贺勇,黄润秋,陈永贵, 叶为民(.同济大学 岩土及地下工程教育部重点实验室,上海,0009;.成都理工大学 地质灾害防治与地质环境保护国家重点实验室,四川 成都,60059;3.长沙理工大学 土木建筑学院,湖南 长沙,404)
基于干湿变形效应的压实红黏土土水特征
贺勇1,2,3,黄润秋2,陈永贵1,2,3, 叶为民1
(1.同济大学 岩土及地下工程教育部重点实验室,上海,200092;2.成都理工大学 地质灾害防治与地质环境保护国家重点实验室,四川 成都,610059;3.长沙理工大学 土木建筑学院,湖南 长沙,410114)
摘要:将初始含水量为4%粉末状红黏土分别压制成干密度为1.3 g/cm3和1.5 g/cm3的压实土样;在侧限条件下吸水饱和,测定土样轴向膨胀变形量;然后通过气相法控制逐级增加吸力,测定不同吸力阶段试样的饱和度与孔隙比,获得土水特征曲线和干缩变形规律。研究结果表明:压实红黏土在饱和湿化过程中,膨胀应变随着饱和度的增加而增加,且初始干密度越大,其膨胀应变越大。在控制吸力干燥过程中,压实红黏土的孔隙比随着吸力增大而减小;同一吸力阶段,密度大的试样具有较小的孔隙比和较大的饱和度。基于不同干密度压实红黏土土水特征曲线,建立了考虑变形效应的土水特征曲线改进模型,计算结果与试验值吻合较好。
关键词:压实红黏土;湿化;干燥;变形;土水特征曲线
碳酸盐类岩石在温湿气候条件下经风化后形成的褐红色粉土或黏性土[1],比表面积大,颗粒之间相互吸附能力强,再加上游离氧化铁的胶结作用,在天然状态下,形成牢固的团粒,这种团粒的集合体就是红黏土[2]。因风化与红土化环境和程度的不同,红黏土的地质特性与工程特性随地域不同而具有极其明显的差异性。在我国,红黏土主要分部在广西、贵州、云南、广东以及湖南等省,有许多学者对红黏土的成因与分类、力学特性、工程实践以及地质灾害等方面进行了深入研究,尤其在胀缩性、裂隙性与超固结性等方面取得了较多研究成果。通常,红黏土具有裂隙性、收缩性和地层分布不均匀性等不良特征,被认为是一种特殊性黏土。然而,红黏土除具有很高的天然含水量和液、塑限之外,还具有较高的力学性能和中等压缩性,在一定压实度条件下呈现出沉降量小、无开裂和整体性能好等优点[3],被认为可用作填埋场覆盖层或衬垫系统材料[4−6]。在填埋场数十年运营期间,因气候变化和地下水位波动,红黏土将不可避免地经历干湿循环过程,并长期处于非饱和状态。土水特征曲线不仅可以描述非饱和土饱和度与吸力之间的关系,而且能反映出非饱和土的强度和渗透特性[7],并受到土的矿物类型、矿物成分、土体结构、干密度、应力历史以及孔隙水化学成分等因素的影响[8−11]。土水特征量测试验中,土中的吸力需要经历较长时间才能达到平衡,并且受外部环境影响较大。为此,很多学者提出了采用数学模型来预测土水特征,例如 van Genuchten 模型(VG模型)[12],Fredlund和Xing模型[13]以及 Houston 模型[14]等。这些模型均采用孔隙分布系数反映土体孔隙结构变化,没有考虑含水量对孔隙结构的影响。针对土体变形引起的含水量变化问题[15],GALLIPOLI 等[16−17]基于进气值是孔隙比的幂函数,建立了考虑土体变形影响的土水特征曲线预测模型。本文作者以湖南省郴州地区的红黏土为研究对象,分析初始干密度分别为1.3 g/cm3和1.5 g/cm3的重塑压实红黏土饱和膨胀特征,考察不同吸力控制条件下土样的干缩变形情况,测定不同初始干密度红黏土的土水特征曲线,最后采用 GALLIPOLI 等[16]改进 VG 模型对土水特征曲线进行模拟。
1.1试验材料
试验原土取自湖南省郴州地区某工地,为红褐色黏土。天然土样风干后,经研钵研磨成粉末,过孔径为0.16 mm筛获取试验土样;参照JTGE40—2007 “公路土工试验规程”[18]对其物理力学性质指标进行测试,结果如表1所示,所测试结果与文献[19]中相关指标基本一致。
