占比显著升高,使A型淀粉粒占比显著降低。弱势粒中B型淀粉粒的占比降低,A型淀粉粒占比显著上升,且晚播处理对山农1391淀粉粒分布的影响高于藁城8901。说明与强筋小麦藁城8901相比,弱筋小麦品种山农1391籽粒淀粉粒分布的粒位间差异较大,并对播期调控反映更加明显。
参考文献:
[1]Parker M L.The relationship between A-type and B-type starch granules in the developing endosperm of wheat [J].JournalofCerealScience,1985,3:271-278.
[2]Hurkman W J,Mccue K F,Altenbach S B.Effect of temperature on expression of genes encoding enzymes for starch biosynthesis in developing wheat endosperm [J].PlantScience,2003,33:40-44.
[3]Lu H,Wang C,Guo T,etal.Starch composition and its granules distribution in wheat grains in relation to post-anthesis high temperature and drought stress treatments [J].Starch/Starke,2014,66:419-428.
[4]Stoddard F L.Survey of starch particle-size distribution in wheat and related species [J].CerealChemistry,1999,76:145-149.
[5]Dengate H,Meredith P.Variation in size distribution of starch granules from wheat grain [J].JournalofCerealScience,1984,2:83-90.
[6]Ellis R P,Cochrane M P,Dale M F B,etal.Starch production and industrial use [J].JournaloftheScienceofFoodandAgriculture,1998,77:289-311.
[7]Raeker M O,Gaines C S,Finney P L,etal.Granule size distribution and chemical composition of starches from 12 soft wheat cultivars [J].CerealChemisty,1998,75:721-728.
[8]Bertolini A C,Souza E,Nelson J E,etal.Composition and reactivity of A-and B-type starch granules of normal,partial waxy and waxy wheat [J].CerealChemistry,2003,80:544-549.
[9]张传辉,姜 东,戴延波,等.小麦籽粒淀粉粒级分布特征及其与淀粉理化特性关系研究进展[J].麦类作物学报,2005,25(6):130-133.
Zhang C H,Jiang D,Dai Y B,etal.Advances in starch granule size distribution characteristics and its relationships with physiochemical characteristics of starch in wheat grain [J].JournalofTriticeaeCrops,2005,25(6):130-133.
[10]韦存虚,张翔宇,张 军,等.不同类型小麦品种大、小淀粉粒的分离和特性[J].麦类作物学报,2007,27(2):255-260.
Wei C X,Zhang X Y,Zhang J,etal.Isolation and properties of large and small starch grains of different types of wheat cultivars [J].JournalofTriticeaeCrops,2007,27(2):255-260.
[11]郭传贵,崔晓云,刘琼霞,等.黄淮麦区晚播小麦生长特点及高产配套栽培技术[J].安徽农业科学,2001,29(3):304-305.
Guo C G,Cui X Y,Liu Q X,etal.The growth characters and high-yielding cultivation techniques of late sowing wheat in Huanghuai region [J].JournalofAnhuiAgriculturalSciences,2001,29(3):304-305.
[12]封超年,郭文善,施劲松,等.小麦花后高温对籽粒胚乳细胞发育及粒重的影响[J].作物学报,2000,26(4):399-405.
Feng C N,Guo W S,Shi J S,etal.Effect of high temperature after anthesis on endosperm cell development and grain weight in wheat [J].ActaAgronomicaSinica,2000,26(4):399-405.
[13]王瑞英,于振文.小麦籽粒发育过程中激素含量变化[J].作物学报,1999,25(2):227-231.
Wang R Y,Yu Z W.Changes of endogenous plant hormone contents during grain development in wheat [J].ActaAgronomicaSinica,1999,25(2):227-231.
[14]姜 东,于振文,李永庚,等.高产小麦强势和弱势籽粒淀粉合成相关酶活性的变化[J].中国农业科学,2002,35(4):378-383.
Jiang D,Yu Z W,Li Y G,etal.Dynamic changes of enzyme activities involving in starch synthesis in superior and inferior grains of high-yield winter wheat [J].ScientiaAgriculturaSinica,2002,35(4):378-383.
[15]武 翠,邵国军,吕文彦,等.不同发育时期水稻强、弱势粒灌浆速率的遗传分析[J].中国农业科学,2007,40(6):1135-1141.
Wu C,Shao G J,Lü W Y,etal.Genetic analysis of grain filling rate in different growth stages of superior and inferior grains in rice [J].ScientiaAgriculturaSinica,2007,40(6):1135-1141.
[16]陆大雷,郭换粉,陆卫平.播期、品种和拔节期追氮量对糯玉米淀粉粒分布的影响[J].中国农业科学,2011,44(2):263-270.
Lu D L,Guo H F,Lu W P.Effects of sowing date,variety and nitrogen top-dressing at jointing stage on starch granule size distribution of waxy maize [J].ScientiaAgriculturaSinica,2011,44(2):263-270.
[17]戴忠民,尹燕枰,王振林,等.鲁麦21和济南17胚乳发育过程中淀粉粒的动态变化[J].中国农业科学,2009,42(3):816-823.
Dai Z M,Yin Y P,Wang Z L,etal.Starch particle size distribution in developing endosperm of wheat cultivars Lumai 21 and Jinan 17 [J].ScientiaAgriculturaSinica,2009,42(3):816-823.
