胡梦芸,门福圆,张颖君,孙丽静,刘 茜,李倩影,刘富爽,李 辉
(河北农林科学院粮油作物研究所,河北石家庄 050035)
水氮互作对作物生理特性和氮素利用影响的研究进展
胡梦芸,门福圆,张颖君,孙丽静,刘 茜,李倩影,刘富爽,李 辉
(河北农林科学院粮油作物研究所,河北石家庄 050035)
摘要:水、肥是作物生长发育过程中既相互促进又相互制约的两个因子。随着农业水资源紧缺日趋严峻和不合理施肥造成的污染范围扩大,减少作物灌溉用水、提高肥料利用效率以实现农作物稳产高产的理论和技术研究受到广泛重视。本文就水氮互作对作物生长发育、光合特性、产量和氮素利用的影响、水氮互作对作物响应干旱胁迫的调控研究现状进行了综述,并对目前水氮互作研究中存在的问题进行了分析和讨论。
关键词:水氮互作;生长发育;氮素利用;干旱
水资源短缺是目前制约农业生产的一个全球性问题,干旱严重影响了作物的生长发育,不仅造成严重的减产,甚至限制了作物的更广泛分布,使生态环境日益恶化。提高作物的抗旱性是我国发展节水农业的关键,也是应对水资源危机和保障粮食生产安全最经济和最有效的措施之一。氮素是影响作物生长和产量形成的必需元素,也是旱地土壤容易缺乏的营养元素。旱地营养物质的缺乏不仅制约水分潜势的发挥,导致粮食减产,也限制水分的利用效率。国际干旱农业研究中心已将“土壤水分和养分研究” ( SWAN,soil water and nutrient ) 列入农作制度研究项目,并指出,气候、土壤养分和水分是农业生产力的决定因素;水、肥是影响旱地农业生产的主要胁迫因子,也是一对联因互补、互相制约的因子,研究作物生长过程中水与肥的相互关系及对作物生长的影响,对农业生产力的提高具有重要意义[1]。中国是世界氮肥生产、消费大国,氮肥农田利用率低。只有进行协调科学的水肥投入,才能产生明显的协同和互补效果,这正是水分和养分之间的互作效应[2]。水肥之间的耦合效应也是旱地“以肥调水”、“以水促肥”的理论基础。因此,重视水肥之间的耦合与互作调控关系,使其表现出最大的增产效应,是解决半干旱地区种植业持续发展的重要前提和基础。
1氮素水平对水分胁迫下作物生长的影响
水分亏缺条件下,适量施氮能促进玉米根系生长,增加根系吸收面积和活力,降低其细胞膜受伤害率,减轻因水分亏缺所产生的不良影响[3];而过多施氮对抗旱性意义并不大,甚至表现出负效应[4]。张凤翔等[5]研究认为,在减少土壤水分供应的条件下,增施氮肥能显著增加水稻根系干重并促进根系的深扎。对不同抗旱类型的花生品种研究表明,中度干旱胁迫条件下增施氮肥,能改善花生根系的生长,增加根系向深层土壤的扩展,明显增加40 cm 以下土层内的根系生物量、根长和根系表面积,从而增加根系对下层土壤水分的吸收利用,提高了根系伤流强度,使产量提高[6]。重度干旱胁迫则会限制氮肥作用的发挥,重度干旱胁迫下增施氮肥,会导致玉米根系生物量和生理特性的下降,加重水分胁迫对根系生长的不良影响[3]。张岁岐和山 仑[7]对春小麦研究认为,中度干旱胁迫下施氮可促进小麦地上部的生长,表现为增大叶面积、促进植株的生长和干物质积累,从而减轻干旱造成的减产。根冠比对协调作物地上部和地下部的生长、吸水与失水平衡具有重要作用,不同水分条件下氮素供应水平对根冠比的影响不同。低水平的氮供应会使植物根系吸收表面积增大、光合产物向根系转运分配增多、向地上部分输出的减少,从而导致根冠比较大[8];过多施氮,会导致根系生长不良,不能更好地满足地上部养分和水分的供应[9]。杨建昌等[10]认为水分胁迫下氮素对地上部生长的促进作用大于对根系的促进作用,使水稻根冠比减小。随着氮肥用量的增加,冬小麦根冠比减小,不同水分条件下表现趋势一致;水氮通过调控地上-地下干物质分配而影响作物产量和水分利用效率,在水分亏缺条件下,增施氮肥会降低小麦根冠比,更利于地上干物质的积累和经济产量的形成[11]。但李 英等[12]认为,施氮使小麦的根冠比增大。
2水分胁迫下氮素营养对作物光合作用和产量的影响
氮素是植物体内叶绿素、蛋白质、核酸和部分激素的重要组分。施氮一般能促进植物叶绿素的合成,是调控植物叶片光合能力的最有效因子之一,对叶片叶绿素含量、光合速率、暗反应主要酶活性以及光呼吸等有直接或间接的影响[13]。适量施用氮肥可提高光合叶片的含氮量、光合速率,延长叶片功能期。Makino等[14]对小麦等作物研究发现,叶片中超过一半的氮被分配到光合器官。植物的光合能力与单位叶面积的氮含量正相关[15]。Llorens等[16]研究认为,植物响应干旱胁迫而导致光合作用和RuBPCO酶活性的下降与较低的叶片氮含量相关。在供水条件下,适量增施氮肥有利于作物光合功能叶片中RuBP羧化酶活性的增加及叶绿素a荧光动力学参数Fv/F0和Fv/Fm的提高,从而有助于光合产物的积累和粒重的提高[17-18]。在干旱胁迫下,适量施用氮肥可以通过增加叶面积指数和光合色素含量来提高植物叶片的光合性能,减轻干旱胁迫对PSΠ造成的光损伤,促进植株的生长发育,减轻因水分亏缺对植物产量的影响[19]。