表1 红黏土样品物理力学性质指标Table1 Physical and mechanical properties of tested redClay
1.2红黏土表征
采用美国 BeckmanCoulter LS230 型号激光粒度仪对试验土样粒径进行分析,所得红黏土颗分曲线如图1所示。
图1 红黏土颗分曲线Fig.1 Grain size distribution of redClay
利用德国Bruker生产的D8 FOCUS X线衍射仪对红黏土试样进行矿物成分分析。X 线为CuKα(λ=0.15418 nm),管电压为40 kV,管电流为100 mA,扫描范围为3°~70°,分析结果如图2所示。从图2可知:该红黏土富含高岭石、伊利石、石英等矿物,并含一定量的蒙脱石矿物。
1.3试样准备
将红黏土粉末置于110 MPa吸力环境中,吸力平衡后将得到初始含水量为 4%的土样。利用 DDL−200 型300 kN数控万能压力机,以位移控制法压制试样。首先,称取质量为(27±0.1)g的红黏土粉末,倒入不锈钢试样环中;然后,以0.2 mm/min 的垂直加载速率,将土样均匀压实至预定位置,在恒体积条件下静置1h,以防止试样回弹;最后,卸载得到直径为50 mm、高度为10 mm、 初始干密度为(1.30±0.02)g/cm3的压实试样。用同样的方法称取(31.0±0.1)g粉末状红黏土,制备得到初始干密度为(1.50±0.02)g/cm3的压实试样。
图2红黏土XRD图谱Fig.2XRD pattern of redClay
1.4试验方法
侧限条件下,红黏土试样在吸水饱和过程中,其轴向将产生自由膨胀,本文设计一套能够实时测定试样轴向自由变形量的装置。当试样压制完成后,从试样环底部向上顶推出透水石厚度的位移;然后在试样2 面分别垫上滤纸,并放置透水石;再将整个试样环放置到聚四氟乙烯容器中,在顶部中心位置垂直安装位移计,用以记录压实红黏土轴向自由膨胀变形量。试验开始时,向容器中注入蒸馏水,压实红黏土将吸水膨胀,位移计将记录试样水化过程中的轴向变形。当位移计读数不变时,可认为轴向变形达到稳定。变形稳定后,将土样从试样环中取出,放置到105 ℃烘箱中干燥24 h,测得饱和含水量(wsat)。针对不同初始干密度的土样,重复上述步骤分别进行饱和膨胀试验。
膨胀应变计算式为
式中:ε为膨胀应变;∆H 为试样变形量,mm;H0为试样初始高度,mm。
饱和膨胀试验完成后,通过气相法控制吸力对试样进行干燥。根据盐溶液与吸力的对应关系[20−21],将装有土样的试样环分别置于盛有不同盐溶液的干燥皿中,相应的吸力控制为2.0,4.2,12.6,21.0,38.0和110.0 MPa[22]。由于水汽交换作用,试样质量将不断变化,直至土样中的含水量与干燥皿中的湿度达到平衡,试样质量将不再变化,此时试样因失水引起的变形达到稳定。从试样环中取出土样,一部分放置到105 ℃烘箱中烘24 h测定含水量(w),另一部分采用蜡封法[23]测量密度(ρ),并通过式(2)计算孔隙比(e):
式中:Gs为土样相对密度。
2.1饱和膨胀变形
侧限条件下,压实红黏土吸水饱和过程中的膨胀变形曲线如图3所示。
图3 压实红黏土吸水饱和过程的膨胀变形曲线Fig.3 Evolution of vertical swelling strain ofCompacted redClay with different dry density
