彭士明,李云莉,2,施兆鸿,高权新,张晨捷,王建钢
(1.中国水产科学研究院东海水产研究所,上海 200090;2.上海海洋大学水产与生命学院,上海 201306)
海水鱼类亲体必需脂肪酸营养的研究进展
彭士明1,李云莉1,2,施兆鸿1,高权新1,张晨捷1,王建钢1
(1.中国水产科学研究院东海水产研究所,上海 200090;2.上海海洋大学水产与生命学院,上海 201306)
脂肪酸营养特别是其中的必需脂肪酸在海水鱼类生殖调控方面具有重要的生理作用。饲料中二十碳五烯酸(EPA)、二十二碳六烯酸(DHA)以及花生四烯酸(ARA)含量在调控海水鱼类性腺发育、排卵、孵化率及仔鱼质量等方面作用显著。本文主要从必需脂肪酸需求量、对繁殖性能影响、对机体脂肪酸存储影响及对内分泌调控作用4个方面归纳总结了海水鱼类亲体脂肪酸营养的研究概况,并重点分析探讨了在内分泌调控方面的研究进展,同时对后续的研究重点提出了一些建议。
必需脂肪酸;海水鱼类;亲体;研究进展;展望
脂肪酸营养在海水鱼类生殖调控方面具有重要的生理作用,目前,脂肪酸营养已成为鱼类生殖营养学研究中的热点内容之一[1-2]。研究证实,多不饱和脂肪酸(PUFA)特别是长链多不饱和脂肪酸(LC-PUFA)对海水鱼类的正常繁殖、生长及发育均起着非常重要的作用,是其生命过程中不可缺少的营养因子[3-4]。已有的针对海水鱼类必需脂肪酸的研究报道主要集中在二十碳五烯酸(EPA)、二十二碳六烯酸(DHA)以及花生四烯酸(ARA)这3种脂肪酸,研究重点主要是分析探讨这3种必需脂肪酸在调控海水鱼类性腺发育、排卵、孵化率及仔鱼质量等方面所起的具体生理作用[5-6]。截至目前,已有相关研究报道所涉及的海水鱼类主要包括狼鲈(Dicentrarchus labrax)[7]、真鲷(Sparus aurata)[8]、花尾胡椒鲷(Plectorhynchus cinctus)[9-10]、大西洋庸鲽(Hippoglossus hippoglossus)[11]、黄鳍鲷(Acanthopagrus latus)[12]、塞内加尔鳎(Solea senegalensis)[13]、军曹鱼(Rachycentron canadum)[14]以及牙鲆(Paralichthys olivaceus)[15]等。综合分析已有的研究报道,有关海水鱼类亲体脂肪酸营养的研究主要涵盖必需脂肪酸需求量、对繁殖性能影响、对机体脂肪酸存储影响及对内分泌调控作用4个方面。本文主要从以上4个方面归纳总结了海水鱼类亲体脂肪酸营养的研究概况,并重点分析探讨了在内分泌调控方面的研究进展,同时对后续的研究重点提出了一些建议。
鱼类在不同发育阶段对营养素的需求会有所不同,在性腺发育成熟过程中,由于需要积累大量的营养素以保障所产生的配子质量,因此,鱼类在亲体阶段对营养素(特别是脂类营养)的需求量较幼体阶段要高一些。FERNANDEZPALACIOS等[8]以产卵量、正常卵子所占比例以及仔鱼成活率为指标所得出的真鲷亲体n-3 LCPUFA需求量为1.6%。在对牙鲆的研究中发现,饲料中n-3 LC-PUFA含量达到1.5%~2.0%即可满足其性腺发育所需[15]。上述两种鱼类亲体对n-3 LC-PUFA的需求量大致相似,然而,在对花尾胡椒鲷的研究中发现,其对饲料中n-3 LCPUFA的最适需求量为2.40%~3.70%[10]。ZAKERI等[12]通过利用鱼油、鱼油与葵花籽油等比例混合油、葵花籽油3种脂肪源研究分析饲料中不同n-3 LC-PUFA含量(依次为6.67%、4.26%和2.92%)对黄鳍鲷产卵繁殖的影响,研究得出,以鱼油为单独脂肪源,即n-3 LC-PUFA含量为6.67%时所得到的卵子与初孵仔鱼质量最佳。由此可以看出,不同鱼种间亲体对n-3 LCPUFA的需求量存在较大差异。此外,已有的研究还指出,饲料中n-3 LC-PUFA含量并非越高越好,过高或者过低的n-3 LC-PUFA含量均会影响海水鱼类的正常繁殖,降低其繁殖性能。LI等[10]的研究报道中指出,饲料中n-3 LC-PUFA含量高于5.85%或低于1.12%均会显著降低花尾胡椒鲷的产卵量、卵子及仔鱼质量。