林根妹,杨官品
基因组编辑技术及其在微藻中的应用
林根妹,杨官品
(中国海洋大学 海洋生命学院,山东 青岛 266003)
摘要:基因组编辑技术主要有锌指核酸酶(zinc finger nuclease,ZFN)技术、转录激活子样效应因子核酸酶(transcription activator-like effector nuclease,TALEN)技术和成簇的规律间隔的短回文重复序列(clustered regularly interspaced short palindromic repeats,CRISPR)/Cas核酸酶系统。这些技术已被广泛用于模式生物、经济动植物的基因功能验证和遗传改良,在微藻中亦有成功应用实例。本文简要介绍了基因组编辑技术,并分析了这些技术在微藻中的应用,以期为微藻基因功能解析和遗传修饰提供新方法参考。
关键词:基因组编辑; ZFN; TALEN; CRISPR/Cas; 微藻
基因组编辑是一组对基因组中特定DNA序列进行碱基添加、删除或替换的技术。“编辑”有按照设计者意愿灵活改变DNA序列的含义。核酸内切酶广泛用于DNA定点切割,可识别和切割DNA序列。另有一类蛋白,如锌指蛋白等,可识别和结合特定
DNA序列。这些蛋白的氨基酸序列可修饰。修饰后的蛋白可改变其识别和结合DNA序列特异性。如果将内切酶与具有DNA识别和结合特异性的可修饰的锌指蛋白类蛋白融合,就能定点切割DNA形成双链切口(double strand break,DSB)。细胞固有的非同源末端连接(non-homologous end-joining,NHEJ)修复过程与这些融合蛋白联手,就能导致基因组定点插入/删除或移码突变,引起外源DNA插入、基因功能缺失等
(图 1)[1-2],实现基因组定点修饰或基因组编辑[3-6]。融合蛋白的DNA内切酶模块可在众多已认知酶中选择;
而DNA特异结合蛋白模块的DNA识别和结合特异性的设计和修饰是基因组编辑技术的关键。基因组编辑技术快速、有效,最初在细菌中被开发和应用,
后逐渐延伸到模式生物、高等动植物、微藻等,不仅可用于基因表达调节、特定基因组区域或染色体结构与功能相关性阐释等,而且可用于基因治疗和疾病模型建立[7-8]。本文归纳了几种主要的基因组编辑方法,并对这些方法在微藻中的应用进行了分析,
期望能促进基因组编辑技术在微藻中的应用。
ZFN是由锌指蛋白的锌指DNA结合域和限制性核酸内切酶Fok I等的DNA切割域组成的融合蛋白[9]。锌指DNA结合域有一组α螺旋,其-1~+6氨基酸残基可识别1个碱基三联体[10]。设计并修饰这些α螺旋的氨基酸组成就能改变锌指蛋白识别DNA序列的特异性[11]。专门针对特定DNA位点设计锌指蛋白模块并与内切酶融合,锌指蛋白可识别并结合在特定DNA序列上,而内切酶可切割 DNA,细胞启动固有的 DNA修复机制,引入外源 DNA片段或形成DNA序列突变,实现基因组编辑[12-14]。可借助病毒或质粒载体将ZFN基因导入基因组,但载体可能会引起突变; 也可用锌指模块的跨膜功能,直接引入融合蛋白[4]。
ZFN基因组编辑方法已成功用于植物和果蝇、线虫、斑马鱼、爪蟾、哺乳动物等[15-17],其特异位点突变效率较基因敲除(gene knockout)高 103~105倍[18]。ZFN 在细胞系中的应用也日益完善。例如,在人类细胞系中用ZFN技术可有效干扰相关基因表达,联手GFP报告系统还可定量ZFN效率,干细胞ZFN基因组编辑还有用于基因治疗的可能[19]。
[Foundation: National High Technology Research and Development Program of China,No.2014AA022001]
图1 ZFN,TALEN,CRISPR/Cas介导的基因组编辑原理Fig. 1 The principle of ZFN-,TALEN-,and CRISPR/Cas- mediated genome editing
TALEN融合蛋白包括N端核定位结构域、来自转录激活子样效应因子(TALE)的 DNA识别结合域和C端的内切酶。TALE是调节内源基因转录活性的蛋白质,其DNA识别结合域有一组重复单元,每个重复单元由33 ~ 35个氨基酸构成,可识别一个碱基对,重复单元第12和13位氨基酸不同可改变这样的识别功能,如N33I35识别A,N33G35识别T,H33D35识别 C,N33N35识别 G或 A等[20-21]。因此,通过修饰DNA识别结合域,可使其具有 DNA识别特异性。TALEN基因组编辑原理与ZFN基因组编辑原理类似,TALE蛋白模块特异性识别DNA序列,TALEN结合DNA,而内切酶模块切割 DNA,细胞激活固有的DNA损伤修复机制,引入外源 DNA片段或链接形成DNA序列突变,实现基因组编辑[22]。
