连多硫酸盐的合成、检测与应用

2016-04-07 00:41:53李国防张富强
商丘师范学院学报 2016年3期
关键词:合成应用检测

李国防,张富强

(1.中国矿业大学 化工学院,江苏 徐州 221008;2.商丘师范学院 化学化工学院,河南 商丘 476000)



连多硫酸盐的合成、检测与应用

李国防1,2,张富强2

(1.中国矿业大学化工学院,江苏 徐州 221008;2.商丘师范学院化学化工学院,河南 商丘 476000)

摘要:连多硫酸盐是无机硫化物在氧化成硫酸盐过程中形成的中间体,因在化学、工程和微生物领域中的重要作用,对连多硫酸盐的研究近年来呈复苏趋势.结合课题组的工作,从制备、检测和应用三方面对连多硫酸盐的相关研究进行总结,指出合成高纯度连多硫酸盐和开发快速检测方法是推进相关研究的关键.本文重点分析了连多硫酸盐在基础和应用方面的研究现状,指出现行基础研究与工程需要相比研究体系过于较简,而且存在研究范围不广的问题.指出引入原位分析技术深化基础研究和利用连多硫酸盐进行抗菌、有机物的选择性绿色还原和贵金属提取是未来的研究重点.

关键词:连多硫酸盐;合成;检测;应用

1连多硫酸盐的存在形式与人工合成

连六硫酸钾现有两种实验室合成方法[23, 32].方法1:以亚硝酸钾和硫代硫酸钠为原料,酸性介质中低温(-35℃)反应得60%的连六硫酸钾,经多次纯化析晶纯度可达97.5%,由于该合成工艺操作温度过低和操作繁琐,因此,不是制备连六硫酸钾的理想方法.方法2:是在6 M HCl和路易斯酸(如FeCl3)稳定剂存在下,氯化硫(S2Cl2)和硫代硫酸钠溶液低温(-15℃)反应得到含连六硫酸的盐溶液,经减压浓缩过滤除去大部分NaCl,而后低温搅拌下加入KOH甲醇溶液将连六硫酸成盐析出,粗品(含KCl)经2 M HCl精制得96%的连六硫酸钾.相比于亚硝酸钾和硫代硫酸钠制备工艺,氯化硫/硫代硫酸钠合成法便于操作,但工艺中将硫代硫酸钠溶液与盐酸同时加入到反应体系的文献方法,加剧了硫代硫酸钠的酸性分解,而且由于反应放热且反应快,使温度不宜控制,副反应严重.此外,使用过多水溶剂还增加减压浓缩时间,造成不必要的能源浪费,而且长时间的升温浓缩也会增加连六硫酸的分解.

图1 连多硫酸盐的线型分子结构[1-6]         图2 SLHR与文献工艺[23,32] 制备连六硫酸盐 Fig.1 Linear structure of polythionates[1-6]         Fig.2 SLHR and literature method [23,32] for the synthesis of hexathionate

针对文献方法的弊端,我们对硫代硫酸钠氯化硫工艺进行改进(图2),以固体硫代硫酸钠替代固体硫代硫酸钠溶液,采用固液多相反应(solid-liquid heterogeneous reaction (SLHR)),通过控制搅拌速度调整反应速率,使反应始终处于最佳的反应条件,提高了合成产品的纯度.而且,以二氯化硫替代二氯化二硫,我们提出的合成连六硫酸盐的改进工艺同样适合于合成高纯度连五硫酸盐.

2连多硫酸盐的检测

2.1化学滴定法

(1)

(2)

(3)

(4)

2.2仪器分析法

化学滴定法适用于测定单一或两种连多硫酸盐简单共存的体系,对于多种连多硫酸盐共存的混合物,除需要进行步骤繁琐的处理程序,还要结合光谱法才能进行分析[34-40].近些年发展的色谱技术如离子色谱(Ion Chromatography)[41-48]、高效液相色谱(High Performance Liquid Chromatography)[9, 10, 12, 13, 49, 50]和毛细管电泳技术(Capillary Electrophoresis)[51-54]不但可以快速测定,而且可以测定低含量的连多硫酸盐混合物.在这些仪器分析法中,高效液相色谱法需使用含乙腈的强极性流动相,应做好操作毒性防护.毛细管电泳法使用磷酸盐缓冲溶液做电泳运行液,操作安全,而且分析速度快(几分钟可完成操作),但用于定量分析时,为获得好的重现性,必须严格控制操作条件.