同样,在牙鲆的研究中也得出,饲料中过高的n-3 LC-PUFA含量会显著降低其卵子质量,导致其繁殖性能降低[16]。除了针对n-3 LC-PUFA需求量的研究之外,有关海水鱼类n-6系列必需脂肪酸(主要是花生四烯酸)需求量的研究也有诸多报道,但主要集中在对仔鱼和幼鱼阶段的营养需求,针对亲体的ARA营养需求研究并不多,仅见如:FURUITA等[17]在对牙鲆亲体的研究中发现,饲料中0.6%的ARA可有效提高其繁殖性能,但过高的ARA含量(1.2%)却会显著降低其卵子及仔鱼的质量。在对塞内加尔鳎亲体的研究中发现,在不同季度内饲料中ARA的适宜含量是有一定变化的,夏季与初秋季节饲料中ARA的适宜含量需控制在占总脂肪酸比例的3.9%,而冬季控制在2.2%即可,全年内饲料中ARA的平均适宜含量为占总脂肪酸比例的3.0%[18]。NGUYEN等[14]在对军曹鱼亲体适宜必需脂肪酸需求量的研究中得出,其饲料中n-3 LC-PUFA含量应不低于1.86%,同时还指出,饲料中ARA的含量建议控制在0.15%~0.24%(干物质比),过高的饲料ARA含量(0.42%~0.60%)同样对其受精卵质量具有负面影响。由上述可知,不同海水鱼类亲体在其性腺发育成熟过程中对必需脂肪酸(包含n-3和n-6 LC-PUFA)的需求量不尽相同,同时,过量的必需脂肪酸也对亲体的正常繁殖具有负面影响。
有关脂肪酸营养(特别是必需脂肪酸)与海水鱼类繁殖性能间关系的研究一直是近些年来水产动物营养与饲料学研究的重点内容之一。目前已有的关于必需脂肪酸影响海水鱼类亲体繁殖性能的研究报道主要集中在对繁殖力、精卵质量、受精率、孵化率及仔鱼质量等几个方面[6]。FURUITA等[15]在对牙鲆的研究中发现,随着饲料中LC-PUFA含量的增加,牙鲆的繁殖性能明显得到改善,仔鱼畸形率显著降低,3日龄仔鱼成活率显著升高。MAZORRA等[11]在对大西洋庸鲽的研究报道中也指出,饲料中的脂类,特别是LCPUFA与卵子质量、产卵力以及受精成功率关系极为密切。同样,在日本鳗鲡(Anguillajaponica)[19]、真鲷[8]、花尾胡椒鲷[10]、塞内加尔鳎[18]、黄鳍鲷[12]以及军曹鱼[14]等的报道中也得到了相似的研究结果。SORBERA等[20]在对狼鲈研究中发现,必需脂肪酸在狼鲈生殖系统发育过程中起着至关重要的作用,离体实验结果表明,必需脂肪酸可刺激卵母细胞发育成熟,并可加强促性腺激素诱导卵母细胞发育成熟的生理效应。已有的研究证实,DHA是鱼类性腺及仔鱼机体内磷酸甘油酯特别是磷脂酰乙醇胺和磷脂酰胆碱的重要组成部分,因此,组织中DHA含量的多少直接影响到鱼类的繁殖性能[6];EPA也是一种影响鱼类繁殖力的重要脂肪酸,在鱼类代谢过程中起着至关重要的作用,主要体现在其在维持细胞膜的完整性方面具有重要的调控作用,同时,EPA也作为一些环氧合酶的底物,以及一些前列腺素类化合物的前体物[6];ARA是鱼类性腺组织分泌产生类二十烷酸主要前体物,因此,机体ARA的含量同样直接影响鱼类的繁殖性能[5]。此外,单斑重牙鲷(Diplodus sargus)在性成熟过程中其性腺组织中会积累较高含量的LC-PUFA[21],这从另一层面印证了LC-PUFA在海水鱼类生殖繁育过程中起着至关重要的生理作用。由此可以推测,饲料中LC-PUFA含量可显著影响卵子发育质量及仔鱼成活率的原因之一可能是通过改变卵及仔鱼的营养组成,特别是其中必需脂肪酸的组成。当然,必需脂肪酸营养对海水鱼类繁殖性能的调控机理是非常复杂的,改变必需脂肪酸的营养组成仅仅是其中的一种调控方式。