TALEN基因组编辑技术在模式生物中获得验证后[23-24],已广泛用于动植物、酵母和各种细胞系。TALEN编辑斑马鱼基因组已实现特定基因沉默[25]。TALEN可介导酿酒酵母的多位点快速定向突变; 通过编辑启动子区保守序列TATA框与GC框间的关键区域,引起基因差异表达,获得多性状菌株群,再结合荧光蛋白筛选,实现基因组有益修饰位点的积累,加速酵母遗传性状进化[26]。在干细胞中使用TALEN技术已实现特定基因突变[27-28]。TALEN基因组编辑文库还可高通量(成批)实现基因打靶。例如,高通量组装18740个蛋白基因TALEN质粒,可对靶基因群进行编辑,干扰信号转导通路[29]。
与ZFN相比,TALEN可提高碱基对的识别数量和修饰的方便性。ZFN通常识别 3个碱基对,而TALEN的DNA识别结合域包含4个重复单元,可识别4个核苷酸对。而且,TALEN的重复单元间相互独立,使序列特异性设计和修饰更容易[30-31]。
ZFN和TALEN都是由蛋白质引导的基因组编辑方法,其关键在 DNA特异结合蛋白模块的设计和修饰。除蛋白外,RNA也可发挥“定点”作用,主要有CRISPR/ Cas核酸酶系统。
CRISPR位于特殊遗传座位。这些座位一般由高度保守的多个21~48 bp的回文重复序列和26~72 bp的重复序列间非重复间隔序列组成。CRISPR侧翼有4~20个 CRISPR相关基因(cas),这些基因编码的蛋白有核酸酶活性。CRISPR/Cas系统是细菌和古菌特有的防御噬菌体或质粒等外源DNA干扰基因组功能的类免疫体系[32-33]。在这一系统作用下,外源 DNA被优先插入间隔序列,从而减小或消除对细菌基因组的影响。CRISPR转录生成前体crRNA,随后被加工成包含部分重复和间隔序列的crRNA。cas转录翻译生成Cas核酸酶,并进一步形成CASCADE复合体。当外源DNA第一次入侵细菌时,Cas核酸酶可识别其序列,产生新的间隔序列并插入至已有的间隔序列中。若相同DNA再次入侵,CASCADE复合体识别,结合和剪切之,使外源 DNA特异性降解(图2)。crRNA自身,或crRNA与反式激活的crRNA (tracrRNA)嵌合形成引导RNA(guide RNA,gRNA)。gRNA特异性识别结合DNA,并引导Cas核酸酶特异性切割DNA。因此,可针对特定DNA设计gRNA,将其与 Cas核酸酶基因重组在一个质粒中,转化细胞。gRNA引导Cas核酸酶至特定DNA序列,Cas核酸酶切割DNA,经细胞固有修复过程,引入外源DNA或突变[34]。优化 Cas核酸酶基因和 gRNA对应DNA可提高CRISPER/Cas的切割效率并降低脱靶率[35-36]。
CRISPR/Cas系统已被用于细菌[37]、植物[38-39]、动物[40]及人类[41]基因组编辑。对拟南芥基因组进行CRISPR/Cas编辑时,有研究者设计 2条相似的gRNA引导Cas核酸酶同时切割DNA的2条链,创制了新的遗传种质[42]。使用显微注射将 Cas核酸酶mRNA和gRNA直接导入猪合子,可有效地敲除对应基因的所有等位基因[43]。
与ZFN和TALEN这两种蛋白引导的基因组编辑方法相比,使用 CRISPR/Cas系统时无需对DNA结合蛋白模块本身进行修饰改造,只需设计特异性gRNA,操作更容易。CRISPR/Cas系统的另一优势是可同时使用多条gRNA序列,实现多位点同步编辑[44]。但是多靶向 CRISPR/Cas基因组编辑方法所构建质粒较大,导入细胞较困难。
图2 细菌CRISPR/Cas系统防御机制Fig. 2 CRISPR/Cas-mediated defense mechanism in bacteria
上述几种基因组编辑技术可组合使用。例如,ZFN 和TALEN形成的杂交核酸酶具有更广的DNA识别特异性和更高的切割效率[45]; TALEN和CRISPR/Cas系统在海葵中组合使用,既可诱导定向突变,又可实现同源重组,从“加法”(获得基因)和“减法”(失去基因)两个角度解析基因功能[46]。