3连多硫酸盐的应用

3.1用作基础研究的化学试剂

连多硫酸盐主要用于基础研究,早期主要用于配制模拟钢铁腐蚀的环境溶液,研究钢铁腐蚀机理,寻找防护措施[55, 56].近年来,由于硫代硫酸钠无氰提金的兴起以及含硫矿物湿法冶金的需要,迫切需要详细了解硫氧化合物在水中的价态转化和机理.为此,包括我们课题组和匈牙利的Attila K.Horvath在内的研究团体较为详细的研究了连多硫酸盐在水中的分解动力学和水体系中与卤族化合物的氧化还原反应[9, 10, 13-15, 24-26, 57-61].研究发现,连多硫酸盐在水中的稳定性随溶液的pH值升高而明显下降,而且随硫链的长度增加而大幅减弱[10, 14, 15, 24-26].无论使用单一的连三、连四、连五或是连六硫酸盐,均发现其在水中的分解产物不但包含从连三到连六硫酸盐的已知物,而且包含不能确定具体分子结构的更高级的连多硫酸盐[10, 14].这也从实验证实了连多硫酸盐之间在水溶液中可以相互转化的事实,但随时间的推移较高级别的连多硫酸盐迅速消失,并随反应条件的不同分别转化成不同的终产物如硫酸盐或硫单质[10, 14, 20, 21].研究发现连六硫酸盐最易析出硫单质,连五硫酸盐次之.我们课题组的潘长伟和匈牙利的Attila K.Horvath均在实验基础上提出了不同链长度的连多硫酸盐在水中的分解转化机理,尽管这些机理推断经过了计算模拟验证,但对提出的某些转化中间物[10, 14](如S2O3OH-、S3O3OH-和S4O3OH-)的存在还缺少直接的实验观察,因此,结合原位分析技术如原位红外[37-39]或原位拉曼光谱技术,对连多硫酸盐的分解转化进行原位检测是提升研究深度的可靠方案.另外,现有连多硫酸盐在水中的各种反应均是在恒温25℃条件下考察的,由于温度是影响各类反应的关键因素之一,因此,未来的研究应考虑温度的影响.为研究机理方便,现有文献均采用单一连多硫酸盐物种进行相关反应研究,但真实的工程应用体系往往比较复杂,如硫代硫酸钠无氰提金使用包含铜铵离子在内的混合药剂[62, 63],故研究体系尽量接近连多硫酸盐在工程应用中的真实环境是未来研究的一个方向.

3.2用作绿色还原剂

由于连多硫酸盐硫链上硫的电子密度高[64-67],因此,连多硫酸盐可用作还原剂.最常用的低价硫还原剂是硫化钠及多硫化钠[68-70],但硫化钠及多硫化钠适用于碱性、中性和微酸性环境,不适合在强酸性环境中使用(酸性分解).连多硫酸盐具有良好的水溶性,而且在较宽范围的酸性环境中稳定,并且连多硫酸盐硫链中的硫与多硫化钠的硫类似,其最终氧化产物为硫酸盐[13, 57-59, 71],因此,连多硫酸盐可以弥补无机硫化物在选择性还原上的应用缺陷,有希望用作酸性环境中的绿色还原剂.利用硫的还原性,连多硫酸盐也有用于制备半导体材料如Cu2S和AgS[72-76],和除去工业废气中氮和硫的氧化性气体的报道[77].