增施氮肥可以部分补偿因干旱胁迫造成的植物水分利用率和产量下降[20-21]。过量施用氮肥会导致植物的光合特性向不利方向变化,并引起产量的下降。不同施氮水平下对旱地和水地抗旱小麦品种的光合和生长的研究表明,叶片的光合速率和气孔导度随施氮量的增加呈先升高后降低之势,表明适量施氮对提高植物气孔的光合气体交换能力具有积极意义。上官周平等[22]的研究表明,培肥土壤和增施肥料可明显改善小麦叶片光合速率和水分状况,有利于冬小麦在灌浆后期维持较大的光合叶面积,并延缓叶片衰老,从而改善籽粒灌浆特性、增加穗粒数。李银坤等[23]对黄瓜的研究也表明,在非节水灌水条件下,施氮量的增加有助于叶片光合速率和蒸腾速率的提高;在灌水量减少30%、施氮量减少50%的组合处理中,黄瓜产量达到最高,而叶片光合速率与非节水灌溉条件下无显著差异。棉花在干旱胁迫下,适量施氮(240 kg·hm-2)的棉株叶片具有较高的叶绿素含量、PSⅡ最大光化学效率和电子传递速率,因而其净光合速率较高;而过量施氮(480 kg·hm-2)使棉株受旱程度严重,PSⅡ最大光化学效率、PSⅡ量子产量、电子传递速率与光化学猝灭系数较低,不利于棉株光合性能的提高,最终不能形成高产[24]。综上所述,水分亏缺条件下,适量供应氮素可提高植物叶片光合能力,对提高小麦抗旱性和旱地作物的产量具有积极意义。不同作物中关于水氮互作对产量的影响研究结果不尽一致。谢志良等[25]对棉花的研究表明,干旱胁迫限制了氮素的增产效果;水分充足条件下,增施氮素的增产效果显著。土壤轻度干旱条件下,水氮耦合对大豆产量的影响表现为限制性的协同作用,但重度干旱时,水氮耦合不起作用,过量施氮甚至会使产量明显下降[26]。在水稻中也有相同的研究结果[10,27]。在正常生长条件下,供水对小麦光合特性和籽粒产量的影响大于氮肥,而增加施氮量却能明显弥补水分亏缺造成的不利影响;适度水分亏缺与正常施氮水平为最优的水氮互作模式,可使黄淮冬麦区小麦水分利用效率和产量均达到最高[28]。
3不同氮素水平对作物响应干旱胁迫的调控
增施氮肥能提高干旱胁迫下小麦叶片抗氧化酶的活性,提高保护酶系的活性,降低过氧化物的含量,并显著提高干旱胁迫下小麦叶片的保水能力,减缓旗叶的衰老,从而提高其对干旱的适应能力[29-30]。李秧秧和邵明安[4]研究认为,适量增施氮素能促进小麦根系的生长发育,提高总根重和深层土壤的根重,增强根系对土壤水肥的吸收,改善根系的水分关系,提高了细胞膜的稳定性,因而有助于增强小麦的抗旱性。也有研究认为施氮可提高小麦对干旱胁迫的敏感性,随作物受干旱胁迫程度加剧,施氮使小麦光合能力下降[31]。旱地条件下合理施氮,有助于作物扩大根系延伸范围,显著增加根系活力和根系活跃吸收面积,从而增强根系的吸水能力,根系耐脱水能力和维持膨压的能力都较强。这种促根效应是“以肥调水,以水促肥”的机理所在[32]。梁银丽等[33]发现在干旱胁迫条件下,适量增施氮肥能促进小麦幼苗根系的生长,而过量施氮则表现为负效应。水分胁迫下适量施氮有利于棉花和小南瓜根系生物量的积累,可增加总根重和深层土壤中的根重,但根系表面积随施氮量增加逐渐降低,这是因为高施氮量引起的水分入渗深度的增加直接影响作物根系的生长和分布[25,34]。由此说明氮营养对改善小麦的耐旱性具有重要意义。氮素对抗旱性的影响是一个较为复杂的问题,在干旱情况下,单方面提高氮肥的施用量对提高作物的抗旱性是不利的。气孔导度反映了单位面积的蒸腾失水情况和气孔对干旱的敏感性。在水分胁迫条件下,随水分胁迫程度的加剧,增加施氮量,则小麦叶片的气孔导度下降,且显著低于低氮水平下小麦叶片的气孔导度[35]。
4水氮互作对作物氮代谢的影响
4.1水氮互作对氮代谢关键酶活性的影响
4.2水分胁迫对植物固氮和氮素利用率的影响
中国是第一大氮肥消费国,氮肥消耗量占世界氮肥总量的30%,与发达国家相比,我国氮肥利用率过低,不及发达国家的一半。水分胁迫是限制植物固氮的一个主要因素。樊小林等[46]对不同抗旱性小麦材料研究表明,同一基因型小麦的籽粒、秸秆和地上部吸氮量随于旱胁迫加剧而减小;高抗旱基因型小麦不论施氮量多少,其吸氮量最小,中抗、低抗小麦吸氮量相对较多,低氮、高氮处理下中抗小麦吸氮量最多。氮肥和供水以及品种间的有机配合,对小麦产量和吸氮量具有明显的正效应[47]。Sinclair等[48]研究表明,干旱胁迫不利于小麦植株对氮素的吸收,随着供水量和灌溉次数的增加,小麦开花前后植株对氮素的吸收量显著增加。参与干旱胁迫下植株固氮的机制可能主要有碳短缺、根瘤碳代谢、氧限制和氮代谢物积累的反馈调控等。Serraj 等[49]研究认为干旱胁迫降低了作物木质部运输能力,导致氨基酸输出受损,引起根瘤中氮化合物的积累,从而局部通过N-反馈调控植株的固氮作用。Gil-Quintana等[50]研究认为,干旱导致植株不同组织中氨基酸的积累程度不同,是植物对干旱逆境的一种响应机制,大量氮化合物的积累会引起N-反馈调控,这种N-反馈参与调控干旱胁迫下固氮抑制过程。众多研究表明,干旱胁迫程度越大,小麦吸氮量越小,干旱胁迫限制土壤养分供应的同时,也限制了作物对养分的吸收利用。适度水分胁迫有利于氮素向穗部的转运和分配,而供水量过多或过少,则导致氮素过多分配至茎、叶、鞘等营养器官,均不利于产量的形成。氮肥吸收利用率与水分的相关性显著,轻度的水分亏缺有利于水稻氮肥吸收利用率的提高[51]。从氮素利用效率看,随水分胁迫加重,氮素利用效率降低。适度水分胁迫,有利于节约灌溉用水,并保持较高的氮素利用率,获得高产、高效的结果[52]。