伴随基因组编辑技术的广泛应用,诸多问题也相继显现,主要问题有 DNA结合蛋白模块特异性不足,限制了可修饰基因范围; 脱靶现象(基因组上其他位置的相似序列会参与竞争,与外源 DNA发生非特异性结合)导致非靶基因突变甚至基因组范围表达紊乱。DNA识别和结合特异性受多个因素影响,包括蛋白结构间相似性、DNA结合域三维结构和 DNA表观遗传修饰、结合域和切割域间氨基酸铰链匹配度等。电泳迁移率检测(electrophoretic mobility shift assays,EMSAs)或酶联免疫吸附检测(enzyme-linked immunosorbent assays,ELISAs)等可对蛋白协同性质进行定量分析,但仍然不是对其特异性高低的直接检测[47]。类似问题在 CRISPR/Cas系统中也存在。在探究人类早期胚胎DNA修复机制时发现,虽然 CRISPR/Cas系统能有效地切割基因,但受gRNA特异性限制,导致编辑效率低、靶向位点错误、插入片段无意义、或形成嵌合体胚胎等[48]。这使 DNA结合蛋白和gRNA既需巧妙设计,又要有效筛选。另外,结合蛋白与特定DNA序列结合后,是否会扰乱基因组原有的表达模式等问题有待深入研究。
基因组编辑技术在微藻中的应用已初见端倪(表1)。莱茵衣藻(Chlamydomonas reinhardtii)中使用ZFN可实现对基因功能的研究。首先以抗性或荧光标记等报告基因作为靶基因进行敲除,可评估不同的 ZFN转化效率,再据此结果对模块组合进行修饰优化,选出特异性以及亲和力最合适的核酸酶与外源DNA共转化,实现对靶基因的定点敲除[49]。对衣藻基因组中所有可能的ZFN靶向位点的识别及评测已经完成,并建立起ZFN Genome资源库[50]。人工设计的TALE已被证实可在衣藻中充当转录活化因子,可识别特异启动子序列并与之结合,诱导靶基因在转录和蛋白水平的表达上调[51-52]。TALEN虽尚未在衣藻中直接应用,但TALE的使用已为其提供了初步的支持。在三角褐指藻(Phaeodactylum tricornutum)中,将TALEN编码构建物与选择标记(如抗性基因等)进行共同转化,通过非同源末端连接完成三角褐指藻基因组定向修饰,定向突变和基因插入的效率分别可达56%和27%。用此方法获得了高产油率藻株且具有遗传稳定性[53]。若构建一个同时含有尿素酶基因两端侧翼序列(约 1kbp)和选择标记的“敲除质粒”,并将该质粒与TALEN一起转化,TALEN分别与靶基因的上下游结合完成切割,“敲除质粒”则通过同源重组介导的修复过程整合到基因组,实现对尿素酶的干扰,从而研究相关代谢途径[54]。将CRISPR/Cas系统应用到微藻中,Cas核酸酶和gRNA在转化衣藻24h内有成功的瞬时表达,但尚未成功得到改造后稳定遗传的转化株[55]。是否可以尝试使用特定的启动子驱动Cas核酸酶基因表达,或使用活性时间更短的 Cas核酸酶mRNA进行转化,还需验证。
表1 基因组编辑技术在微藻中的应用实例Tab. 1 Examples of genome editing technique applications in microalgae
基因组编辑技术在微藻中的应用日益广泛。外源基因在微藻基因组中同源重组的效率很低。在衣藻中,即使不断优化DNA片段、长度和转化条件,同源重组的比例仍很低,最高只能达到1%左右[56-58]。因此,难以对微藻特定DNA区域进行定向修饰。使用基因组编辑技术,除可以直接进行定向修饰外,还可以通过干扰DNA修复蛋白Ku70、Ku80、DNA连接酶IV等相关基因,提高微藻同源重组效率。包括RNA干扰在内的一些体系,在调节基因表达时都无法做到彻底沉默靶基因,而基因组编辑技术可以避免潜在的泄漏,达到完全沉默基因的目的。另外,与高等植物相比,微藻操作更容易。基因组编辑技术具有修饰微藻基因组任何位点(编码区、内含子、启动子、3'非翻译区等)的潜能。
微藻是一类种类繁多、分布广泛、能够进行光合作用的生物,既在生态系统中发挥关键作用,又具有水产养殖、生物能源开发、食品饲料研制等应用价值。与其他模式生物和经济动植物相比,相关基因组编辑技术和策略在微藻中虽有尝试应用,但仍处于起步阶段。本文介绍了几种主要的基因组编辑技术,并对这些技术在微藻中的适用性进行了分析。虽然有一些技术问题尚待解决,但基因组编辑技术较其他技术仍具有无可比拟的优势和前景。
参考文献:
[1] Shrivastav M,De Haro L P,Nickoloff J A. Regulation of DNA double-strand break repair pathway choice[J]. Cell research,2008,18(1): 134-147.
