何春华
一元一次方程中考考点透析
何春华
在各地中考试卷中经常能看到一元一次方程的身影,它是中考的必考内容之一,现对一元一次方程中考考点逐一透视,供同学们学习时参考.
例1(2015·江苏常州)已知x=2是关于x
的解,则a的值是_____.
【分析】方程的解是使方程左、右两边相等的未知数的值,因此可将x=2代入原方程中求解.
评注:当一个一元一次方程中含有多个字母时,通常表述为“关于x的方程”,此时这个字母x就是未知数,而其他字母应视作常数,当已知一元一次方程的解时,只需根据解的定义将解代入方程即可解决问题.
答案:1.
故选择B.
评注:(1)解一元一次方程时,通常按“去分母、去括号、移项、合并同类项、系数化为1”的步骤和顺序来做,但也不尽然,根据所给方程的特点,解方程时,上述有些变形步骤可能用不到,并且也不一定要按照上述顺序去做.要根据方程的形式灵活安排求解步骤.熟练后,步骤还可以合并简化.
(2)有关方程解的选择题,除了用直接法求解外,还可用代入检验法.如本题可把各选项中的数分别代入两个式子中进行计算,使之相等即为所求.
[热身训练2](2015·辽宁大连)方程3x+2(1-x)=4的解是().
C.x=2D.x=1
【答案】C.
例3(2015·湖北潜江)清明节期间,七(1)班全体同学分成若干小组到革命传统教育基地缅怀先烈.若每小组7人,则余下3人;若每小组8人,则少5人.由此可知该班共有名同学.
【分析】观察条件可知:本题中的学生总数与分的组数是不变的,则可分别设出其中一个量,再根据另一个量不变列出方程求解.
【解】方法一:设全班共有x名同学,根据分的组数不变可得:,解得x=59;
方法二:设分成了y个组,根据学生总数不变可得:7y+3=8y-5,解得y=8,所以7y+3=59.
应填“59”.
评注:本题属“盈不足”问题,它一般是按一个数目分配不够,按另一个数目分配有余,不论怎样分配,被分配的物品的总量不变,人数不变,只是分配方式的变化.所以“表示同一个量的两个不同代数式的值相等”是一个基本的等量关系.
例4(2015·湖北孝感)某市为提倡节约用水,采取分段收费.若每户每月用水不超过20m3,每立方米收费2元;若用水超过20m3,超过部分每立方米加收1元.小明家5月份交水费64元,则他家该月用水__________m3.
【分析】20m3时交40元,题中已知5月份交水费64元,即已经超过20m3,所以在64元水费中有两部分构成,列方程即可解答.
【解】设该用户居民5月份实际用水xm3,根据题意得20×2+(x-20)×3=64,解得x=28,故答案为28.
评注:列方程解决分段收费问题的关键是明确每一段的数量与价格,一般根据各段数量与价格乘积的和等于总费用来列方程.
例5(2015·山东泰州)某校七年级社会实践小组去商场调查商品销售情况,了解到该商场以每件80元的价格购进了某品牌衬衫500件,并以每件120元的价格销售400件,商场准备采取促销措施,将剩下的衬衫降价销售.请你帮商场计算一下,每件衬衫降价多少元时,销售完这批衬衫正好达到盈利45%的预期目标?
【分析】本题等量关系为:两次销售总价之和=进货总价×(1+45%),设每件衬衫降价x元,根据等量关系列方程即可求解.
【解】设每件衬衫降价x元,根据题意得:
120×400+(500-400)×(120-x)=500×80×(1+45%).
解之,得x=20.
答:每件衬衫降价20元时,销售完这批衬衫正好达到盈利45%的预期目标.
评注:销售问题涉及的量有标价、销售价、进价、折扣、利润率、利润等,它们之间的关系为:售价-进价=利润,标价×折扣率=售价,进价×利润率=利润,理解这些内容是列出方程的关键.
[热身训练3](2015·广西河池)联华商场以150元/台的价格购进某款电风扇若干台,很快售完.商场用相同的货款再次购进这款电风扇,因价格提高30元,进货量减少了10台.
(1)这两次各购进电风扇多少台?
(2)商场以250元/台的售价卖完这两批电风扇,商场获利多少元?
答案:(1)设第一次购进了x台,根据题意列方程,得150x=(150+30)(x-10),解得x=60,所以60-10=50,所以第一次购进了60台,第二次购进了50台;
(2)(250-150)×60+(250-180)×50=6000+ 3500=9500,所以商场两次共获利9500元.
(江苏省海门市实验初级中学)