乘用车整车电气原理设计

2016-06-30 10:04梁新凤
科技视界 2016年15期

梁新凤

【摘 要】整车电气原理是用来表明整车线束系统给各用电器传导电能和传递信号的电路连接关系。整车电气原理的设计,关系到整车各用电器的功能实现,是分析电气回路、排查电器故障的重要依据。

【关键词】整车电气原理设计;电源分配设计;接地分配设计;回路匹配设计;压接点设计

【Abstract】The schematic is used to indicate the vehicle electrical system of the vehicle wiring harness to each electrical power and signal transmission connection between circuits. Vehicle electrical schematic design, all related to the vehicles electrical functions to achieve, is an important basis for the analysis of electrical circuits, troubleshoot electrical faults.

【Key words】Vehicle electrical schematic design; Power distribution design; Ground distribution design; Matching circuit design; Splices design

0 引言

整车电气原理,是整车电气系统的核心,它表明了整车线束系统为实现各用电器的功能,一方面通过导线将电源及用电器连接构成回路,为用电器传导电流,另一方面通过导线回路实现相连接的用电器之间的信号传递,从而使各电器件能够按照操作者的意图正常工作。整车电气原理设计是否合理,直接关系到汽车电器件能否正常工作以及全车的安全性、可靠性、经济性和舒适性,它是整车开发过程中的一个重要环节。

整车电气原理设计的主要内容包括电源分配设计、接地分配设计、回路匹配设计、INLINE的选型以及回路压接点设计。

1 整车电气原理的设计输入文件

整车电气原理的设计输入阶段,应获得以下文件:①整车配置表;②各电器子系统信息,包括子系统工作原理图、接口定义及负载特性等;③各电器件在汽车上的布置信息。

2 整车电气原理设计

2.1 电源分配设计

电源分配主要是基于整车各用器的工作原理,在满足各子系统工作原理的前提下,确定采用何种方式给用电器供电,同时对线路保护进行设计。

整车电源类型大致可分为以下三种:①蓄电池直接供电系统(常电或30电);②点火开关控制的供电系统(IG电或15电);③发动机起动时卸掉负载的电源(ACC电)。根据车型的电气系统组成情况,给与合理的电源分配。

电源分配设计一般要遵循以下原则:①所有电源回路都需要进行回路保护;②考虑负载的重要等级以及行车安全,对于重要的安全件,需要单独的熔断器来保护,如近光灯回路;③考虑不同系统的功能关联性和失效模式,减少不同系统和功能之间的相互影响;④区分负载类型是扰动负载还是稳态负载;⑤就近原则,靠近负载的实际安装位置分配电源。

电源分配设计的步骤如下:首先,根据整车蓄电池、起动机、发电机的相关参数,以及子系统负载信息,进行电源类型的分配,以及保险丝、继电器的种类及个数确定。然后,结合车内空间、可扩展性、成本、平台化等因素,对电器盒进行选型并确定其个数。一般车型主要有前舱电器盒和仪表板电器盒,外加蓄电池处的前端保险丝盒,有的车型可能会增加后行李箱电器盒。最后,根据就近原则及负载布置信息,进行电器盒内的负载电源分配。如前舱电器盒主要对前舱的电器件进行供电,仪表板电器盒主要对驾驶舱内的电器件进行供电。

2.2 接地分配设计

在整车电路中,一般会使用导线与车身、发动机或变速箱连接在一起,这样可以车身、发动机、变速箱实现共地。这种实现接地的做法,称为“搭铁”。

为避免接地导线过长,造成不必要的电压降,一般采用就近接地。另外,接地分配也需要考虑到以下三种接地要求:①发动机ECU、ABS/ESP、EPS、SRS等对整车性能及安全影响大,且易受其他用电设备干扰,所以这些件需要单独接地。尤其对于安全气囊系统SRS,其接地点不仅应单设,而且为了确保其安全可靠,最好设计两个及两个以上接地点。其目的是其中一个接地失效,系统可通过另一接地点搭铁,确保系统安全工作。②音箱系统为避免电磁干扰,也要单独接地;弱信号传感器的接地最好独立,接地点最好是在离传感器较近的位置,以保证信号的真实传递。③有些电器件必须共用接地点,以防止不同接地点之间的电位差影响到电器件之间功能的正常实现。