[2] Chapman J R,Taylor M R G,Boulton S J. Playing the end game: DNA double-strand break repair pathway choice[J]. Molecular cell,2012,47(4): 497-510.
[3] Smith J,Berg J M,Chandrasegaran S. A detailed study of the substrate specificity of a chimeric restriction enzyme[J]. Nucleic Acids Research,1999,27: 674-681.
[4] Gaj T,Gersbach C A,Barbas C F. ZFN,TALEN,and CRISPR/Cas-based methods for genome engineering[J]. Trends in biotechnology,2013,31(7): 397-405.
[5] Mashimo T. Gene targeting technologies in rats: Zinc finger nucleases,transcription activator-like effector nucleases,and clustered regularly interspaced short palindromic repeats[J]. Development,growth & differentiation,2014,56(1): 46-52.
[6] Ain Q U,Chung J Y,Kim Y H. Current and future delivery systems for engineered nucleases ZFN,TALEN and RGEN[J]. Journal of Controlled Release,2015,205:120-127.
[7] Deng L,Ren R,Wu J,et al. CRISPR/Cas9 and TALE:beyond cut and paste[J]. Protein Cell 2015,6(3): 157-159.
[8] Ott de Bruin L M,Volpi S,Musunuru K. Novel genome-editing tools to model and correct primary immunodeficiencies[J]. Frontiers in Immunology,2015,6:250. Doi: 10.3389/fimmu.2015.00250.
[9] Kim Y G,Cha J,Chandrasegaran S. Hybrid restriction enzymes: Zinc finger fusions to Fok I cleavage domain [J]. Proceedings of the National Academy of Sciences of the United States of America,1996,93: 1156-1160.
[10] Dreier B,Beerli R R,Segal D J,et al. Development of zinc finger domains for recognition of the 5'-ANN-3'family of DNA sequences and their use in the construction of artificial transcription factors[J]. The Journal of Biological Chemistry,2001,276: 29466-29478.
[11] Pabo C O,Peisach E,Grant R A. Design and selection of novel Cys2His2 zinc finger proteins[J]. Annual Review of Biochemistry,2001,70: 313-340.
[12] Carroll D. Progress and prospects: zinc-finger nucleases as gene therapy agents[J]. Gene therapy,2008,15(22): 1463-1468.
[13] Carroll D. Genome engineering with zinc-finger nucleases[J]. Genetics,2011,188(4): 773-782.
[14] Palpant N J,Dudzinski D. Zinc finger nucleases: looking toward translation[J]. Gene therapy,2013,20(2):121-127.
[15] Kim S,Kim J S. Targeted genome engineering via zinc finger nucleases[J]. Plant biotechnology reports,2011,5(1): 9-17.
[16] Rémy S,Tesson L,Ménoret S,et al. Zinc-finger nucleases:a powerful tool for genetic engineering of animals[J]. Transgenic research,2010,19(3): 363-371.
[17] Shen B,Zhang X,Du Y,et al. Efficient knockin mouse generation by ssDNA oligonucleotides and zinc-finger nuclease assisted homologous recombination in zygotes[J]. PLoS ONE,2013,8(10): e77696.
[18] Porteus M H,Carroll D. Gene targeting using zinc finger nucleases[J]. Nature Biotechnology,2005,23: 967-973.
[19] Wu J,Kandavelou K,Chandrasegaran S. Custom-designed zinc finger nucleases: what is next?[J]. Cellular and Molecular Life Sciences,2007,64(22): 2933-2944.
[20] Wei C,Liu J,Yu Z,et al. TALEN or Cas9-rapid,efficient and specific choices for genome modifications[J]. Journal of Genetics and Genomics,2013,40(6): 281-289.