从图3可见:压实红黏土在吸水饱和过程中,土体中的含水量随着时间而增大,导致侧限条件下土体的膨胀应变增大。试验开始时,吸入土体中的水量不多,膨胀应变较小;随着吸入土体的水量增加,特别是土体水化作用的加强,土体的膨胀应变急剧增加;当土体基本饱和,水化作用完成后,膨胀应变也基本稳定。根据SRIDHARAN等[24−25]提出的方法,可将膨胀过程曲线近似分成3个阶段:初始膨胀阶段、主膨胀阶段和次膨胀阶段(见图3)。所有试样主膨胀始于试验开始约5 min 后,且发展速度较快;与主膨胀发展的时间相比,次膨胀过程发展比较缓慢,完成时间也较长。上述3个阶段的膨胀应变如表2所示。
此外,从图3还可知:红黏土的膨胀应变与初始干密度有关。初始干密度越大,最终膨胀应变也越大。当压实红黏土初始干密度由1.3 g/cm3增大至1.5 g/cm 3时,土体的最终膨胀应变由18.4%增大至 25.8%。红黏土的吸水膨胀,主要是由于土样中含有蒙脱石矿物,这种黏土矿物在吸水条件下会引起晶层膨胀以及扩散双电层厚度增加,导致土体膨胀变形。初始干密度大的土样中含有的蒙脱石矿物较多,吸水后其膨胀变形也相应较大。根据GB 50112—2013“膨胀土地区建筑技术规范”[26],干密度为1.5 g/cm3的压实红黏土自由膨胀变形小于40%,属于弱膨胀土。
2.2初始干密度对土水特征的影响
对不同初始干密度饱和压实红黏土,在逐级增加吸力条件下,测定相应的饱和度与孔隙比,即可绘制土样干燥阶段的土水特征曲线,如图4所示。
表2饱和膨胀各阶段膨胀应变Table1 Swelling strains of various stages
图4不同干密度压实红黏土土水特征曲线Fig.4Water retentionCurves ofCompacted redClay with different dry densities
从图4可知:对不同初始干密度的压实红黏土,在吸力控制干燥过程中,饱和度随着吸力的增大而迅速降低。当吸力由饱和状态接近0 MPa增大至4.2 MPa时,土样饱和度减少至 40%;当吸力继续增大至110 MPa时,土样饱和度相应减少至8%,表明在吸力控制干燥过程中试样不断失水。
由图4也可发现,在同一吸力控制条件下,初始干密度1.5 g/cm3试样的饱和度高于初始干密度1.3 g/cm3试样的饱和度。这主要是由于初始干密度越大,试样越密实,试样中大孔隙数量少,小孔隙数量相对较多,从而持水能力较强。
2.3干燥变形
红黏土中含有一定量的蒙脱石矿物,是一种弱膨胀土,呈现出吸水膨胀和失水收缩特性。在控制吸力干燥过程中,对不同吸力控制点的土样孔隙比进行测定,结果如图5所示。
图5 不同干密度试样吸力与孔隙比的关系Fig.5 Changes of void ratio with suction of samples with different dry densities
由图5可见:在干燥过程中,试样孔隙比随着吸力的增大而减小,表明试样排水干燥而收缩。土样收缩量基本在较低的吸力阶段完成(吸力<4.2 MPa),当吸力增大到110 MPa时,土样高度基本与压样时土样高度一致,略有减小。同时,试样饱和完成后,整个干燥过程中干密度为1.3 g/cm3的土样的孔隙比都较1.5 g/cm3的土样要大。
为考虑吸力增大干燥过程中土体变形对土水特征的影响,根据 ALONSO 等[27]的研究,建立了试样孔隙比与吸力的关系式为
式中:S为土的吸力,MPa;e为S吸力条件下土的孔隙比;e0为土的初始孔隙比;λ 为与吸力有关的变形参数。
采用式(3)分别对2种初始干密度压实红黏土的试验结果进行拟合,拟合参数如表3所示,拟合结果见图 5。结果表明:式(3)能很好地描述不同初始干密度压实红黏土的孔隙比与吸力的关系。
2.4考虑变形的土水特征模型及验证
GALLIPOLI 等[16]基于 VG 模型建立了描述土体变形对土水特征影响的关系式为