4.3干旱胁迫下氮代谢与碳代谢的关系
作物产量和品质是碳氮代谢协调转化的结果,研究鉴定碳氮代谢协调转化水平的评判指标,不仅可以从植物养分高效利用角度为作物高产高效提供理论依据,还能很好的解释作物因过量施氮或缺氮所导致的贪青晚熟或早衰等碳氮代谢协调转化不当所引起的产量和品质不理想的现象。目前有关作物达到最佳生长状况的碳、氮代谢互作调控机制研究,以及合理的水氮耦合模式下作物碳氮代谢的平衡关系和代谢强度研究较缺乏。因此,探究不同水氮互作模式下不同产量水平的品种在不同生育期的碳氮代谢协调转化规律,在实践生产中,通过农业措施来调控碳氮代谢,研究碳氮代谢在作物生长中的协调互作效应,将其用于指导农业节水灌溉、合理施肥和提高水肥的利用效率,不仅是理论研究所需,在生产实践中也具有重要的指导意义。
5水氮互作效应
水氮对作物籽粒产量的调控存在互补效应,增施氮肥可补偿因灌水不足导致的籽粒产量降低[65-66]。尹光华等[67]对春小麦的水肥耦合效应研究表明,在半干旱区,水、肥单因子对产量的影响显著,水的影响大于肥;水肥耦合的产量效应显著,适量水肥组合的效应大于高水高肥和低水低肥组合;水肥互作效应最大的为氮与水的耦合。水、氮对水稻的氮吸收、利用及产量有显著互作效应,适度的水分胁迫,能提高水稻的氮素利用率,减少土壤氮损失[68]。王小燕等[69]研究表明,小麦植株吸氮量、籽粒产量、籽粒蛋白质含量的水氮互作效应均达显著水平;灌溉量与施氮量对植株吸氮量、籽粒产量、籽粒蛋白质含量存在互作效应,且灌溉量起主导作用,施氮量对灌溉量有补偿效应。因此,在小麦高产优质栽培过程中,可以通过调节施氮量、灌水量与灌水时期,实现水氮耦合效应,在促进植株对肥料氮吸收的同时,获得较高的产量,在提高氮肥生产效率的同时也提高了作物的水分利用率。李生秀和李世清[70]研究认为,水分亏缺条件下,增施氮肥可使植物叶片气孔密度变小、蒸腾降低、作物产量和水分利用效率提高,有利于增强植物的抗旱性。水分胁迫条件下,通过增施氮肥可以促进作物对深层土壤水分的利用,从而减少因水分不足对小麦产量造成的影响,起到“以肥调水”的作用[71-72]。在土壤氮肥水平较高的条件下,结实期进行适当的土壤水分胁迫,能增加水稻籽粒灌浆速率,达到节水而不减产的目的[73]。沈荣开等[74]对冬小麦和夏玉米的水肥耦合研究结果表明,施氮效应与土壤水分状况密切相关,在减少灌水条件下,肥料的增产效益十分显著,但氮肥贡献率随施肥量的增加呈递减的趋势。水分胁迫会导致水解酶类活性增强,使蛋白质与氨基酸的比率或蛋白质含量减少,而增施氮素可使缺水植株的蛋白酶、肽酶及核糖核酸酶活性降低,维持较高的蛋白质水平和NR活性,从而增加了植株总吸氮量和叶绿素含量,从而增强作物耐受水分胁迫的能力[46,75]。总之,水可促氮,氮可调水,不同的作物只有配以适合的水、氮比例,才能获得较高的产量和较好的品质。
6结束语
土壤水肥是影响作物生长发育的重要因子,深入研究水肥互作效应对作物水肥吸收和产量形成的影响及其交互效应,可提高水肥利用效率,减少环境污染,为作物高产、优质和高效栽培提供重要理论依据。干旱是制约干旱半干旱地区农业发展的重要限制因素,施肥是农业生产的关键技术措施,水肥具有明显的耦合关系,合理施用氮肥可调节作物对水分的利用率,科学的供水也能明显提高肥料的增产作用和利用效率。因此,合理的水肥措施,可最大限度地发挥水肥耦合优势在农业生产中的作用,对保护农业生态环境,实现以水养肥、以肥调水,充分、高效利用农业资源具有重要意义;对解决农业水资源缺乏,肥料利用率低,环境污染严重等根本性问题具有一定指导作用。
目前有关作物水氮互作研究更多关注的是水氮互作模式下氮的代谢与利用,关于水肥互作调控作物高产高效的作用机制、对碳代谢、转运和分配的影响以及对作物品质的影响等相关研究较为少见。有关水氮互作条件下氮高效品种是否能节水抗旱、抗旱的品种是否营养高效、抗旱节水与营养高效能否协调发展等一序列问题还有待深入研究。因此,有必要进一步研究水氮互作对作物产量形成、碳氮代谢机理以及作物品质的影响,以明确水氮互作的调控机理。利用养分高效的作物品种研究其抗旱节水性,利用抗旱品种研究其氮素代谢、吸收利用效率,明确筛选和培育水肥高效作物品种的方法,对当前减少农业面源污染、提高农业资源利用效率将具有深远的意义,也将为利用基因工程手段改良作物高产高效提供理论基础和实践意义。
参考文献:
[1]邓世媛,陈建军.干旱胁迫下氮素营养对作物生长及生理代谢的影响[J].河南农业科学,2005(11):24-26.