3.3抗菌

由于微生物对人类健康的威胁一直存在,药物开发始终贯穿人类的科学研究.与有机抗菌剂相比,无机杀菌剂具有制备简单、性质稳定、价格低和不产生耐药性的优势,因此,对无机抗菌剂的研发呈快速上升趋势[78-85].连多硫酸盐不稳定,尤其是长链连多硫酸盐易分解析出单质硫[10].由于硫和一些含硫的无机物(如石灰硫磺合剂、硫化氢及其盐等)具有较强的生物活性[86-93],因此,连多硫酸盐具有潜在的药用价值.硫单质是应用最早的皮肤病药物[88-90],但由于其水中不溶和杀菌能力的局限性,其应用范围有限.连多硫酸盐,由于具有杀菌活性,而且与胶状硫相比,不会留下淡黄(硫磺)色斑迹,所以,连五硫酸盐很早便有用于治疗皮肤病的报道[94-96].但由于缺少纯净的连多硫酸盐试剂,对于其余的连多硫酸盐的抗菌基础研究近50年没有文献报道,因此,对连多硫酸盐及其复合材料进行抗菌活性研究既有前沿性又具有理论和现实意义.而且,我们课题组已在这一研究领域开展工作,并取得一定的研究成果.需要指出,如以抗菌为目的制备连多硫酸盐,还应考虑阳离子对微生物的影响,所以,根据抗菌需求设计合成特殊分子结构的连多硫酸盐也是未来的重要研究方向.

3.4用做复合肥和贵金属提取剂

由于硫和钾是植物必须的营养元素,连多硫酸钾盐如连四硫酸钾和连五硫酸钾是配置植物无土栽培营养液的重要原料[97].由于长链连多硫酸钾具有微生物活性,我们课题组正与植物学家和微生物学家合作开发具有杀菌功能的绿色复合肥.有趣的是,在青霉素制备工艺中使用连四硫酸钾替代硫代硫酸钠配置营养液可以提高青霉素(penicillin)的收率[98].另外,由于含硫有很强的重金属配位能力,连多硫酸盐还是无氰提取贵金属的理想药剂[62, 63, 99, 100].

4结论与展望

由于连多硫酸盐在化学工程、环境监测和生物新陈代谢中的重要作用,针对连多硫酸盐的研究近几年呈现复苏趋势.但连多硫酸盐无商品供应和合成上的困难严重影响了相关的研究进展,因此,开发连多硫酸盐尤其是高纯连六硫酸盐制备工艺是推进相关研究的首选任务.对于连多硫酸盐在水中的分解转化机理尽管已有比较深入的了解,但对某些中间体或过渡产物(如S2O3OH等)的存在还缺乏实验佐证,因此,引入原位技术如原位红外和原位拉曼等分析手段是提升研究深度、明晰连多硫酸盐分解机理的重要途径.此外,现有研究连多硫酸盐在水中的分解体系过于简单,不能真实反映连多硫酸盐在自然存在环境中的转化过程.因此,在已了解单一连多硫酸盐分解转化反应的基础上,研究其在工程应用环境中的变化规律即富有挑战性又具有实际意义.因兼有无机和有机抗菌剂的优点,设计合成价廉且生物活性强的新型连多硫酸盐(如连多硫酸季铵盐)是抗菌领域的重要研究方向.在绿色有机合成领域,研究连多硫酸盐在有机物选择性还原方面的应用即富有前瞻性又具有社会、经济和环境意义.

参考文献:

[1]Maroy K.Refinement of the crystal structure of potassium barium hexathionate[J].Acta Chem.Scand, 1973, 27:1684-1694.

[2]Maroy K.The crystal structure of potassium pentathionate hemitrihydrate[J].Acta Chem.Scand, 1971, 25:2580-2590.

[3]Foss O, Structure of the hexathioante ion in the trans-dichloro-dien-cobalt(III) salt[J].Acta Chem.Scand, 1959, 13:201-202.

[4]Foss O, Palmork KH.Crystal Data on Salts of Hexathionic Acid[J].Acta Chem.Scand,1958, 12:1337-1339.

[6]Pappoe M, Lucas H, Bottaro C, Louise N, et al.Single Crystal Structural Characterization of Tri-, Tetraand Pentathionates[J].J Chem Crystallogr, 2013, 43:596-604.

[7]Wainwright M, Kiliham K.sulphur oxidation by fusarium solani[J].Soil Biol.Biochem., 1980, 12: 555-562.

[8]KrylovaV.Temperature Effect on the Sulfur Adsorption-Diffusion Processes from Potassium Pentathionate Solutions by Polycaproamide Film[J].Materials Science (Medžiagotyra), 2007, 13: 27-32.

[9]Csekoö G, Ren L, Liu Y, Gao Q, et al.A New System for Studying Spatial Front Instabilities: The Supercatalytic Chlorite-Trithionate Reaction[J].J.Phys.Chem.A, 2014, 118:815-821.