表3 孔隙比与吸力的拟合参数Table1 Fitting parameters between void ratio and suction
式中:Sr为饱和度;e为孔隙比;S为吸力;a,ϕ,n 和m均为模型参数。
结合表3,式(3)和式(4),对图4中的土水特征曲线进行拟合,结果见表4和图6。从表4和图6可知:式(4)能很好地描述压实红黏土考虑变形的土水特征关系。
图6 考虑变形的土水特征模型验证Fig.6 SWRC model verificationConsidering effect of deformation
进气值是气体进入饱和土孔隙时必需达到的基质吸力。将土水特征曲线中过渡段的斜率延长并与饱和度为100%的吸力轴相交,交点对应的吸力即为进气值。采用该方法,在考虑变形影响的土水特征曲线上,得到了2种初始干密度压实红黏土的进气值,分别约为380 kPa和560 kPa,该进气值明显大于黄飞[28]的研究结果。可能原因是:1)试样粒径和矿物成分不同。本研究所用红黏土粒径<0.16 mm,黄飞[28]研究的红黏土粒径<1mm,两者相差较大,同时本研究红黏土中的黏粒含量(69.1%)也较多。2)试验方法不同。本研究压实红黏土试样,在吸力控制的干燥过程中不断收缩,干密度相对增大,孔隙比减小,微观孔隙尺寸的变化导致进气值相应增大。
表4考虑变形的土水特征模型拟合参数Table1 Fitting parameters of modified WRC model
1)饱和湿化过程中,压实红黏土的膨胀应变随着饱和度的增加而增加,且初始干密度越大,膨胀应变越大。
2)逐级增加吸力干燥过程中,压实红黏土的孔隙比随着吸力增大而减小;同一吸力阶段,干密度大的试样具有较小的孔隙比和较高的饱和度。
3)改进的土水特征曲线模型计算结果与试验值吻合较好。
参考文献:
[1]赵颖文,孔令伟,郭爱国,等.广西原状红粘土力学性状与水敏性特征[J].岩土力学,2003,24(4): 568−570 ZHAO Yingwen,KONG Lingwei,GUO Aiguo,et al.Mechanical behaviors and water-sensitive properties of intact Guangxi laterite[J].Rock and Soil Mechanics,2003,24(4): 568−570.
[2]黄质红,朱立军,廖义玲,等.不同应力路径下红黏土的力学特性[J].岩石力学与工程学报,2004,23(15): 2599−2603.HUANG Zhihong,ZHU Lijun,LIAO Yiling et al.Mechanical properties of redClay under different stress paths[J].Chinese Journal of Rock Mechanics and Engineering,2004,23(15): 2599−2603.
[3]曹勇,贺进来.红黏土人工防渗技术在环卫工程中的应用[J].铁道建筑技术,2000,3(3): 28−30.CAO Yong,HE Jinlai.The application of redClay seepage prevention technique in environmental engineering[J].RailwayConstruction Technology,2000,3(3): 28−30.
[4]GŁADYSZ-PŁASKA A,MAJDAN M,GRABIAS E.Adsorption of La,Eu and Lu on raw and modified redClay[J].Journal of Radioanalytical and NuclearChemistry,2014,301: 33−40.