Deng S Y,Chen J J.Effects of nitrogen on physiological metabolism and crop growth under drought stress [J].JournalofHenanAgriculturalSciences,2005(11):24-26.
[2]李生秀.土壤植物营养研究文集[M].西安:陕西科学技术出版社,1999:1-36.
Li S X.Study on Soil and Plant Nutrition [M].Xi’an:Shaanxi Science and Technology Press.1999:1-36.
[3]宋海星,李生秀.水、氮供应和土壤空间所引起的根系生理特性变化[J].植物营养与肥料学报,2004,10(1):6-11.
Song H X,Li S X.Changes of root physiological characteristics resulting from supply of water,nitrogen and root growing space in soil [J].PlantNutritionandFertilizerScience,2004,10(1):6-11.
[4]李秧秧,邵明安.小麦根系对水分和氮肥的生理生态反应[J].植物营养与肥料学报,2000,6(4):383-388.
Li Y Y,Shao M A.Physio-ecological response of spring wheat root to water and nitrogen [J].PlantNutritionandFertilizerScience,2000,6(4):383-388.
[5]张凤翔,周明耀,周春林,等.水肥耦合对水稻根系形态与活力的影响[J].农业工程学报,2006,22(5):197-200.
Zhang F X,Zhou M Y,Zhou C L,etal.Effects of water and fertilizer coupling on root morphological characteristics and activities of rice [J].TransactionsoftheCSAE,2006,22(5):197-200.
[6]丁 红,张智猛,戴良香,等.水氮互作对花生根系生长及产量的影响[J].中国农业科学,2015,48(5):872-881.
Ding H,Zhang Z M,Dai L X,etal.Effects of water and nitrogen interaction on peanut root growth and yield [J].ScientiaAgriculturaSinica,2015,48(5):872-881.
[7]张岁岐,山 仑.氮素营养对春小麦抗旱适应性及水分利用的影响[J].水土保持研究,1995,2(1):31-35.
Zhang S Q,Shan L.Effects of nitrogen nutrition on the drought adaptation and water use of spring wheat [J].ResearchofSoilandWaterConservation,1995,2(1):31-35.
[8]Passioura J B.Roots and drought resistance [J].AgriculturalWaterManagement,1983,7:265-280.
[9]张大勇,姜新华,赵松龄,等.半干旱区作物根系生长冗余的生态学分析[J].西北植物学报,1995,15(5):110-114.
Zhang D Y,Jiang X H,Zhao S L,etal.An ecological analysis of growth redundancy in root systems of crops under drought conditions [J].ActaBotanicaBoreali-OccidentaliaSinica,1995,15(5):110-114.
[10]杨建昌,王志琴,朱庆森.不同土壤水分状况下氮素营养对水稻产量的影响及其生理机制的研究[J].中国农业科学,1996,29(4):58-66.
Yang J C,Wang Z Q,Zhu Q S.Effects of nitrogen nutrition on rice yield and its physiological mechanism under different status soil moisture [J].ScientiaAgriculturaSinica,1996,29(4):58-66.
[11]王艳哲,刘秀位,孙宏勇,等.水氮调控对冬小麦根冠比和水分利用效率的影响研究[J].中国生态农业学报,2013,21(3):282-289.
Wang Y Z,Liu X W,Sun H Y,etal.Effects of water and nitrogen on root/shoot ratio and water use efficiency of winter wheat [J].ChineseJournalofEco-Agriculture,2013,21(3):282-289.
[12]李 英,陈培元,陈建军.水分胁迫下不同抗旱类型品种对氮素营养反应的比较研究[J].西北植物学报,1991,11(4):309-315.
Li Y,Chen P Y,Chen J J.Comparative study on responses to nitrogen nutrient of different drought resistance types of wheat under water stresses [J].ActaBotanicaBoreali-OccidentaliaSinica,1991,11(4):309-315.
[13]张旺锋,勾 玲,王振林,等.氮肥对新疆高产棉花叶片叶绿素荧光动力学参数的影响[J].中国农业科学,2003,36(8):893-898.
Zhang W F,Gou L,Wang Z L,etal.Effect of nitrogen on ChlorophyⅡ fIuorescence of leaves of high-yielding cotton in Xinjiang [J].ScientiaAgriculturaSinica,2003,36(8):893-898.