[10]Pan C, Liu Y, Horváth AK, Wang Z, et al.Kinetics and Mechanism of the Alkaline Decomposition of Hexathionate Ion[J].J.Phys.Chem.A, 2013, 117: 2924-2931.

[11]Wang Z, Gao Q, Pan C, Zhao Y, et al.Bisulfite-Driven Autocatalysis in the Bromate-Thiosulfate Reaction in a Slightly Acidic Medium[J].Inorg.Chem., 2012, 51:12062-12064.

[12]Xu L, CseköG, Kégl T, Horvaáth AK.General Pathway of Sulfur-Chain Breakage of Polythionates by Iodine Confirmed by the Kinetics and Mechanism of the Pentathionate-Iodine Reaction[J].Inorg.Chem., 2012, 51:7837-7843.

[13]Csekoö G, Horvaáth AK.Kinetics and mechanism of the chlorine dioxide-trithionate reaction[J].J.Phys.Chem.A, 2012, 116: 2911-2919.

[14]Pan C, Wang W, Horváth AK, Xie J,et al.Kinetics and Mechanism of Alkaline Decomposition of the Pentathionate Ion by the Simultaneous Tracking of Different Sulfur Species by High-Performance Liquid Chromatography[J].Inorg.Chem., 2011, 50: 9670-9677.

[15]Zhang H, Jeffrey MI.A Kinetic Study of Rearrangement and Degradation Reactions of Tetrathionate and Trithionate in Near-Neutral Solutions[J].Inorg.Chem., 2010, 49:10273-10282.

[16]Takano B.Correlation of volcanic activity with sulfur oxyanion speciation in a crater lake[J].Science, 1987, 235: 1633-1635.

[17]Takano B, Watanuki B.Quenching and liquid chromatographic determination of polythionates in natural water[J].Talanta, 1988, 35: 847-854.

[18]Makhija R, Hitchen A.Determination of polythionates and thiosulphate in mining effluents and mill circuit solutions[J].Talanta, 1978, 25: 79-84.

[19]Senanayake G.Senanayake G.Gold leaching by thiosulfate Solutions: a critical review on copper(II)-thiosulfate-oxygen interactions[J].Miner.Eng., 2005, 18: 995-1009.

[20]Wagner H, Schreier H.Investigations on the alkaline degradation of the pentathioante[J].Phosphorus and Sulfur, 1978, 4:281-284.

[21]Wagner H, Schreier H.Investigations on the sulfite degradation of polythioantes[J].Phosphorus and Sulfur,1978, 4:285-286.

[22]Foss O.Remarks on the reactivities of the penta- and hexathionate ions[J].Acta Chem.Scand., 1958, 12, 959-966.

[23]Kelly DP, Wood AP.Synthesis and Determination of Thiosulfate and Polythionates[J].Methods In Enzymology, 1994, 243:475-501.

[24]Varga D, Horvath AK.Kinetics and Mechanism of the Decomposition of Tetrathionate Ion in Alkaline Medium[J].Inorg.Chem., 2007, 46: 7654-7661.

[25]Zhang H, Dreisinger DB.The kinetics for the decomposition of tetrathionate in alkaline solutions[J].Hydrometallurgy, 2002, 66: 59-65.

[26]Horváth AK, Nagypal I, Epstein I.R Oscillatory Photochemical Decomposition of Tetrathionate Ion[J].J.Am.Chem.Soc., 2002, 124:10956-10957.

[27]Rolla E, Chakrabartl CL.Kinetics of Decomposition of Tetrathionate, Trithionate, and Thiosulfate in Alkaline Media[J].Environ.Sci.Technol., 1982, 16: 852-857.

[28]Naito K, Shieh M,Okabe T.The chemical behavior of low valence sulgue compound.V.decomposition and oxidation of tetrathioante in the aqueous solution[J].Bull.Chem.Soc.Japan, 1970, 43:1372-1376.

[29]Fava A, Silvanbo R.Kinetics of the Catalytic Rearrangement of Tetrathionate[J].J.Am.Chem.Soc., 1955, 77: 5792-5794.