[5]CHEN Yonggui,ZHANG Keneng,ZOU Yinsheng,et al.Removal of Pb2+andCd2+by adsorption onClay-solidified groutingCurtain for waste landfills[J].Journal ofCentral South University of Technology,2006,13(2):166−170.
[6]CHEN Yonggui,ZHUChunming,SUN Yanhong,et al.Adsorption of La(Ⅲ)onto GMZ bentonite: effect ofContact time,bentoniteContent,pH value and ionic strength[J].Journal of Radioanalytical and NuclearChemistry,2012,292(3):1339−1347.
[7]汪东林,栾茂田,杨庆.重塑非饱和黏上的土水特征曲线及其影响因素研究[J].岩土力学,2009,30(3): 751−756.WANG Donglin,LUAN Maotian,YANG Qing.Experimental study of soil-waterCharacteristicCurve of remolded unsaturatedClay[J].Rock and Soil Mechanics,2009,30(3): 751−756.
[8]LU N,LIKOS W J.Unsaturated soil mechanics[M].New York: Wiley,2004:196−197.
[9]THYAGARAJ T,RAO T T.Influence of osmotic suction on the soil-waterCharacteristicCurves ofCompacted expansiveClay[J].Journal of Geotechnical and Geoenvironmental Engineering,ASCE,2010,136(12):1695−1702.
[10]VILLAR M V,LLORET,A.Influence of temperature on the hydro-mechanical behaviour of aCompacted bentonite[J].AppliedClay Science,2004,26(1/2/3/4): 337−350.
[11]THU T M,RAHARDJO H,LEONG EC.Soil-waterCharacteristicCurve andConsolidation behavior for aCompacted silt[J].Canadian Geotechnical Journal,2007,44(3): 266−275.
[12]van GENUCHTEN M T H.AClosed-form equation for predicting the hydraulicConductivity of unsaturated soils[J].Soil Science Society of America Journal,1980,44(5): 890−898.
[13]FREDLUND D G,XING A.Equations for the soil–waterCharacteristicCurve[J].Canadian Geotechnical Journal,1994,31(3): 521−532.
[14]HOUSTON W N,DYE H B,ZAPATAC E,et al.Determination of SWCC using one point suction measurement and standardCurves[C]//Unsaturated Soils.Carefree.AZ,United States: Geotechnical Special Publication,American Society ofCivil Engineers,2006:1482−1493.
[15]胡冉,陈益峰,周创兵.基于孔隙分布的变形土土水特征曲线模型[J].岩土工程学报,2013,35(8):1451−1461.HU Ran,CHEN Yifeng,ZHOUChuangbing.A water retentionCurve model for deformable soils based on pore size distribution[J].Chinese Journal of Geotechnical Engineering,2013,35(8):1451−1461.
[16]GALLIPOLI D,WHEELER S,KARSTUNEN M.Modelling the variation of degree of saturation in a deformable unsaturated soil[J].Géotechnique,2003,53(1):105−112.
[17]ZHOU A N,SHENG D,CARTER J P.Modelling the effect of initial density on soil-waterCharacteristicCurves[J].Géotechnique,2012,62(8): 669−680.
[18]JTGE 40—2007,公路土工试验规程[S].JTGE 40—2007,Test methods of soils for highway engineering [S].
[19]谭云志.压实红黏土的工程特征与湿热耦合效应研究[D].武汉: 中国科学院武汉岩土力学研究所,2009:13−28.TAN Yunzhi.Study on engineeringCharacteristics and moisture-heatCoupling effect ofCompacted laterite soil[D].Wuhan: Institute of Rock & Soil MechanicsChinese Academy of Sciences,2009:13−28.
[20]DELAGE P,HOWAT M D,CUI Y J.The relationship between suction and swelling properties in a heavilyCompacted unsaturatedClay[J].Engineering Geology,1998,50: 31−48.