[14]Makino A,Osmond B.Effects of nitrogen nutrition on nitrogen partitioning between chloroplast and mitoehondria in pea and wheat [J].PlantPhysiology,1991,96:355-362.
[15]Walcroft A S,Whitehead D,Silvester W B.The response of photosynthetic model parameter to temperature and nitrogen eoneentration inPinusradiataD.Don [J].PlantCellEnvironment,1997,20:1338-1348.
[16]Llorens L,Péuelas J,Estiarte M.Ecophysiological responses of two mediterranean shrubs,Erica multiflora and Globularia alypum,to experimentally drier and warmer conditions [J].PlantPhysiology,2003,119:231-243.
[17]马冬云,郭天财,宋 晓,等.施氮对冬小麦旗叶RuBP羧化酶活性及叶绿素荧光参数的影响[J].西北植物学报,2010,30(11):2197-2202.
Ma D Y,Guo T C,Song X,etal.Effects of nitrogen fertilizer application on RuBP carboxylase activity and ChlorophyⅡ fluorescence parameters in flag leaves of winter wheat [J].ActaBotanicaBoreali-OccidentaliaSinica,2010,30(11):2197-2202.
[18]王仁雷,李 霞,陈国祥,等.氮肥水平对杂交稻汕优63剑叶光合速率和RuBP羧化酶活性的影响[J].作物学报,2001,27(6):930-934.
Wang R L,Li X,Chen G X,etal.Effect of N-fertilizer levels on photosynthetic rate and RuBP carboxylase activity in flag leaves of hybrid rice Shanyou 63 [J].ActaAgronomicaSinica,2001,27(6):930-934.
[19]Wu F Z,Bao W K,Li F L,etal.Effects of water stress and nitrogen supply on leaf gas exchange and fluorescence parameters of sophora davidii seedlings [J].Photosynthetica,2008,46(1):40-48.
[20]郭天财,冯 伟,赵会杰,等.水氮运筹对干旱型冬小麦旗叶生理性状及产量的交互效应[J].应用生态学报,2004,15(3):453-457.
Guo T C,Feng W,Zhao H J,etal.Interactive effect of irrigation and nitrogen application on physiological characteristics of flag leaf and grain yield of winter wheat in dry years [J].ChineseJornalofAppliedEcology,2004,15(3):453-457.
[21]Latiri S K,Nortcliff S,Lawlor D W.Nitrogen fertilizer can increase dry matter,grain production and radiation and water use efficiencies for durum wheat under semi-arid conditions [J].EuropeanJournalofAgronomy,1998,9:21-34.
[22]上官周平,刘文兆,徐宣斌.旱作农田冬小麦水肥耦合增产效应[J].水土保持研究,1999,6(3):103-106.
Shangguan Z P,Liu W Z,Xu X B.Interactive effects of water and fertilizer on yield of winter wheat in dryland [J].ResearchofSoilandWaterConservation,1999,6(3):103-106.
[23]李银坤,武雪萍,吴会军,等.水氮互作对温室黄瓜光合特征与产量的影响[J].中国生态农业学报,2010,18(6):1170-1175.
Li Y K,Wu X P,Wu H J,etal.Effects of water and nitrogen interaction on photosynthetic characteristics and yield of cucumber in greenhouse [J].ChineseJournalofEco-Agriculture,2010,18(6):1170-1175.
[24]刘瑞显,王友华,陈兵林,等.花铃期干旱胁迫下氮素水平对棉花光合作用与叶绿素荧光特性的影响[J].作物学报,2008,34(4):675-683.
Liu R X,Wang Y H,Chen B L,etal.Effects of nitrogen levels on photosynthesis and ChlorophyⅡ fluorescence characteristics under drought stress in cotton flowering and boll-forming stage [J].ActaAgronomicaSinica,2008,34(4):675-683.
[25]谢志良,田长彦.膜下滴灌水氮耦合对棉花干物质积累和氮素吸收及水氮利用效率的影响[J].植物营养与肥料学报,2011,17(1):160-165.
Xie Z L,Tian C Y.Coupling effects of water and nitrogen on dry matter accumulation,nitrogen uptake and water-nitrogen use efficiency of cotton under mulched drip irrigation [J].ScientiaAgriculturaSinica,2011,17(1):160-165.
[26]裴宇峰,韩晓增,祖 伟,等.水氮耦合对大豆生长发育的影响Ⅰ.水氮耦合对大豆产量和品质的影响[J].大豆科学,2005,24(2):106-110.
Pei Y F,Han X Z,Zu W,etal.Effect of water and nitrogen fertilizer coupling on growth and develop of soybeanⅠ.Effect of water and nitrogen fertilizer coupling on yield and quality of soybean [J].SoybeanSciene,2005,24(2):106-110.
[27]程建平,曹凑贵,蔡明历.不同土壤水势与氮素营养对杂交水稻生理特性和产量的影响[J].植物营养与肥料学报,2008,2:199-206.
Cheng J P,Cao C G,Cai M L.Effect of different nitrogen nutrition and soil water potential on physiological parameters and yield of hybrid rice [J].ScientiaAgriculturaSinica,2008,2:199-206.
[28]石珊珊,周苏玫,尹 钧,等.高产水平下水肥耦合对小麦旗叶光合特性及产量的影响[J].麦类作物学报,2013,3(3):549-554.
Shi S S,Zhou S M,Ying J,etal.Effects of water and fertilizer coupling on photosynthetic characteristics in flag leaves and yield of winter wheat under high yield condition [J].JournalofTriticeaeCrops,2013,3(3):549-554.