[30]Stamn VH, Seipold O, Goehring M. Die reaktionen zwischen polythionsauren und schwefliger saure bzw.thioschwefelsaure[J].Z.Anorg.Chem., 1941, 247:277-306.

[31]Sharada K, Vasudeva Murthy AR.Formation of Polythionates by the Reaction between Polythiopiperidines and Sulphite and Thiosulphate[J].Z.Anorg.Chem.Bd, 1960, 306: 196-202.

[32]Goehring VM, Feldmann U.Neue Verfahren zur Darstellung van Kaliumpentathio nat und von Kaliumhexathionat[J].Z.Anorg.Chem., 1948, 257: 223-226.

[33]Ritter RD, Krueger JH.Nucleophilic Substitution at Sulfur.Reactions Involving Trithionate Ion[J].J.Am.Chem.Soc., 1970, 92: 2316-2321.

[34]Koh T, Iwaji Iwasaki I.The Determination of Micro Amounts of Polythionates.V.* A Photometric Method for the Determination of Polythionates When Two Species of Them, Tetra-, Penta- and Hexathionate, are Present Together[J].Bull.Chem.Soc.Japan, 1965, 39: 703-708.

[35]Koh T, Taniguchi K.Spectrophotometric Determination of Total Amounts of Polythionates (Tetra-, Penta-, and Hexathionate) in Mixtures with Thiosulfate and Sulfite[J].Anal.Chem., 1973, 45: 2018-2022.

[36]Miura Y, Kitamura H, Koh T.Spectrophotometric Determination of Micro Amounts of Tetrathionate Via Its Oxidation with Permanganate[J].Mikrochim.Acta, 1991, 1: 235-243.

[37]Holman D.A, Bennett D.W.A Multicomponent Kinetics Study of the Anaerobic Decomposition of Aqueous Sodium Dithionite[J].J.Phys.Chem., 1994, 98: 13300-13307.

[38]Holman D A, Thompson A W, Bennett D W Quantitative Determination of Sulfur-Oxygen Anion Concentrations in Aqueous Solution:Multicomponent Analysis of Attenuated Total Reflectance Infrared Spectra[J].Anal.Chem., 1994, 66: 1378-1384.

[39]Voslar M, Matejka P, Schreiber I.Oscillatory Reactions Involving Hydrogen Peroxide and Thiosulfate-Kinetics of the Oxidation of Tetrathionate by Hydrogen Peroxide[J].Inorg.Chem., 2006, 45: 2824-2834.

[40]Koh T, Taniguchi K.Spectrophotometric Determination of Micro Amounts of Hexathionate in Mixtures with Thiosulfate and Sulfite by Means of Its Sulfitolysis[J].Anal.Chem., 1974, 46:1679-1683.

[41]Miura Y, Saitoh A, Koh T.Determination of sulfur oxyanions by ion chromatography on a silica ODS column with tetrapropylammonium salt as an ionpairing reagent[J].J.Chromatog.A., 1997, 770: 157-164.

[42]KoH T.Analytical Chemistry of Polythionates and Thiosulfate A Review[J].Analytical Sciences, 1990, 6: 3-14.

[43]O'Reilly JW, Shaw MJ, Dicinoski GW, Grosse AC,et al.Separation of polythionates and the gold thiosulfate complex in gold thiosulfate leach solutions by ion-interaction chromatography[J].Analyst, 2002, 127: 906-911.

[44]Miura Y, Kawaoi A.Determination of thiosulfate, thiocyanat and polythionates in a mixture by ion-pair chromatography with ultraviolet absorbance detection[J].J.Chromatog.A, 2000, 884:81-87.

[45]Zou H, Jia Z, Zhang Y, Lu P.Separation of aqueous polythionates by reversed-phase ion-pair liquid chromatography with suppressor-conductivity detection[J].Anal.Chim.Acta, 1993, 284: 59-65.

[47]Rabin SB, Stanbury DM.Separation and Determination of Polythionates by Ion-Pair Chromatography[J].Anal.Chem., 1985, 57: 1130-1132.

[48]Wolkoff AW, Larose RH.Separation and Detection of Low Concentrations of Polythionates by High Speed Anion Exchange Liquid Chromatography[J].Anal.Chem., 1975, 47:1003-1008.