已有的研究表明,机体脂肪酸组成与饲料中的脂肪酸组成密切相关[12-14]。NGUYEN等[14]利用必需脂肪酸含量不同的4组饲料喂养军曹鱼亲体,结果发现,不同饲料组间所得卵中的脂肪酸组成存在明显差异,且其中各种脂肪酸含量的变化与饲料中的脂肪酸组成基本一致。同样,在对黄鳍鲷的研究中也发现,其卵、初孵仔鱼以及3日龄仔鱼的n-3 LC-PUFA含量均随着饲料中n-3 LC-PUFA含量的增加而增加[12]。NORAMBUENA等[13]研究分析了ARA含量不同的6组饲料对塞内加尔鳎亲体组织中脂肪酸组成的影响,结果表明,精巢、卵巢、肌肉及肝脏组织中的脂肪酸组成均与对应的实验饲料中的脂肪酸组成一致,各组织中ARA的含量均随着饲料中ARA含量的增加而增加。尽管机体中很多必需脂肪酸的积累量均会随着饲料中相应含量的升高而升高,但某些特定的脂肪酸则更大程度上选择性的存储于机体组织中。WASSEF等[22]在对真鲷的研究中发现,各试验组性腺组织中DHA含量均高于对应的实验饲料中的DHA含量,但是EPA和ARA的含量则无类似的情况,该研究结果表明了DHA更大程度上选择性的保留在真鲷性腺组织中,揭示DHA作为一种必需脂肪酸其在真鲷性腺发育成熟过程中潜在的生理作用要明显大于EPA和ARA。在对狼鲈的研究报道中也得到了相似的研究结果[23]。然而,由于不同鱼种对DHA、EPA和ARA的需求量存在差异,因此,这种现象是否在海水鱼类中普遍存在,还需要更进一步的研究分析。
鱼类性腺的发育、分化与成熟受到生殖内分泌因子(性激素及其受体等)和外源因子(环境因子、营养素等)的双重影响[24]。外源因子和体内的生殖内分泌因子直接或间接作用于下丘脑-垂体-性腺轴,下丘脑分泌促性腺激素释放激素(GnRH),使脑垂体分泌促性腺激素(GtH)并作用于性腺,促使性腺分泌性类固醇激素,性类固醇激素与相应受体结合,促进性腺发育成熟并排出卵子或精子[24-25]。发育中的卵泡分泌雌激素(主要为E2)是卵巢发育成熟过程中至关重要的一个环节[24]。E2通过血液运输至肝脏并与肝细胞细胞质中的E2受体结合,从而发挥其生物学效应,诱导肝脏合成卵黄蛋白原(Vg)[26-27]。鱼类的性腺发育是一个能量积累的过程,在性腺发育过程中,机体脂肪酸特别是其中的LC-PUFA通过代谢途径从脂肪组织转运至肝脏,进而促进肝脏中Vg的合成[28-29]。然而,肝脏中Vg的合成不仅需要足量的LC-PUFA,其合成与积累同时需要在性类固醇激素的诱导之下方能完成[26-27]。因此,LC-PUFA、机体性类固醇激素水平是影响鱼类特别是海水鱼类卵黄发生、卵巢成熟的两个重要因素。已有研究表明,LC-PUFA与海水鱼类机体性类固醇激素分泌水平之间也存在着某种程度的因果联系,即饲料中适宜的LC-PUFA水平可显著提高海水鱼类机体中性类固醇激素的分泌水平,进而加速其精卵的发生、成熟[9-10]。然而,目前关于LC-PUFA是如何影响海水鱼类性腺组织中性类固醇激素的分泌并未有详尽的研究报道。在大西洋鲑(Salmo salar)的研究中发现,如果E2的分泌及其与受体的结合效应受阻,会导致成熟卵子绒毛膜发育畸形、繁殖力差以及较低的胚胎成活率[30]。因此,性类固醇激素在鱼类性腺发育过程中具有至关重要的生理作用。在斜带石斑鱼(Epinephelus coioides)[31]、圆斑星鲽(Verasper variegates)[32]及条斑星鲽(Veraspermoseri)[33]的研究中发现性类固醇激素分泌的变化规律与卵泡发生、发育、成熟和排出的周期基本一致。李远友等[9]对花尾胡椒鲷亲鱼的研究中发现,在性腺快速发育和成熟时期,饲料中n-3 HUFA不足或者过量均会导致血浆性类固醇激素雌二醇(E2)和睾酮(T)含量的降低,同时导致产卵量、受精率以及仔鱼成活率显著降低。同时,MERCURE等[34]的研究也指出,一定剂量的EPA和DHA可明显抑制硬骨鱼类离体卵泡类固醇的产生。由于长链脂肪酸特别是n-3 LC-PUFA是Vg和胚胎细胞生物膜的重要成分之一,而Vg的合成则需要E2的刺激。由此可以推断,外源脂肪酸营养影响鱼类性腺发育成熟的直接原因可能在于改变了鱼体中性类固醇激素的分泌状况,进而阻碍了性腺的发育成熟。然而截至目前,国内外关于脂肪酸营养对鱼类性类固醇激素分泌的影响机理研究则鲜有报道。但综合分析已有的研究报道发现,在性腺发育过程中,鱼体内由下丘脑-垂体-性腺轴(HPG)所分泌的各种激素之间以及性类固醇激素E2和T之间均处于一种动态的平衡之中,相互之间亦存在正负反馈调节作用[24-25,35-37]。因此,探讨必需脂肪酸影响性类固醇激素分泌的生理机制需要从HPG轴所分泌激素之间的动态平衡入手。