[29]Shangguan Z P,Shao M A,Ren S J.Effect of nitrogen nutrition on root and shoot relations and gas exchange in winter wheat [J].BotanicalBulletionofAcademiaSinica,2004,45(1):49-54.
[30]Bartels D,Sunkar R.Drought and salt tolerance in plants [J].CriticalReviewsinPlantSciences,2005,24(1):23-58.
[31]张绪成,上官周平.施氮对不同抗旱性小麦叶片光合及生长特性的影响[J].中国生态农业学报,2007,15(6):59-64.
Zhang X C,Shangguan Z P.Effects of application nitrogen on photosynthesis and growth of different drought resistance winter wheat cultivars [J].ChineseJournalofEco-Agriculture,2007,15(6):59-64.
[32]信乃诠,侯向阳,张燕卿.我国北方旱地农业研究开发进展及对策[J].中国生态农业学报,2001,9(4):58-60.
Xin N Q,Hou X Y,Zhang Y Q.Important progress on research development and countermeasures of dry land agriculture in North China [J].ChineseJournalofEco-Agriculture,2001,9(4):58-60.
[33]梁银丽,陈培元.水分胁迫和氮素营养对小麦根苗生长及水分利用效率的效应[J].西北植物学报,1995,15(1):21-25.
Liang Y L,Chen P Y.Effects of water stress and nitrogen nutritionon root and seedling growth and water use efficiency of wheat [J].ActaBotanicaBoreali-occidentaliaSinica,1995,15(1):21-25.
[34]刘世全,曹红霞,张建青,等.不同水氮供应对小南瓜根系生长、产量和水氮利用效率的影响[J].中国农业科学,2014,47(7):1362-1371.
Liu S Q,Cao H X,Zhang J Q,etal.Effects of different water and nitrogen supplies on root growth,yield and water and nitrogen use efficiency of small pumpkin [J].ScientiaAgriculturaSinica,2014,47(7):1362-1371.
[35]徐 璇,周 瑞,谷艳芳,等.不同水氮耦合对小麦旗叶主要光合特性的影响[J].河南大学学报(自然科学版),2010,40(1):53-57.
Xu X,Zhou R,Gu Y F,etal.Effect of water and nitrogen interaction on main photosynthetic characteristics in flag leaves of wheat[J].JournalofHenanUniversity(NaturalScience),2010,40(1):53-57.
[36]Lam H M,Coschigano K T,Oliveira I C,etal.The molecular-genetics of nitrogen assimilation into amino acids in higher plants [J].AnnualReviewPlantPhysiologyPlantMolecularBiology,1996,47:569-593.
[37]Chen S H,Kao C H.The rote of proteolytic enzymes in protein degradation during senesence of rice leaves [J].PhysiolPlant,1984,62:231-237.
[38]孙永健,孙园园,李旭毅,等.水氮互作下水稻氮代谢关键酶活性与氮素利用的关系[J].作物学报,2009,35(11):2055-2063.
Sun Y J,Sun Y Y,Li X Y,etal.Relationship of activities of key enzymes involved in nitrogen metabolism with nitrogen utilization in rice under water-nitrogen interaction [J].ActaAgronomicaSinica,2009,35(11):2055-2063.
[39]Xie Z J,Jiang D,Cao W X,etal.Effects of post-anthesis soil water status on the activities of key regulatory enzymes of starch and protein accumulation in wheat grains [J].JournalofPlantPhysiologyandMolecularBiology,2003,29(4):309-316.
[40]卢红芳,王晨阳,郭天财,等.灌浆前期高温和干旱胁迫对小麦籽粒蛋白质含量和氮代谢关键酶活性的影响[J].生态学报,2014,34(13):3612-3619.
Lu H F,Wang C Y,Guo T C,etal.Effects of high-temperature and drought stress on protein concentration and key enzyme activities in relation to nitrogen metabolism in wheat grains during the early stage of grain filling [J].ActaEcologicaSinica,2014,34(13):3612-3619.
[41]Singh K K,Ghosh S.Regulation of glutamine synthetase isoforms in two differentially drought-tolerant rice (OryzasativaL.) cultivars under water deficit conditions [J].PlantCellReports,2013,32:183-193.
[42]赵宏伟,马凤鸣,李文华.氮肥施用量对春玉米硝酸还原酶活性及产量的影响[J].东北农业大学学报,2004,35(3):276-281.
Zhao H W,Ma F M,Li W H.Study on the effects of quantity of nitrogen on the activity of nitric-revivification enzyme,yield and quality of spring maize [J].JournalofNortheastAgriculturalUniversity,2004,35(3):276-281.
[43]Xu Z Z,Yu Z W,Wang D,etal.Nitrogen accumulation and translocation for winter wheat under different irrigation regimes [J].AgronomyandCropScience,2005,191:439-449.
[44]曹翠玲,李生秀.水分胁迫下氮素对分蘖期小麦某些生理特性的影响[J].核农学报,2004,189(5):402-405.
Cao C L,Li S X.Effect of water stress and nitrogen on some physiological characteristics at tilling stage of wheat [J].ActaAgriculturaeNucleataeSinica,2004,189(5):402-405.
[45]王晓琴,袁继超,柯永培,等.水分胁迫对玉米幼苗氮素代谢的影响[J].四川农业大学学报,2004,22(1):23-25.
Wang X Q,Yuan J C,Ke Y P,etal.Effect of water-stress on nitrogen metabolism of maize seedling [J].JournalofSichuanAgriculturalUniversity,2004,22(1):23-25.
