丁文溪
【摘 要】对化工设备H2S应力腐蚀破坏破裂状态破裂机理进行研究、试验和检验,提出了确保设备运行质量行之有效的预防措施方案,取得了良好的实际效果。
【关键词】化工设备;应力腐蚀;预防
0 前言
在石油化工行业,设备的腐蚀一直是影响生产装置正常运行的重要问题。由于石油化工工艺形成的特殊工况条件,设备承受着高温、高压下腐蚀性介质的侵蚀,尤其是近年来原油含硫高、酸值高的趋势,原油性质的劣化更加重了石油化工装置设备的腐蚀。因此,采取有效的防护措施来解决石油化工生产中的设备腐蚀问题,石油工业生产中原油内含硫物质的增多,氢损伤对石油化工设备的破坏越来越严重,实现生产安全与设备长周期运行,防止湿硫化氢应力腐蚀的是设备防腐的重中之重。人们为提高钢材防腐品质进行了大量研究和开发. 但迄今为止,在世界范围内,还没有一种钢在硫化氢环境中对硫化氢应力腐蚀是完全免疫的. 应力腐蚀不同于一般性腐蚀而引起的机械破损,也不是使设备大面积减薄,而是在设备的某一局部区域产生,其破坏过程遵循下述规律:潜伏期——裂纹出现期——裂纹扩展期——直至断裂,这种破坏带有较大的突然性,较难预测。应力腐蚀的产生,必须具备以下条件:
(1)存在腐蚀环境:介质中含有液相水和H2S,且H2S浓度越高,应力腐蚀引起的破裂倾向越大;H2S应力腐蚀破裂一般只发生在酸性溶液中,pH<6容易发生应力腐蚀破裂;温度为0~65℃。
(2)结构材料中(管壁及其焊缝、接头等)必须存在应力。
(3)材料同腐蚀环境的相互搭配,如湿H2S对高强度钢的应力腐蚀。
1 H2S对设备的应力腐蚀
我国油气资源多数具有高硫、高H2S 的特征,一些油气的H2S 含量在1.2-7.8g/m3,还含有CO2在1.25-4.57g/m3,设备运行中主要的破坏是氢致开裂和H2S应力腐蚀断裂,这是两种最基本的“氢脆”形式 在酸性环境中,腐蚀的产生往往伴随有原子氢,当阴极反应是析氢反应时,可以用这个现象来测量腐蚀速度。此外,阴极反应产生的氢本身能引起生产设备的破坏,析氢产生的问题包括氢脆、应力破裂和氢鼓泡,在集输管线以及某些化工过程装置会发生这类问题。
1.1 关于氢致开裂(HIC)
管线用钢在含有H2S、CO2及水份的油气环境中,因H2S 解离和H2CO3腐蚀而产生的氢,侵入钢内并在非金属夹杂物和偏析带聚集,从而形成氢致鼓泡,以致开裂。这种氢脆形式通常出现在中低等级强度的管线中,开裂方向平行于管面。大量的研究表明,影响因素包括环境因素和材料因素,在环境因素中,H2S分压是最为重要的,并受碳酸根和氯离子等介质的pH 值制约。在材料因素中,主要是碳含量,硫、磷的偏析以及非金属夹杂物、组织类型。将钢中Mn 含量控制在最低水平上,降低钢中形成夹杂物的硫、氧含量,并有效控制夹杂物的形状。
1.2 H2S应力腐蚀断裂(SSCC)
H2S在水溶液中离解为S2-和H+,阳极反应放出的电子被阴极反应的H+所吸收,析出氢在钢的夹杂物、偏析带、位错及其它预先存在的缺陷处富集、形成氢分子,在外应力的作用下发生开裂,这种断裂的形式与氢致开裂有共同点,也有不同的地方,需要具备三个基本条件,足够的氢分压,一定的应力状态、以及敏感的金相组织(微观精细结构),因此SSCC 破坏还具有开裂方向垂直于管面并有迟延的特征。
2 预防措施
2.1 合理选材
H2S应力腐蚀破裂与材料的强度、硬度、化学成分及金相组织有密切关系。
2.1.1 强度与硬度
随着材料的强度提高,应力腐蚀破裂的敏感性也在提高,材料强度级别越高越容易发生破裂,除了强度外,硬度也是重要因素,并且存在着不发生破裂的极限硬度值。实践证明,当材料的HB≤235(HRC≤22,HV10≤247),采用含Mn量在1.65%以下碳素结构钢及低合金高强度钢制管线,经焊后消除应力热处理后,一般不易发生H2S应力腐蚀破坏。
2.1.2 化学成分
对应力腐蚀裂纹的产生而言, Ni、Mn、Si、S、P等属于有害元素,在管道选材时要限制其含量。元素Ni容易同H2S水溶液生成一种特殊的硫化物,该硫化物组织疏松,极易使氢渗透而出现裂纹,一般控制在0.5%以下使用;Mn、Si元素含量偏高时,焊缝及热影响区的硬度偏高,同时Si元素易偏析于晶粒边界,会助长晶间裂纹的形成。元素S、P易形成非金属夹杂物,容易引起层状撕裂裂纹和焊道尾部裂纹,上述裂纹同应力腐蚀裂纹相重合后能加速裂纹扩展。
Cr、Mo、Ti、B等是防止H2S应力腐蚀有益的元素,钢中加入少量的Cr、Mo元素能起到细化晶粒的作用,Mo元素在调质或正火钢板的热处理中能生成碳化物,防止有害元素Si、P的晶间偏析,元素V、Ti、B可以提高钢材的相变点温度,提高钢板的淬透性,易于形成晶粒细化的回火马氏体组织。HGJ15-89中规定:在湿H2S应力腐蚀环境中使用的油气管道用碳钢及低合金钢(包括焊接接头)的化学成分应符合下列要求:(1)母材;Mn≤1.65%,Ni≤1%(尽可能不含),Si≤1.0%;(2)焊缝金属:C≤0.15%,Mn≤1.6%,Si≤1.0%,Ni≤1.0%(尽可能不含)。
2.2 降低焊缝及热影响区的硬度,减少壳体及焊缝区的残余应力,能有效防止应力腐蚀裂纹
降低焊缝区的硬度首先要从焊接开始,除了焊前预热外,应适当加大管道上上环焊缝的焊接线能量,因为线能量增大,降低焊缝区冷却速度和硬度,稳定金相组织。近几年来对许多在H2S应力腐蚀管道检查中发现环焊缝附近(气相区)出现的裂纹,多数是由于输入线能量小,冷却速度快而引起硬度增加所至,同时,由于该处壳壁吸附的水蒸汽凝聚成水珠,同H2S气体进行电化学反应,大量的氢存在,又加速了该部位裂纹的扩展。
2.3 降低介质的腐蚀性
为控制油气中的H2S含量,生产企业应按照有关质量标准的规定,研制并制定新的脱硫、脱水工艺,最大限度的减少硫化氢含量。使硫化氢分压小于0.00035 Mp,提高介质的碱度以减少吸氢量和减缓腐蚀速率,或加缓蚀剂也可延缓其腐蚀速率。
【参考文献】
[1]化学工业部设备设计中心站.化工设备标准手册[M].金属材料.上下册,1996.
[2]中国腐蚀与防护学会,主编.腐蚀总论[M].化学出版社.
[3]A.Brown,等.管线用钢氢致破裂的机制 1983 年低合金高强度钢工艺和应用[D].国际会议论文,1993年10月 美国费城.
[责任编辑:汤静]