根据已有的资料分析,以下几个因素在调控性类固醇激素分泌方面具有非常重要的生理作用。其一,垂体分泌GtH的情况。硬骨鱼类存在两种促性腺激素(GtHⅠ和GtHⅡ)。GtHⅠ主要是在鱼类性腺发育的早期刺激性腺分泌E2和T等性类固醇激素,调节性腺的发育和配子的生成,而GtHⅡ主要是刺激性腺产生黄体酮,促使卵母细胞和精子的最后成熟并刺激排精和排卵[25,38]。因此,GtH对性类固醇激素的分泌具有重要的调控作用。在对许氏平鲉(Sebastes schlegeli)的研究中发现,在精子发生及卵黄发生时期血清中具有较高含量的GtHⅠ,同时较高含量的GtHⅠ可诱导卵巢分泌更多的E2;在排精、排卵时期血清中GtHⅡ含量占主导[39]。当然,GtH调控鱼类性腺发育的生理机制也并非如此简单,研究发现,雄性海鲈类鱼从精子发生启动直至成熟排放的整个过程中,GtHⅠ与GtHⅡ的表达量均同时增加,也就是说,GtHⅠ与GtHⅡ两者可能都参与了海鲈类鱼精子发生及排放整个过程的调控[40]。其二,鱼体内性类固醇激素受体的表达情况。脊椎动物生殖内分泌研究发现,性类固醇激素功能的发挥必须与其相应的特异性受体结合[38],因而,激素受体的表达情况直接影响着相应激素所具有的生理效应。当前,大量的研究资料已证实,性类固醇激素及其与受体的相互作用是诱导调节硬骨鱼类性腺发育、成熟及精卵排放的重要信号途径[41]。在对半滑舌鳎(Cynoglossus semilaevis)的研究中发现,在生殖细胞的胞质、胞膜以及核膜中,性类固醇激素及其受体均有广泛表达,并且在性腺发育不同时期其表达强度也有所不同,这进一步表明了性类固醇激素及其受体在性腺发育不同阶段具有不同的生理功能,且两者之间存在明显的相互反馈调节作用[42]。这一点在对文昌鱼(Branchiostomabelcheri)的研究中也得到了证实[43]。其三,性腺型芳香化酶(P450aromA)的表达情况。雌激素的生物合成需要许多酶的参与,而其中芳香化酶是催化雄激素向雌激素转化的一个关键酶和限速酶[44]。综合分析现有的资料认为,芳香化酶主要是通过调节体内雄激素与雌激素的比例来控制鱼类的性别分化和发育方向[44-45]。利用非类固醇型芳香化酶抑制剂处理雌性赤点石斑鱼(Epinephelus akaara),导致其性腺芳香化酶活性显著降低,同时血清11-酮基睾酮浓度显著升高,E2含量显著降低[46]。也就是说,芳香化酶抑制剂主要是通过降低性腺型芳香化酶的活性来抑制内源性E2的产生并提高11-酮基睾酮水平,从而达到诱导赤点石斑鱼由雌性转变为雄性的目的。在对牙鲆的研究中也得到了相近的结论[45]。由此说明,生物体内芳香化酶的活性和分布能反映鱼体内雌雄激素的生物合成状况[44-46]。因此,芳香化酶细胞色素P450对调节鱼类整个性类固醇激素的动态平衡具有重要意义。
综合分析以上研究资料,针对不同种类的海水经济养殖对象而言,为提高其繁殖性能,继续深入开展亲体培育阶段适宜必需脂肪酸需求量的研究仍是目前营养与饲料行业的核心工作。然而,要想从机理上弄清必需脂肪酸影响海水鱼类繁殖性能的原因,脂肪酸营养的生殖内分泌调控及其分子基础则应是后续重点攻关的研究内容。鱼类生殖相关性激素的分泌受HPG轴的调节,脂肪酸营养之所以能够影响鱼体性激素的分泌,原因应在于其影响了机体HPG轴的生殖内分泌机能,进而改变了机体内各激素间的动态平衡。因此,针对必需脂肪酸营养对海水鱼类生殖内分泌调控及其分子基础的研究应重点围绕HPG轴激素间动态平衡的角度展开。
[1] RODRÍGUEZ-BARRETO D,JEREZS,CEJASJR,et al.Comparative study of lipid and fatty acid composition in different tissues of wild and cultured female broodstock of greater amberjack(Serioladumerili)[J].Aquaculture,2012,360-361(4):1-9.