[21]ROMERO E.Characterization and thermo-hydro-mechanical behavior if unsaturated BoomClay: An experimental study[D].Barcelona,Technical University ofCatalonia,Dept of Geotechnical Engineering and Geosciences,1999:119−147.
[22]YE Weimin,WAN Min,CHEN Bao,et al.Effect of temperature on soil-waterCharacteristics and hysteresis ofCompacted Gaomiaozi bentonite[J].Journal ofCentral South University of Technology,2009,16(5): 821−826.
[23]ASTM D1188—96(2002),Standard test method for bulk specific gravity and density ofCompacted bituminous mixtures using paraffin-coated specimens[S].
[24]SRIDHARAN A,GURTUG Y.Swelling behavior ofCompacted fine-grained soils[J].Engineering Geology,2004,72(1): 9−18.
[25]RAO S M,THYAGARAJ T.Swell–compression behaviour ofCompactedClays underChemical gradients[J].Canadian Geotechnical Journal,2007,44: 520−532.
[26]GB 50112—2013,膨胀土地区建筑技术规范[S].GB 50112—2013,TechnicalCode for buildings in expansive soil regions[S].
[27]ALONSO E E,GENS A,JOSA A.AConstitutive model for partially saturated soils[J].Géotechnique,1999,40(3): 405−430.
[28]黄飞.郴州地区红黏土非饱和特性研究及应用[D].长沙: 中南大学地球科学与信息物理学院,2014:13−21.HUANG Fei.Research on the properties of unsaturated redClay inChenzhou distract and its application[D].Changsha:Central South University.School of Geosciences and Info-Physics,2014:13−21.
(编辑 罗金花)
Water retention properties of deformableCompacted redClay induced by wetting and drying
HE Yong1,2,3, HUANG Runqiu2,CHEN Yonggui1,2,3, YE Weimin1
(1.Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education,Tongji University,Shanghai 200092,China; 2.State Key Laboratory of Geohazard Prevention and Geoenvironment Protection,Chengdu University of Technology,Chengdu 650051,China; 3.School ofCivil Engineering and Architecture,Changsha University of Science and Technology,Changsha 410114,China)
Abstract:Two specimens with dry densities of1.3 g/cm3and1.5 g/cm3wereCompacted by the redClay powder with a waterContent of 4%.Then,the specimens were saturated in theConfinedConditions and the deformations were measured during the saturating.The saturated specimens were dried by increasing suction through the vapor phase technique,the void ratio and saturation degree were also measured during the drying,andConsequently the soil water retentionCurves(SWRCs)were obtained.The results show that the swelling strain ofCompacted redClay increases with the increase of the saturation.What’s more,the larger the initial dry density,the greater the swelling strain.During the drying,the void ratio of the specimen decreases with the increase of the suction.For a given suction,the specimen with a smaller dry density has a bigger void ratio and a higher saturation degree.According to the SWRCs,modified model was proposed to account for the effect of deformation on SWRCs,and the experimental dataCould be fitted well.
Key words:Compacted redClay; wetting; drying; deformation; soil water retentionCurve
中图分类号:TU442
文献标志码:A
文章编号:1672−7207(2016)01−0143−06
DOI:10.11817/j.issn.1672-7207.2016.01.021
收稿日期:2015−04−12;修回日期:2015−06−30
基金项目(Foundation item):国家自然科学基金资助项目(41272287,41422207);地质灾害防治与地质环境保护国家重点实验室开放课题(成都理工大学)(SKLGP2013K004);湖南省教育厅科学研究项目(15A009)(Projects(41272287,41422207)supported by the National Natural Science Foundation ofChina; Project(SKLGP2013K004)supported by the Opening Fund of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection(Chengdu University of Technology); Project(15A009)supported by Scientific Research Fund of Hunan Provincial Education Department)
通信作者:陈永贵,博士,教授,博士生导师,从事环境地质和非饱和土力学方面研究;E-mail:Cyg@tongji.edu.cn