[49]Varga D, Nagypal I, Horvath AK.Complex Kinetics of a Landolt-Type Reaction: The Later Phase of the Thiosulfate-Iodate Reaction[J].J.Phys.Chem.A., 2010, 114:5752-5758.

[50]Takano B, McKibben MA, Barnes HL.Liquid Chromatographic Separation and Polarographic Determination of Aqueous Polythionates and Thiosulfate[J].Anal.Chem., 1984, 56: 1594-1600.

[51]óReilly JW, Dicinoski GW, Miura Y, Haddad PR.Separation of thiosulfate and the polythionates in gold thiosulfate leach solutions by capillary electrophoresis[J].Electrophoresis, 2003, 24: 2228-2234.

[52]Padarauskas A, Paliulionyte V, Ragauskas R, Dikcius A.Capillary electrophoretic determination of thiosulfate and its oxidation products[J].J.Chromatog.A., 2000, 879: 235-243.

[53]O′Reilly JW, Dicinoski GW, Shaw MJ, Haddad PR.Chromatographic and electrophoretic separation of inorganic sulfur and sulfur-oxygen species[J].Anal.Chim.Acta., 2001, 432:165-192.

[54]Timerbaev AR.Inorganic biological analysis by capillary electrophoresis[J].Analyst, 2001, 126: 964-981.

[55]Shayegani M, Zakersafaee P.Failure analysis of reactor heater tubes SS347H in ISOMAX unit[J].Eng.Failure Anal., 2012, 22: 121-127.

[56]Horowitz H.H chemical studies of polythionic acid stress-corrosion craking[J].Corros.Sci., 1983, 23: 353-362.

[57]Druschel GK, Hamers RJ, Luther G, Banfield JF.Kinetics and Mechanism of Trithionate and Tetrathionate Oxidation at Low pH by Hydroxyl Radicals[J].Aquatic Geochemistry, 2003, 9: 145-164.

[58]Cseko G, Horvath AK.Non-triiodide based autoinhibition by iodide ion in the trithionate-iodine reaction[J].J.Phys.Chem.A., 2010, 114: 6521-6526.

[59]Druschel G, Hamers RJ, Banfield J.Kinetics and mechanism of polythionate oxidation to sulfate at low pH by O2and Fe3+[J].Cosmochimica Acta, 2003, 67: 4457-4469.

[61]Huff Hartz KE, Nicoson JS, Wang L DW.Kinetics and Mechanisms of S(IV) Reductions of Bromite and Chlorite Ions[J].Inorg.Chem., 2003, 42: 78-87.

[62]Senanayake G.Gold leaching by copper(II) in ammoniacal thiosulphate solutions in the presence of additives.Part I: A review of the effect of hard-soft and Lewis acid-base properties and interactions of ions[J].Hydrometallurgy, 2012, 115: 1-20.

[63]Jeffrey MI, Brunt SD.The quantification of thiosulfate and polythionates in gold leach solutions and on anion exchange resins[J].Hydrometallurgy, 2007, 89: 52-60.

[64]Christidis PC, Rentzeperis PJ, Kirfel A, Will G.Experimental charge density in polythionate anions I.X-ray study of electron density distribution in potassium trithionate, K2S306[J].Zeitschrift für Kristallographie, 1985, 173:59-74.

[65]Christidis PC, Rentzeperis PJ.Experimental charge density in polythionate anions: II.X-ray study of the electron density distribution in potassium tetrathionate, K2S406[J].Zeitschrift für Kristallographie, 1989, 188:31-42.

[66]Meye B, Peter L, Spitzerib K.Trends in the Charge Distribution in Sulfanes, Sulfanesulfonic Acids, Sulfanedisulfonic Acids, and Sulfurous Acid[J].Inorg.Chem., 1977, 16: 27-33.

[67]Foss O.The prevalenve of unbranched sulfur chains in polysulfides and polythionic compounds[J].Acta Chem.Scand., 1950, 4: 404-415.

[68]Zhou J, Luo Y, Li Q, Shen J, et al.Assembly of indole fluorophore in situ for hydrogen sulfide signaling through substrate triggered intramolecular reduction-cyclization cascade: a sensitive and selective probe in aqueous solution[J].New J.Chem., 2014, 38: 2770-2773.