[2] ZHANG M Z,LIG L,ZHU C H,et al.Effects offish oil on ovarian development in spotted scat(Scatophagus argus)[J].Animal Reproduction Science,2013,141(1-2):90-97.
[3] IZQUIERDO M S,FERNANDEZ-PALACIOS H,TACON A G J.Effect of broodstock nutrition on reproductive performance fish[J].Aquaculture,2001,197(1-4):25-42.
[4] WATANABE T,VASSALLO-AGIUSR.Broodstock nutrition research on marine finfish in Japan[J].Aquaculture,2003,227(1-4):35-61.
[5] BELL J G,SARGENT J R.Arachidonic acid in aquaculture feeds:current status and future opportunities[J].Aquaculture,2003,218(1-4):491-499.
[6] MONTERO D,BASURCO B,NENGAS I,et al.Mediterranean fish nutrition[M].Zaragoza:Ciheam,2005.
[7] BRUCEM,OYEN F,BELLG,et al.Development of broodstock diets for the European sea bass(Dicentrarchus labrax)with special emphasis on the importance of n-3 and n-6 highly unsaturated fatty acid to reproductive performance[J].Aquaculture,1999,177(1-4):85-97.
[8] FERNANDEZ-PALACIOS H,IZQUIERDO M S,ROBAINA L,et al.Effect of n-3 HUFA level in broodstock diets on egg quality of gilthead sea bream(Sparus aurataL.)[J].Aquaculture,1995,132(3-4):325-337.
[9] 李远友,陈伟洲,孙泽伟,等.饲料中n-3 HUFA含量对花尾胡椒鲷亲鱼的生殖性能及血浆性类固醇激素水平季节变化的影响[J].动物学研究,2004,25(3):249-255.
LIY Y,CHENW Z,SUN ZW,et al.Effects of n-3 HUFA content in broodstock diets on reproductive performance and seasonal changes of plasma sex steroids levels inPlectorhynchus cinctus[J].Zoological Research,2004,25(3):249-255.
[10] LIY Y,CHENW Z,SUN ZW,etal.Effects of n-3 HUFA content in broodstock diet on spawning performance and fatty acid composition of eggs and larvae in Plectorhynchus cinctus[J].Aquaculture,2005,245(1-4):263-272.
[11] MAZORRA C,BRUCEM,BELL JG,etal.Dietary lipid enhancement of broodstock reproductive performance and egg and larval quality in Atlantic halibut(Hippoglossus hippoglossus)[J].Aquaculture,2003,227(1-4):21-33.
[12] ZAKERIM,KOCHANIAN P,MARAMMAZI JG,et al.Effects of dietary n-3 HUFA concentrations on spawning performance and fatty acids composition of broodstock,eggs and larvae in yellowfin sea bream,Acanthopagrus latus[J].Aquaculture,2011,310(3-4):388-394.
[13] NORAMBUENA F,MORAISS,ESTÉVEZ A,etal.Dietarymodulation of arachidonic acidmetabolism in senegalese sole(Solea Senegalensis)broodstock reared in captivity[J].Aquaculture,2013,372-375(1):80-88.
[14] NGUYEN H Q,TRAN T M,REINERTSEN H,et al.Effects of dietary essential fatty acid levels on broodstock spawning performance and egg fatty acid composition of cobia,Rachycentron canadum[J].Journal of the World Aquaculture Society,2010,41(5):687-699.
[15] FURUITA H,TANAKA H,YAMAMOTO T,et al.Effects of n-3 HUFA levels in broodstock diet on the reproductive performance and egg and larval quality of the Japanese flounder,Paralichthys olivaceus[J].Aquaculture,2000,187(3):387-398.
[16] FURUITA H,TANAKA H,YAMAMOTO T,et al.Effect of high levels of n-3 HUFA in broodstock diet on egg quality and egg fatty acid composition of the Japanese flounder Paralichthys olivaceus[J].Aquaculture,2002,210(1-4):323-333.
[17] FURUITA H,YAMAMOTO T,SHIMA T,et al.Effectofarachidonic acid levels in broodstock dieton larval and egg quality of Japanese flounderParalichthys olivaceus[J].Aquaculture,2003,220(1-4):725-735.
[18] NORAMBUENA F,ESTEVEZ A,SANCHEZ-VAZQUEZ F J,et al.Self-selection of diets with different contents of arachidonic acid by Senegalese sole(Solea senegalensis)broodstock[J].Aquaculture,2012,364-365(2):198-205.