[46]樊小林,李 玲,何文勤,等.氮肥、干旱胁迫、基因型差异对冬小麦吸氮量的效应[J].植物营养与肥料学报,1998,4(2):131-137.
Fan X L,Li L,He W Q,etal.Effect of nitrogen fertilizer,water stress and the genotypes on nitrogen uptake of winter wheat [J].PlantNutritionandFertilizeScience,1998,4(2):131-137.
[47]李世娟,周殿玺,诸叶平,等.水分和氮肥运筹对小麦氮素吸收分配的影响[J].华北农学报,2002,17(1):69-75.
Li S J,Zhou D X,Zhu Y P,etal.Effects of water and nitrogen application on nitrogen uptake and distribution in wheat [J].ActaAgricuturaeBoreali-Sinica,2002,17(1):69-75.
[48]Sinclair T R,Pinter P J,Kimball B A,etal.Leaf nitrogen concentration of wheat subjected to elevated CO2and either water or N deficits [J].AgricultureEcosystems&Environment,2000,79:53-60.
[49]Serraj R,Vadez V,Sinclair TR.Feedback regulation of symbiotic N-fixation under drought stress [J].Agronomie,2001,21:621-626.
[50]Gilquintana E,Larrainza E,Arreselgor C,etal.Is N-feedback involved in the inhibition of nitrogen fixation in drought-stressed medicago truncatula [J].JournalofExperimentalBotany,2013,64(1):281-292.
[51]马红梅,谢英荷.水氮耦合对山西旱地冬小麦籽粒产量和氮吸收影响研究[J].灌溉排水学报,2011(2):140-142.
Ma H M,Xie Y H.Interactive effects of irrigation and nitrogen fertilizer on grain yield and nitrogen recovery of dryland winter wheat [J].JournalofIrrigationandDrainage,2011(2):140-142.
[52]石 岩,于振文,位东斌,等.土壤水分胁迫对冬小麦氮素分配利用及产量的影响[J].核农学报,1999,13(1):27-33.
Shi Y,Yu Z W,Wei D B,etal.Effects of soil water stress on nitrongen distribution utilization and yield in winter wheat [J].ActaAgriculturaeNucleataeSinica,1999,13(1):27-33.
[53]Halford N G,Hey S,Jhurreea D.Highly conserved protein kinases involved in the regulation of carbon and amino acid metabolism [J].JournalofExperimentalBotany,2004,55(394):35-42.
[54]Good A G,Shrawat A K,Muench D G.Can less yield more is reducing nutrient input into the environment compatible with maintaining crop production [J].TrendsinPlantScience,2004,9(12):597-605.
[55]Mcdowell N G.Mechanisms linking drought,hydraulics,carbon metabolism,and vegetation mortality [J].PlantPhysiology,2011,155(3):1051-1059.
[56]Gonzalez E M,Gordon A J,James C,etal.The role of sucrose synthase in the response of soybean nodules to drought [J].JournalofExperimentalBotany,1995,46,1515-1523.
[57]Ramos M L G,Gordon A J,Minchin F R,etal.Effect of water stress on nodule physiology and biochemistry of a drought tolerant cultivar of common bean (PhaseolusvulgarisL.) [J].AnnalsofBotany,1999,83:57-63.
[58]Cuellar S M,De L P,Arrieta M,etal.Relationship between carbohydrate partitioning and drought resistance in common bean [J].Plant,Cell&Environment,2008,31(10):1399-1409.
[59]Yang J C,Zhang J H,Wang Z Q,etal.Activities of starch hydrolytic enzymes and sucrose-phosphate synthase in the stems of rice subjected to water stress during grain filling [J].JournalofExperimentalBotany,2001,52:2169-2179.
[60]Praxedes S C,DaMatta F M,Loureiro M E G,etal.Effects of long-term soil drought on photosynthesis and carbohydrate metabolism in mature robusta coffee (Coffeacanephorapierrevar.kouillou) leaves [J].EnvironmentalandExperimentalBotany,2006,56(3):263-273.
[61]Robredo A,Pérez-López U,Miranda-Apodaca J,etal.Elevated CO2reduces the drought effect on nitrogen metabolism in barley plants during drought and subsequent recovery [J].EnvironmentalandExperimentalBotany,2011,71(3):399-408.
[62]Zhang Y H,Zhang G,Liu L Y,etal.The role of calcium in regulating alginate-derived oligosaccharides in nitrogen metabolism ofBrassicacampestrisL.var.TsenetLee[J].JournalofPlantGrowthRegulation,2011,64(2):193-202.
[63]Foyer C H,Valadier M H,Migge A,etal.Drought induced effects on nitrate reductase activity and mRNA and on the coordination of nitrogen and carbon metabolism in maize leaves [J].PlantPhysioogyl,1998,117(1):283-292.
[64]Xu Z Z,Zhou G S.Nitrogen metabolism and photosynthesis inLeymuschinensisin response to long-term soil drought [J].JournalofPlantGrowthRegulation,2006,25(3):252-266.
[65]郭天财,姚战军,王晨阳,等.水肥运筹对小麦旗叶光合特性及产量的影响[J].西北植物学报,2004,24(10):1786-1791.
Guo T C,Yao Z J,Wang C Y,etal.Effects of irrigation and fertilizer application regimes on photosynthetic characteristics of flag leaves and yield traits of wheat [J].ActaBotanicaBoreali-OccidentaliaSinica,2004,24(10):1786-1791.
[66]翟丙年,李生秀.冬小麦水氮配合关键期和亏缺敏感期的确定[J].中国农业科学,2005,38(6):1188-1195.