[69]Huber D, Andermann G, Leclerc G.Selective reduction of aromatic / aliphatic nitro groups by sodium sulfide[J].Tetra.Lett., 1988, 29: 635-638.

[70]Lin Y, Lang JrSA.Selective reduction of nitro-heterocycles with sodium sulfide in aqueous p-dioxane[J].J.Heterocycl.Chem., 1980, 17: 1273-1275.

[71]Lu Y, Gao Q, Xu L, Zhao Y, et al.Oxygen-Sulfur Species Distribution and Kinetic Analysis in the Hydrogen Peroxide-Thiosulfate System[J].Inorg.Chem., 2010, 49: 6026-6034.

[74]Ancutiene I, Ivanauskas R.Formation of mixed copper sulphide and silver sulphide layers on low density polyethylene film[J].Proceedings of the Estonian Academy of Sciences, 2009, 58: 35-39.

[75]Ancutiene I, Janickis V, Ivanauskas R.Formation and characterization of conductive thin layers of copper sulfide (CuxS) on the surface of polyethylene and polyamide by the use of higher polythionic acids[J].Appl.Surf.Sci., 2006, 252: 4218-4225.

[76]Janickis V, Maciulevicius R, Ivanauskas R, Ancutien I.Chemical deposition of copper sulfide films in the surface of polyamide by the use of higher polythionic acids[J].Colloid.Polym.Sci., 2003, 281:84-89.

[77]Sliger AG, O'Donnell JJ, Cares W.R Sulfur dioxide removal process[P], US 4634582, 1987.

[78]Soenen SJ, Parak WJ, Rejman J, Manshian B.(Intra)Cellular Stability of Inorganic Nanoparticles: Effects on Cytotoxicity, Particle Functionality, and Biomedical Applications[J].Chem.Rev., 2015, 115: 2109-2135.

[79]Fasciani C, Silvero MJ, Anghel MA, Argüello GA, et al.C.Aspartame-Stabilized Gold-Silver Bimetallic Biocompatible Nanostructures with Plasmonic Photothermal Properties, Antibacterial Activity, and Long-Term Stability[J].J.Am.Chem.Soc., 2014, 136: 17394-17397.

[80]Pang M, Hu J, Zeng H.Synthesis, Morphological Control, and Antibacterial Properties of Hollow/Solid Ag2S/Ag Heterodimers[J].J.Am.Chem.Soc., 2010, 132: 10771-10785.

[81]Li Y, Yang L, Zhao Y, Li B, et al.Preparation of AgBr@SiO2core@shell hybrid nanoparticles and their bactericidal activity[J].Mater.Sci.Eng., C, 2013, 33: 1808-1812.

[82]Lv M, Su S, He Y, Huang Q, et al.Long-Term Antimicrobial Effect of Silicon Nanowires Decorated with Silver Nanoparticles[J].Adv.Mater., 2010, 22: 5463-5467.

[83]Zhang H, Chen G.Potent Antibacterial Activities of Ag/TiO2Nanocomposite Powders Synthesized by a One-Pot Sol-Gel Method[J].Environ.Sci.Technol., 2009, 43: 2905-2910.

[84]Fu F, Li L, Liu L, Cai J, et al.Construction of Cellulose Based ZnO Nanocomposite Films with Antibacterial Properties through One-Step Coagulation[J].ACS Appl.Mater.Interfaces, 2015, 7: 2597-2606.

[85]Yang X, Li J, Liang T, Ma C,et al.Antibacterial activity of two-dimensional MoS2sheets[J]. Nanoscale, 2014, 6: 10126-10133.

[86]Madelaine V, Oliveira RM, Perez AL, Rodríguez-Cruz FA, et al.M Lime sulfur toxicity to broad mite, to its host plants and to natural enemies[J].Pest Manage.Sci., 2013, 69: 738-743.

[87]Holb IJ, Schnabel G.A detached fruit study on the post-inoculation activity of lime sulfur against brown rot of peach (Monilinia fructicola) [J].Australasian Plant Pathology, 2008, 37: 454-459.

[88]Rao KJ, Paria S.Use of sulfur nanoparticles as a green pesticide on Fusarium solani and Venturia inaequalis phytopathogens[J].RSC Adv., 2013, 3: 10471-10478.