[18]戴忠民,尹燕枰,郑世英,等.不同供水条件对小麦强、弱势粒中淀粉粒度分布的影响[J].生态学报,2009,29(12):6534-6543.
Dai Z M,Yin Y P,Zheng S Y,etal.Effect of water regime on starch granule size distribution in superior and inferior grains of wheat [J].ActaEcologicaSinica,2009,29(12):6534-6543.
[19]戴忠民,王振林,张 敏,等.不同品质类型小麦籽粒淀粉粒度的分布特征[J].作物学报,2008,34(3):465-470.
Dai Z M,Wang Z L,Zhang M,etal.Starch granule size distribution in grains of strong and weak gluten wheat cultivars [J].ActaAgronomicaSinica,2008,34(3):465-470.
[20]李文阳,尹燕枰,时侠清,等.小麦籽粒A、B型淀粉粒淀粉构成与糊化特性的比较[J].华北农学报,2011,26(1):136-139.
Li W Y,Yin Y P,Shi X Q,etal.Comparison of starch composition and pasting properties between A and B type starch granule in wheat grain [J].ActaAgriculturaeBoreali-Sinica,2011,26(1):136-139.
[21]李华英,代兴龙,张 宇,等.播期对冬小麦产量和抗倒性能的影响[J].麦类作物学报,2015,35(3):357-363.
Li H Y,Dai X L,Zhang Y,etal.Effect of sowing date on grain yield and lodging resistance of winter wheat [J].JournalofTriticeaeCrops,2015,35(3):357-363.
[22]Ni Y,Wang Z,Yi Y,etal.Starch granule size distribution in wheat grain in relation to phosphorus fertilization [J].JournalofAgriculturalScience,2012,150:45-52.
[23]Lloveras J,Viudas J,Lopez A,etal.Seeding rate influence on yield and yield components of irrigated winter in a Mediterranean climate [J].AgronomyJouranl,2004,96:1258-1265.
[24]孔海波,肖丽丽,代兴龙,等.地力水平和播期对冬小麦籽粒产量及氮素利用率的影响[J].山东农业科学,2014(6):35-39.
Kong H B,Xiao L L,Dai X L,etal.Effects of fertility level and sowing date on grain yield and nitrogen use efficiency of winter wheat [J].ShandongAgriculturalSciences,2014(6):35-39.
[25]吕淑芳,苗 芳,白 龙.不同温度型小麦强势和弱势籽粒物质积累规律的研究[J].西北农林科技大学学报(自然科学版),2010,38(12):117-122.
Lü S F,Miao F,Bai L.Study on superior and inferior grains among different temperature-type wheat accumulation [J].JournalofNorthwestA&FUniversity(NaturalScienceEdition),2010,38(12):117-122.
[26]蔡瑞国,尹燕枰,张 敏,等.氮素水平对藁城8901和山农1391籽粒品质的调控效应[J].作物学报,2007,33(2):304-310.
Cai R G,Yin Y P,Zhang M,etal.Effects of nitrogen application rate on grain quality in wheat cultivars GC 8901 and SN 1391 [J].ActaAgronomicaSinica,2007,33(2):304-310.
收稿日期:2015-12-24修回日期:2016-01-20
基金项目:安徽省自然科学基金项目(1408085QC54);国家星火计划项目(2015GA710018)
通讯作者:李文阳(E-mail:liwy@ahstu.edu.cn)
中图分类号:S512.1;S311
文献标识码:A
文章编号:1009-1041(2016)06-0801-07
Effect of Grain Position on Starch Granule Size Distribution in Grain of Late Sowing Wheat in Rice-wheat Rotation
YAN Suhui,YANG Bingbing,XU Feng,SHAO Qingqin,ZHANG Congyu,LI Wenyang
(Agronomy College,University of Science and Technology of Anhui,Fengyang,Anhui 233100,China)
Abstract:To evaluate the effects of grain position on starch granule size distribution in endosperm of late sowing wheat in rice-wheat rotation,two wheat cultivars,Shannong(SN) 1391 and Gaocheng(GC) 8901,were grown in this study. The results showed that both superior and inferior grains contained two types of starch granules.The distribution of starch granule was significant difference because different treatments.The distribution showed typical two-peak curve in volume of starch granule(with the peak range of 4.878-6.453 μm for B type and 21.7-23.82 μm for A type),and single peak curve in number of starch granule(with the peak range of 0.520-0.571 μm). The percentages of volume number and surface area of B-type starch granules were higher than those of A-type starch granules in GC 8901,but on the contrary in SN 1391. Compared with normal sown,the percentages of B-type granules size distribution were significantly increased,and those of A-type were evidently decreased for late sown. The percentages of A-type granules size distribution in inferior grains was significantly increased,and those of B-type were decreased. The effect of late sowing on the starch granule size distribution was greater in SN 1391 than that in GC 8901.
Key words:Late sown wheat; Starch granule; Superior grain; Inferior grain
网络出版时间:2016-05-30
网络出版地址:http://www.cnki.net/kcms/detail/61.1359.S.20160530.1549.034.html
第一作者E-mail:suhuiyan99@163.com(闫素辉);yangbingbing10@163.com(杨兵兵,与第一作者同等贡献)