Zhai B N,Li S X.Study on the key and sensitive stage of winter wheat responses to water and nitrogen coordination [J].ScientiaAgriculturaSinica,2005,38(6):1188-1195.
[67]尹光华,刘作新,李桂芳.辽西半干旱区春小麦氮磷水耦合产量效应研究[J].农业工程学报,2005,21(1):41-45.
Ying G H,Liu Z X,Li G F.Effect of nitrogen,phosphorus and water coupling on spring wheat yield in semi-arid areas of western Liaoning province [J].TransactionsofTheChineseSocietyofAgriculturalEngineering,2005,21(1):41-45.
[68]王绍华,曹卫星,丁艳锋,等.水氮互作对水稻氮吸收与利用的影响[J].中国农业科学,2004,37(4):497-501.
Wang S H,Cao W X,Ding Y F,etal.Interactions of water management and nitrogen fertilizer on nitrogen absorption and utilization in rice [J].ScientiaAgriculturaSinica,2004,37(4):497-501.
[69]王小燕,于振文.不同施氮量条件下灌溉量对小麦氮素吸收转运和分配的影响[J].中国农业科学,2008,41(10):3015-3024.
Wang X Y,Yu Z W.Effect of irrigation rate on absorption and translocation of nitrogen under different nitrogen fertilizer rate in wheat [J].ScientiaAgriculturaSinica,2008,41(10):3015-3024.
[70]李生秀,李世清.施用氮肥对提高旱地作物利用土壤水分的作用机理和效果[J].干旱地区农业研究,1994,12(1):38-46.
Li S X,Li S Q,Gao Y J.The mechanism and effects of N fertilization in increasing water use efficiency [J].AgriculturalResearchintheAridAreas,1994,12(1):38-46.
[71]陈新红,刘 凯,王志琴,等.水稻水氮互作效应与产量模型研究[J].西北农林科技大学学报(自然科学版),2006,34(9):141-148.
Chen X H,Liu K,Wang Z Q,etal.Studies on interactions between soil moisture and nitrogen and yield models in rice [J].JournalofNorthwestSci-TechUniversityofAgricultureandForestry(NaturalScienceEdition),2006,34(9):141-148.
[72]王国骄,张 雯,候立白.水氮配合对春小麦产量和品质的影响[J].耕作与栽培,2005,19(3):24-26.
Wang G J,Zhang W,Hou L B.Effects of water and nitrogen on yield and quality of spring wheat [J].TillageandCultivation,2005,19(3):24-26.
[73]王 维,张建华,杨建昌.水分胁迫对贪青迟熟水稻茎贮藏碳水化合物代谢及产量的影响[J].作物学报,2004,30(3):196-204.
Wang W,Zhang J H,Yang J C.Effect of water stress on metabolism of stored carbohydrate of stem and yield in rice grown under unfavorable delayed senescence [J].ActaAgronomicaSinica,2004,30(3):196-204.
[74]沈荣开,王 康,张瑜芳,等.水肥耦合条件下作物产量、水分利用和根系吸氮的试验研究[J].农业工程学报,2004,30(3):196-204.
Shen R K,Wang K,Zhang Y F.Field test and study on yield,water use and N uptake under varied irrigation and fertilizer in crops [J].TransactionsofTheChineseSocietyofAgriculturalEngineering,2001,17(5):35-38.
[75]康玲玲,魏义长,张景略.水肥条件对冬小麦生理特性及产量影响的试验研究[J].干旱地区农业研究,1998,16(4):21-28.
Kang L L,Wei Y C,Zhang J L.Effects of soil moisture and fertilizer on physiological property and yield of winter wheat [J].AgriculturalResearchintheAridAreas,1998,16(4):21-28.
Researche Progress on Water-nitrogen Interaction and Its Effects on Crop Growth and Utilization of Nitrogen
HU Mengyun,MEN Fuyuan,ZHANG Yingjun,SUN Lijing,LIU Qian,LI Qianying,LIU Fushuang,LI Hui
(Institute of Cereal and Oil Crops,Hebei Academy of Agricultural and Forestry Sciences,Shijiazhuang,Heibei 050035,China)
Abstract:Water and fertilizer are the most limiting factors in agricultural production in most parts of the world. At present,the shortage of agricultural water resources and the overuse of fertilizer caused the expansion of pollution. It is more important to reduce the crop irrigation water and improve the utilization of fertilizers to achieve the high and stable yield of crop. This report reviewed the researches in water and nitrogen interaction,effects of water and nitrogen interaction on crop growth and development,photosynthetic characteristic,yield and water and nitrogen coupling on utilization rate of nitrogen in crops,and the regulatory effects of water and nitrogen coupling on acclimating to water deficit. According to the actual demand,reasonable water and fertilizer coupling mode can be established,thereby improving the utilization efficiencies of water and fertilizer.Problems in current research of water and nitrogen interactions are discussed and prospected.
Key words:Water-nitrogen interaction;Growth and development;Nitrogen utilization;Drought stress
中图分类号:S512.1;S318
文献标识码:A
文章编号:1009-1041(2016)03-0332-09
通讯作者:李 辉(E-mail:zwslihui@163.com)
基金项目:国家转基因生物新品种培育重大专项(2015ZX08002-005);河北省自然科学基金项目(C2013301057);河北省现代农业产业技术体系小麦创新团队项目;河北省应用基础研究计划重点基础研究项目(13966305D)
收稿日期:2015-11-06修回日期:2015-12-08
网络出版时间:2016-03-01
网络出版地址:http://www.cnki.net/kcms/detail/61.1359.S.20160301.1342.022.html
第一作者E-mail:ziren80@163.com