[19] FURUITA H,HORIK,SUZUKIN,et al.Effect of n-3 and n-6 fatty acids in broodstock diet on reproduction and fatty acid composition of broodstock and eggs in the Japanese eelAnguilla japonica[J].Aquaculture,2007,267(1-4):55-61.
[20] SORBERA L A,ASTURIANO J F,CARRILLO M,et al.Effects of polyunsaturated fatty acids and prostaglandins on oocyte maturation in a marine teleost,the European seabass(Dicentrarchus labrax)[J].Biology of Reproduction,2001,64(1):382-389.
[21] PEREZ M J,RODRIGUEZ C,CEJAS JR,et al.Lipid and fatty acid content in wild white seabream(Diplodus sargus)broodstock at different stages of the reproductive cycle[J].Comparative Biochemistry and Physiology(Part B),2007,146(2):187-196.
[22] WASSEF E A,WAHBI O M,SHALABY S H.Effects of dietary vegetable oils on liver and gonad fatty acid metabolism and gonad maturation in gilthead seabream(Sparus aurata)males and females[J].Aquaculture International,2012(20):255-281.
[23] MOURENTE G,GOOD J E,BELL J G.Partial substitution of fish oil with rapeseed,linseed and olive oils in diets for European seabass(Dicentrarchus labraxL.):effects on flesh fatty acid composition,plasma prostaglandins E2and F2α,immune function and effectiveness of a fish oil finishing diet[J].Aquaculture Nutrition,2005(11):25-40.
[24] 温海深,林浩然.环境因子对硬骨鱼类性腺发育成熟及其排卵和产卵的调控[J].应用生态学报,2001,12(1):151-155.
WEN H S,LIN H R.Effectof environmental factors on gonadal maturation as well as its ovulation and spawning in teleosts[J].Chinese Journal of Applied Ecology,2001,12(1):151-155.
[25] PANKHURSTNW,KING H R,ANDERSON K,et al.Thermal impairment of reproduction is differentially expressed in maiden and repeat spawning Atlantic salmon[J].Aquaculture,2011,316(1-4):77-87.
[26] WATTSM,PANKHURST NW,SUN B.Vitellogenin isolation,purification and antigenic cross reactivity in three teleost species[J].Comparative Biochemistry and Physiology(Part B),2003,134(3):467-476.
[27] LUBZENSE,YOUNGG,BOBE J,etal.Oogenesis in teleosts:how fish eggs are formed[J].General and Comparative Endocrinology,2010,165(3):367-389.
[28] BRANSDEN M P,BATTAGLENE SC,GOLDSMID R M,et al.Broodstock condition,egg morphology and lipid content and composition during the spawning season of captive striped trumpeter,Latrislineate[J].Aquaculture,2007,268(1-4):2-12.
[29] HUYNH M D,KITTSD D,HU C,et al.Comparison of fatty acid profiles of spawning and non-spawning Pacific herring,Clupea harengus pallasi[J].Comparative Biochemistry and Physiology(Part B),2007,146(4):504-511.
[30] PANKHURST N W,KING H R.Temperature and salmonid reproduction:implications for aquaculture[J].Journal of Fish Biology,2010,76(1):69-85.
[31] 赵会宏,刘晓春,刘付永忠,等.斜带石斑鱼雌鱼卵巢发育与血清性类固醇激素的生殖周期变化[J].中山大学学报(自然科学版),2003,42(6):56-59.
ZHAO H H,LIU X C,LIU F Y Z,et al.Seasonal cycles of ovarian development and serum sex steroid levels of female grouperEpinephelus coioides[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2003,42(6):56-59.
[32] 徐永江,刘学周,王清印,等.养殖圆斑星鲽血浆性类固醇激素表达与同巢发育及温光调控的关系[J].中国水产科学,2011,18(4):836-846.
XU Y J,LIU X Z,WANG Q Y,et al.Annual gonadal maturation cycle of captive spotted halibut,Verasper variegates:correlation with serum sex steroids and photothermal regulation[J].Journal of Fishery Sciences of China,2011,18(4):836-846.
[33] 倪 娜,柳学周,徐永江,等.条斑星鲽卵巢发育规律和性类固醇激素周年变化研究[J].渔业科学进展,2011,32(3):16-25.
NIN,LIU X Z,XU Y J,etal.The study ofgonadal development and steroid hormone annual change in barfin flounderVerasper moseri[J].Progress in Fishery Sciences,2011,32(3):16-25.
[34] MERCURE F,KRAAK G V D.Inhibition of gonadotropin-stimulated ovarian steroid production by polyunsaturated fatty acids in teleost fish[J].Lipids,1995,30(6):547-554.
[35] 舒 虎,刘晓春,林浩然.LHRH-A缓释剂对雌性赤点石斑鱼卵巢发育、性类固醇激素分泌及脑垂体GTH细胞超微结构的影响[J].动物学研究,2005,26(4):422-428.