其他电器件可根据具体布置情况相互组合共用接地点。蓄电池负极线、发动机搭铁线等因导线截面较大,因此一定要控制好线长和走向,减小电压降。为增加安全性,发动机、车身一般要单独连到蓄电池负极搭铁。

2.3 回路匹配设计

回路匹配设计,主要是根据负载信息,设定熔断器的型号和容量,从而确定匹配的回路线径。

2.3.1 负载信息确认

根据收集到的整车子系统信息,确认负载类型、负载电流特性曲线。负载类型、负载电流特性曲线如下图1所示:

2.3.2 设定熔断器的型号和容量

熔断器的作用是保护导线,其类型分为快熔型熔断器和慢熔型熔断器。小电流负载和短时间脉冲电流负载,一般选择快熔型熔断器,大电流负载和锁电流负载一般选择慢熔型熔断器。

熔断器的容量设定主要遵循以下原则: 一般来说,熔断器负荷电流不超过熔断器额定电流的70%。同时,还要考虑以下因素。①快熔型熔断器容量:需要考虑负载额定电流值、负载类型、环境温度影响、继电器盒类型、暂态电流波形;②慢熔型熔断器容量:需要考虑和区分连续负载、间歇性负载、特殊负载。

2.3.3 确定回路线径

根据已确定的熔断器来选择与之匹配的回路线径。此过程要综合考虑回路所在的环境温度、回路导线的容许温度、通电时回路导线的温升以及成捆线束容许电流的折减系数。总的原则是要求发生短路时熔断器的熔断时间短于导线发烟时间。如图2,橙色线代表熔断器的熔断时间,粉色线代表导线的发烟时间,回路导线与熔断器的匹配判定左图是可取的,右图则是不可取的。

2.4 INLINE选型

INLINE即线对线连接器。INLINE的选型,需要考虑以下三点:第一,INLINE的端子线径压接范围要与所接回路的线径匹配;第二,INLINE连接器的孔位数要满足所接回路的总数;第三,回路走向要与INLINE所在车上的安装位置匹配,一般采用就近原则。特殊回路如安全气囊系统回路对端子镀层有特殊要求,一般不与其他回路共接同一INLINE。

2.5 回路压接点设计

整车电气原理回路的压接点设计,需要遵循以下三点:第一,单边回路数最多不超过7根,总回路数最多不超过12根;第二,压接的所有回路中,最小回路线径与总回路线径之比必须大于或等于5%;第三,各回路之间的线径匹配须满足导线的压接工艺要求。

3 整车电气原理设计校核验证

整车电气原理需与子系统信息作进一步的校核,并通过以下相关试验进行验证其设计的合理性:①过载试验;②堵转试验;③短路保护试验;④整车配电工作电流测试;⑤供电及接地回路电压降测试;⑥熔断器熔断情况下的功能故障测试;⑦接地不良情况下的功能故障测试;⑧整车搭载耐久试验。

4 结束语

整车电气原理,是整车电气系统的核心。整车电气原理设计得合理,才能保证汽车各用电器能按照操作者的意图来实现其功能,也才能保证汽车的安全性、可靠性、经济性以及舒适性。

【参考文献】

[1]李元胜.汽车电路系统设计与Multisim仿真[D].青岛大学,2014.

[2]吴建刚.目前汽车电路存在的问题与对策[J].汽车电器,2007.

[3]蒋廷云.汽车电线束熔断器的选择[J].汽车电器,2012(12):16-19.

[4]任凤文.汽车电线束设计[J].汽车电器,2003.

[责任编辑:汤静]