[89]Baldwin MM.Sulfur in Fungicides[J].Ind.Eng.Chem.Res., 1950, 42: 2227-2230.

[90]Weld JT, Gunther A.The antibacterial properties of sulfur[J].J.Exp.Med., 1947, 85: 531-542.

[91]Song Z, Ng M, Lee Z, Dai W, et al.Hydrogen sulfide donors in research and drug development[J].Med.Chem.Commun,2014, 5: 557-570.

[92]Castro H, Cabeza-Rivera F, Green D.Combined therapy with sodium thiosulfate and parathyroidectomy in a patient with calciphylaxis[J].Dialysis & Transplantation, 2011, 40:264-266.

[93]Park YH, Park CH, Kim HJ.The effect of topical sodium thiosulfate in experimentally induced myringosclerosis[J].The Laryngoscope, 2010, 120:1405-1410.

[94]Greenberg L.Comparative Laboratory Evaluation of Antiseborrheic Dermatitis Preparations[J].J.Pharm.Sci., 1961, 50: 480-482.

[95]Neesby TE.Stabilized polythionates as medical cosmetics[P].US 2551627, 1951.

[96]Neesby TE, New Brunswick NJ.Stabilizing aqueous solutions of polythionates and polythionic acids[P].US 2768875, 1956.

[97]Bolhuis HH.Composition suitable as fertillizer containing sulphur as a polythionic acid compound or a salt thereof[P].EP 0949221A1, 1999.

[98]Peterson MH.Production of penicillin in presence of polythionate[P].US 2871164, 1959.

[99]Hackl RP, Ji J, West-sells PG.Method for thiosulfate leaching of precious metal-containing materials[P].US 20100111751A1, 2010.

[100]Fleming C, Wells J, Thomas KG.Process for recovering gold from thiosulfate leach solutions and slurries with ion exchange resin[P].US 6344068B1, 2002.

[责任编辑:徐明忠]

Preparation, detection and application of polythionates

LI Guofang1,2,ZHANG Fuqiang2

(1.College of Chemical Engineering,China University of Mining and Technology,Xuzhou221008,China;2.School of Chemical & Engineering, Shangqiu Normal University, Shangqiu 476000,China)

Abstract:Abstract Polythionates, intermediates in the oxidation process of sulfur compounds to sulphate, play important role in different fields of chemistry as well as that of chemical technology and biology, and investigation of different reactions of polythionates has been living its renessaince nowadays.Based on recent work of our research group, the progress of polythionates related preparation, detection and application is reviewed.And the key to promote the research of polythionates is to synthesize high purity products and to develop rapid detection method for polythionates.We focus on analyzing the research status of polythionates covering fundamental and applied research and point out that the reaction system of existing fundamental research related polythionates, in comparison to the fact of its practical application, tends to be too simple and needs to be branched out to the area of research.Potential new directions, furthering fundamental research based on real-time observation, used for antiseptics, green selective reducing agent of organic matters, and recovering precious metals from materials, in this area of research are highlighted.

Key words:polythionates; preparation; detection; application

中图分类号:O612.6

文献标识码:A

文章编号:1672-3600(2016)03-0033-07

作者简介:李国防(1970-),男,河南睢县人,商丘师范学院副教授,在读博士.主要从事抗菌材料制备与应用的研究.

基金项目:国家自然科学基金资助项目(21271125)

收稿日期:2015-12-01

猜你喜欢
合成应用检测
“一元一次不等式组”检测题
“一元一次不等式”检测题
“不等式”检测题
综合化学实验设计:RGO/MnO复合材料的合成及其电化学性能考察
考试周刊(2016年85期)2016-11-11 02:09:06
八种氟喹诺酮类药物人工抗原的合成及鉴定
满文单词合成系统的设计
科技视界(2016年18期)2016-11-03 00:34:31
GM(1,1)白化微分优化方程预测模型建模过程应用分析
科技视界(2016年20期)2016-09-29 12:03:12
煤矿井下坑道钻机人机工程学应用分析
科技视界(2016年20期)2016-09-29 11:47:01
气体分离提纯应用变压吸附技术的分析
科技视界(2016年20期)2016-09-29 11:02:20
会计与统计的比较研究