SHU H,LIU X C,LIN H R.Effects of sustained administration of LHRH-A on ovary development,sex steroid hormone secretion and ultrastructure of gonadotropic cell inepinephelus akaara[J].Zoological Research,2005,26(4):422-428.
[36] PARK W,LEE C H,LEE C S,et al.Effects of a gonadotropin-releasing hormone analog combined with pimozide on plasma sex steroid hormones,ovulation and egg quality in freshwater-exposed female chum salmon(Oncorhynchus keta)[J].Aquaculture,2007,271(1):488-497.
[37] MOORE B C,FOROUHAR S,KOHNO S,et al.Gonadotropin-induced changes in oviducal mRNA expression levels of sex steroid hormone receptors and activin-related signaling factors in the alligator[J].General and Comparative Endocrinology,2012,175(2):251-258.
[38] ANDERSON K,SWANSON P,PANKHURST N,etal.Effect of thermal challenge on plasma gonadotropin levels and ovarian steroidogenesis in female maiden and repeat spawning Tasmanian Atlantic salmon(Salmo salar)[J].Aquaculture,2012,334(1-4):205-212.
[39] KIM D J,CHOY C,SOHN Y C.Molecular characterization of rockfish(Sebastes schlegeli)gonadotropin subunits and their mRNA expression profiles during oogenesis[J].General and Comparative Endocrinology,2005,141(3):282-290.
[40] MATEOS J,MANANOS E,MARTINEZ-RODRIGUEZ G,et al.Molecular characterization of sea bass gonadotropin subunits(alpha,FSHbeta,and LHbeta)and their expression during the reproductive cycle[J].General and Comparative Endocrinology,2003,133(2):216-232.
[41] DEVLIN R H,NAGAHAMA Y.Sex determination and sex differentiation in fish:an overview of genetic,physiological,and environmental influences[J].Aquaculture,2002,208(3-4):191-364.
[42] 徐永江,柳学周,温海深,等.性类固醇激素及其受体在半滑舌鳎性腺分化发育过程中的表达与生理功能[J].中国海洋大学学报,2010,40(7):66-72.
XU Y J,LIU X Z,WEN H S,et al.Immunohistochemical study of E2,ERαand AR in gonad differentiation and development of tongue fish[J].Periodical of Ocean University of China,2010,40(7):66-72.
[43] 方永强,翁幼竹,胡晓霞.性类固醇激素及其受体在文昌鱼性腺和神经系统中的分布[J].动物学报,2001,47(4):398-403.
FANG Y Q,WENG Y Z,HU X X.Distribution of sex steroid hormones and their receptors in the gonads and nervous system of amphioxus(branchiostoma belcheri)[J].Acta Zoologica Sinica,2001,47(4):398-403.
[44] 洪万树,方永强.鱼类芳香化酶活性研究的进展[J].水产学报,2000,24(3):285-288.
HONGW S,FANG Y Q.Advances on aromatase activity in fish[J].Journal of Fisheries of China,2000,24(3):285-288.
[45] KITANO T,TAKAMUNEK,NAGAHAMA Y,etal.Aromatase inhibitor and 17alpha-methyltestosterone cause sex-reversal from genetical females to phenotypic males and suppression of P450 aromatase gene expression in Japanese flounder(Paralichthysolivaceus)[J].Molecular Reproduction and Development,2000,56(1):1-5.
[46] 李广丽,刘晓春,林浩然.芳香化酶抑制剂letrozole对赤点石斑鱼(Epinephelus akaara)性逆转的作用[J].生理学报,2005,57(4):473-479.
LIG L,LIU X C,LIN H R.Aromatase inhibitor letrozole induces sex inversion in the protogynous red spotted grouper(Epinephelus akaara)[J].Acta Physiologica Sinica,2005,57(4):473-479.