[21] Yang J,Zhang Y,Yuan P,et al. Complete decoding of TAL effectors for DNA recognition[J]. Cell research,2014,24(5): 628-631.
[22] Miller J C,Tan S,Qiao G,et al. A TALE nuclease architecture for efficient genome editing[J]. Nature Biotechnology,2011,29: 143-148.
[23] Bedell V M,Wang Y,Campbell J M,et al. In vivo genome editing using a high-efficiency TALEN system[J]. Nature,2012,491(7422): 114-118.
[24] Katsuyama T,Akmammedov A,Seimiya M,et al. An efficient strategy for TALEN-mediated genome engineering in Drosophila[J]. Nucleic acids research,2013,41(17): e163.
[25] Zu Y,Tong X,Wang Z,et al. TALEN-mediated precise genome modification by homologous recombination in zebrafish[J]. Nature Methods,2013,10: 329-331.
[26] Zhang G Q,Lin Y P,Qi X N,et al. TALENs-assisted multiplex editing for accelerated genome evolution to improve yeast phenotypes[J]. ACS synthetic biology,2015. Doi: 10.1021/ acssynbio.5b00074
[27] Ding Q,Lee Y K,Schaefer E A K,et al. A TALEN genome-editing system for generating human stem cell-based disease models[J]. Cell stem cell,2013,12(2): 238-251.
[28] Ramalingam S,Annaluru N,Kandavelou K,et al. TALEN-mediated generation and genetic correction of disease-specific human induced pluripotent stem cells [J]. Current gene therapy,2014,14(6): 461-472.
[29] Kim Y,Kweon J,Kim A,et al. A library of TAL effector nucleases spanning the human genome[J]. Nature biotechnology,2013,31(3): 251-258.
[30] Huang P,Xiao A,Zhou M,et al. Heritable gene targeting in zebrafish using customized TALENs[J]. Nature Biotechnology,2011,29: 699-700.
[31] Beumer K J,Trautman J K,Christian M,et al. Comparing zinc finger nucleases and transcription activator-like effector nucleases for gene targeting in Drosophila[J]. G3: Genes Genomes Genetics,2013,3(10):1717-1725.
[32] Horvath P,Barrangou R. CRISPR/Cas,the immunesystem of bacteria and archaea[J]. Science,2010,327:167-170.
[33] Sampson T R,Saroj S D,Llewellyn A C,et al. A CRISPR/Cas system mediates bacterial innate immune evasion and virulence[J]. Nature,2013,497: 254-257.
[34] Richter H,Randau L,Plagens A. Exploiting CRISPR/Cas:interference mechanisms and applications[J]. International journal of molecular sciences,2013,14(7): 14518-14531.
[35] Naito Y,Hino K,Bono H,et al. CRISP direct: software for designing CRISPR/Cas guide RNA with reduced off-target sites[J]. Bioinformatics,2014: btu743.
[36] Johnson R A,Gurevich V,Filler S,et al. Comparative assessments of CRISPR-Cas nucleases’ cleavage efficiency in planta[J]. Plant molecular biology,2015,87(1-2): 143-156.
[37] Jiang W,Bikard D,Cox D,et al. RNA-guided editing of bacterial genomes using CRISPR-Cas systems[J]. Nature biotechnology,2013,31(3): 233-239.
[38] Jiang W,Zhou H,Bi H,et al. Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis,tobacco,sorghum and rice[J]. Nucleic Acids Research,2013,41: e188.
[39] Kumar V,Jain M. The CRISPR-Cas system for plant genome editing: advances and opportunities[J]. Journal of experimental botany,2015,66(1): 47-57.
[40] Hwang W Y,Fu Y,Reyon D,et al. Efficient in vivo genome editing using RNA-guided nucleases[J]. Nature biotechnology,2013,31(3): 227-229.
[41] Mali P,Yang L,Esvelt K M,et al. RNA-guided human genome engineering via Cas9[J]. Science,2013,339(6121):823-826.
[42] Schiml S,Fauser F,Puchta H. The CRISPR/Cas system can be used as nuclease for in planta gene targeting and as paired nickases for directed mutagenesis in Arabidopsis resulting in heritable progeny[J]. The Plant Journal,2014,80(6): 1139-1150.
[43] Hai T,Teng F,Guo R,et al. One-step generation of knockout pigs by zygote injection of CRISPR/Cas system[J]. Cell Research,2014,24: 372-375.