Research progress of essential fatty acids nutrition in marine fish broodstock
PENG Shi-ming1,LIYun-li1,2,SHIZhao-hong1,GAO Quan-xin1,ZHANG Chen-jie1,WANG Jian-gang1
(1.East China Sea Fisheries Research Institute,Chinese Academy of Fishery Sciences,Shanghai 200090,China;2.College of Fisheries and Life Science,Shanghai Ocean University,Shanghai 201306,China)
Fatty acids,especially essential fatty acids,play an important role in the regulation of reproductive performance in marine fish.The importance of long-chain polyunsaturated fatty acids(LC-PUFA),especially 22∶6n-3(DHA),20∶5n-3(EPA)and 20∶4n-6(ARA),in broodstock nutrition has attracted attention in the last two decades.It has been well documented that dietary essential fatty acid is a nutritional factor that greatly affects spawning performance,egg and larval quality of fish.Lipids are utilized as energy sources throughout embryogenesis,and particularly in the later stages of development prior to hatching.EPA and DHA are themajor fatty acids in the total lipid of eggs ofmost fish and these fatty acidsmarkedly influence the reproductive parameters.DHA,especially abundant in retina and brain,has a particularly important role in maintaining the structure and function of the cellmembranes of these tissues.In addition,as a major fatty acid in phosphatidylinositol and precursor of prostaglandin,ARA stimulates ovarian and testicular steroidogenesis and is assumed to be involved in embryonic development of the immune system,hatching and early larval performance.Reported studies on essential fatty acids inmarine fish broodstock mainly cover four fields:(1)Requirements.Fat provides energy and essential fatty acids for the growth ofmarine fishes and play critical roles in marine fish nutrition.n-3 LC-PUFA are essential fatty acids.It is typically recognized thatmarine fishes have a limited ability to convert shorter chain and less unsaturated fatty acids into n-3 LCPUFA.Therefore,adequate amounts of n-3 LC-PUFA must be supplied through the diet to ensure normal growth and development.Studies on somemarine fish species have shown that different fishes require different levels of n-3 LC-PUFA,and also extremely high or low levels of dietary n-3 LC-PUFA are not conducive to the normal growth and development.Hence,the provision of appropriate amounts of dietary n-3 LC-PUFA is essential.On the other hand,little attention has been given to n-6 LC-PUFA in spite of evidence in the literature suggesting its potential importance in reproduction;(2)Reproductive performance.Dietary LCPUFA content greatly affects egg and larval quality.In general,low LC-PUFA levels in broodstock diets decrease egg quality.However,some authors have identified negative effects of excess LC-PUFA on egg quality.To obtain LC-PUFA levels suitable for developing formulated broodstock diet,it is necessary to determine the ways in which the egg changeswith the increasing levels of dietary LC-PUFA;(3)Body fatty acids storage.Numerous earlier reports on different species of finfish have evidenced that the fatty acid compositions of tissue lipids were closely related to dietary fatty acids input.DHA was selectively deposited and retained,as ovary DHA concentrationswere always higher than diet concentrations,suggesting that DHA had higher nutritional value and contributed more to the species reproduction than EPA or ARA;(4)Endocrine regulation.The importance of LC-PUFAs,especially n-3 LC-PUFAs,in broodstock nutrition has been extensively studied.Whilemost studies have focused on the effects of diet on body composition,growth performance,egg quality and larval survival rate,few studies have investigated the effects of nutrients on hormone synthesis during gonadogenesis.Pituitary gonadotropin hormone(GtH),follicle-stimulating hormone(FSH)and luteinizing hormone(LH)are involved in gametogenesis and sexual maturation in teleosts.In salmonid fish,FSH is primarily involved in vitellogenesis and spermatogenesis,whereas LH triggersmaturation,ovulation,and spermiation.In response to GtH,cholesterol is converted into testosterone(T)and 17β-estradiol(E2).E2stimulates hepatic vitellogenin synthesis,which is essential in oocyte development.In rainbow trout,FSH levels increase during vitellogenesis and decrease during finalmaturation concomitantwith increasing LH levels.Sex steroid hormones play important roles in vertebrate reproduction.In several teleost species,E2and T produced in gonadal tissues under the control of GtH,are essential in gametogenesis.Fatty acids(especially PUFAs)are cell signaling molecules,structural compounds and energy sources.PUFAs are crucial formediating immunological,metabolic,and endocrine signalswithin the uterine-fetal-placental unit.PUFAs are precursors of cell signalingmolecules,and there is evidence that they regulatemembrane signal transduction pathways and steroid hormone action,by modulating the binding of estrogen,progesterone,and glucocorticoids to their intracellular receptors.Therefore,PUFAs act as endogenousmodulators of key enzymes involved in steroid metabolism.Previous studies on fish reproduction have focused on lipids as energy sources,but their roles in other physiological processes have been overlooked in spite of the fact that PUFAs and their metabolites produced from cyclooxygenase and lipoxygenase have modulatory effects on steroidmetabolism,which in turn control ovulation,steroidogenesis and fecundity rates.This paper reviewed the research on essential fatty acids in marine fish broodstock in the above four fields,especially made a comprehensive analysis on endocrine regulation of essential fatty acids,and proposed suggestions for further research on essential fatty acids in marine fish broodstock.
essential fatty acids;marine fish;broodstock;review;prospect
S 968.1
A
1004-2490(2016)01-0098-09
2015-03-24
国家自然科学基金项目(31202009);上海市科技兴农重点攻关项目(沪农科攻字2013-2-1);中央级公益性科研院所基本科研业务费(东2014Z02-2)
彭士明,男,博士,副研究员。E-mail:shiming.peng@163.com