[44] Cong L,Ran F A,Cox D,et al. Multiplex genome engineering using CRISPR/Cas systems[J]. Science,2013,339: 819-823.
[45] Yan W,Smith C,Cheng L. Expanded activity of dimer nucleases by combining ZFN and TALEN for genome editing[J]. Scientific reports,2013,3: 2376.
[46] Ikmi A,McKinney S A,Delventhal K M,et al. TALEN and CRISPR/Cas9-mediated genome editing in the early-branching metazoan Nematostella vectensis[J]. Nature communications,2014,5: 5486.
[47] Händel E M,Cathomen T. Zinc-finger nuclease based genome surgery: it's all about specificity[J]. Current gene therapy,2011,11(1): 28-37.
[48] Liang P,Xu Y,Zhang X,et al. CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes[J]. Protein Cell 2015,6(5): 363-372.
[49] Sizova I,Greiner A,Awasthi M,et al. Nuclear gene targeting in Chlamydomonas using engineered zinc-finger nucleases[J]. The Plant Journal,2013,73(5): 873-882.
[50] Reyon D,Kirkpatrick J,Sander J,et al. ZFNGenome: A comprehensive resource for locating zinc finger nuclease target sites in model organisms[J]. BMC Genomics,2011,12(1): 83.
[51] Gao H,Wright D A,Li T,et al. TALE activation of endogenous genes in Chlamydomonas reinhardtii[J]. Algal Research,2014,5: 52-60.
[52] Gao H,Wang Y,Fei X,et al. Expression activation and functional analysis of HLA3,a putative inorganic carbon transporter in Chlamydomonas reinhardtii[J]. The Plant Journal,2015,82(1): 1-11.
[53] Daboussi F,Leduc S,Maréchal A,et al. Genome engineering empowers the diatom Phaeodactylum tricornutum for biotechnology[J]. Nature communications,2014,5: 3831.
[54] Weyman P D,Beeri K,Lefebvre S C,et al. Inactivation of Phaeodactylum tricornutum urease gene using transcription activator-like effector nuclease-based targeted mutagenesis[J]. Plant biotechnology journal,2015,13:460-470.
[55] Jiang W,Brueggeman A J,Horken K M,et al. Successful Transient Expression of Cas9 and Single Guide RNA Genes in Chlamydomonas reinhardtii[J]. Eukaryotic cell,2014,13(11): 1465-1469.
[56] Zorin B,Hegemann P,Sizova I. Nuclear-gene targeting by using single-stranded DNA avoids illegitimate DNA integration in Chlamydomonas reinhardtii[J]. Eukaryotic Cell,2005,4: 1264-1272.
[57] Zorin B,Lu Y,Sizova I,et al. Nuclear gene targeting in Chlamydomonas as exemplified by disruption of the PHOT gene[J]. Gene,2009,432(1): 91-96.
[58] Plecenikova A,Mages W,Andrésson Ó S,et al. Studies on recombination processes in two Chlamydomonas reinhardtii endogenous genes,NIT1 and ARG7[J]. Protist,2013,164(4): 570-582.
(本文编辑: 梁德海)
中图分类号:Q785
文献标识码:A
文章编号:1000-3096(2016)04-0149-07
doi:10.11759/hykx20151225001
收稿日期:2015-10-28; 修回日期: 2016-02-22
基金项目:国家高技术研究发展计划项目(2014AA022001)
作者简介:林根妹(1990-),女,山东青岛人,博士研究生,主要从事海洋微藻研究,电话: 13869896715,E-mail: Lin_agen@126.com; 杨官品,通信作者,教授,博士生导师,电话: 0532-82031636,E-mail:yguanpin@mail.ouc.edu.cn
Genome editing techniques and their application in microalgae
LIN Gen-mei,YANG Guan-pin
(College of Marine Life Sciences,Ocean University of China,Qingdao 266003,China)
Received: Oct. 28,2015
Key words:genome editing; ZFN; TALEN; CRISPR/Cas; microalga
Abstract:Genome editing techniques mainly include zinc finger nuclease (ZFN),transcription activator-like effector nuclease (TALEN),and clustered regularly interspaced short palindromic repeats/CRISPR-associated (CRISPR/Cas) systems. These techniques are effective for verifying gene function and genetic modification in a wide range of species,e.g.,diverse models,economic animals and plants. They are also applicable in microalgae. In this study,we briefly describe these techniques and illustrate their application in microalgae,aiming to provide new methods for genetic modification and improvement in microalgae.