基于多升温速率法的典型生物质热动力学分析

2016-03-21 12:41田宜水
农业工程学报 2016年3期
关键词:生物质温度

田宜水,王 茹

(1.农业部规划设计研究院农村能源与环保研究所,北京 100125; 2.农业部农业废弃物能源化利用重点实验室,北京 100125;3.中国农业大学工学院,北京 100083)



基于多升温速率法的典型生物质热动力学分析

田宜水1,2,王茹1,3

(1.农业部规划设计研究院农村能源与环保研究所,北京 100125;2.农业部农业废弃物能源化利用重点实验室,北京 100125;3.中国农业大学工学院,北京 100083)

摘要:为研究典型生物质热动力学,判断反应机理,获得反应的动力学速率参数,该文采用热重分析技术对玉米秸秆、小麦秸秆、棉秆、松树木屑、花生壳、甜高粱渣等生物质原料进行了氮气气氛下不同升温速率的热解特性试验研究,利用Friedman法、Flynn-Wall-Ozawa法计算活化能,用Malek法确定最概然机理函数,建立了生物质热分析动力学模型,并讨论了不同生物质的差异性。结果表明:生物质的热解过程均包括3个主要阶段:干燥预热阶段、挥发分析出阶段、碳化阶段。典型生物质活化能随着转化率的增加而增加,在挥发分析出阶段,热解活化能介于144.61~167.34 kJ/mol之间;反应动力学机理均符合Avrami-Erofeev函数,但反应级数有一定的差异;指前因子介于26.66~33.97 s-1之间。这为生物质热化学转化过程工艺条件的优化及工程放大提供理论依据。

关键词:生物质;热动力学;温度;热分析;活化能;机理函数

田宜水,王茹. 基于多升温速率法的典型生物质热动力学分析[J]. 农业工程学报,2016,32(3):234-240.

Tian Yishui, Wang Ru. Thermokinetics analysis of biomass based on model-free different heating rate method[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(3): 234-240. (in Chinese with English abstract)doi:10.11975/j.issn.1002-6819.2016.03.034http://www.tcsae.org

0 引 言

热分析是在程序控温下,测定物质物理及化学性质与温度关系的一类技术。借用热分析技术来研究生物质的燃烧、热解、气化反应动力学,判断反应遵循的机理、获得反应的动力学速率参数(活化能E和指前因子A等),可为生物质热化学转化过程的工艺条件优化及工程放大提供重要的理论基础与依据。

目前,国内外已有大量学者对玉米秸秆[1-5]、稻草[6-7]、稻壳[8-10]、木屑[10-14]、核桃壳[15-16]等生物质[17-29]的热解动力学进行了研究。但由于生物质热解反应复杂,非均相反应实际上包含多个基元反应平行、连续进行,局限于试验手段和方法,结果差异较大。另外,由于指前因子A和活化能E的相互补偿,不同研究模式函数都会有相近的良好线性,所对应的动力学参数却有显著的差异,导致实际动力学过程与理想过程推导出来的机理不相符合。以玉米秸秆为例,不同研究的活化能分布在58.4~63.4 kJ/mol(赖艳华等[2])、63.95~69.97 kJ/mol(张晓东等[1]、宋春财等[4])、91.99~101.51 kJ/mol(齐国利等[3])、161 kJ/mol(王明峰等[5]);反应涉及一级反应[1-4]、J-M-A方程等[5]。

本文针对玉米秸秆、小麦秸秆、棉秆、松树木屑、花生壳、甜高粱渣等典型生物质,开展多升温速率热重试验,利用Friedman法、Flynn-Wall-Ozawa 法计算活化能,用Malek法确定最概然机理函数,建立了生物质热分析动力学模型,并讨论了不同生物质的差异性,为生物质热化学过程的工艺条件优化及工程放大提供理论依据。

1 试验材料及方法

1.1试验材料

本试验选取玉米秸秆、小麦秸秆、棉秆、松树木屑、花生壳、甜高粱渣等6种典型的生物质,其工业分析、元素分析、组分分析和热值见表1。玉米秸秆、花生壳取自于北京市,小麦秸秆、松树木屑取自于天津市,棉秆、甜高粱渣取自于河北省。生物质原料经过破碎、干燥、细粉、筛分等,选取粒径在80~120目之间的作为试验样品。

1.2试验仪器

试验采用日本SHIMADZU公司的DTG-60A/60AH型热重分析仪,试验坩埚材质为铂金,尺寸为Φ6 mm×2.5 mm,单次装样量为坩埚容积的1/3~1/2。

1.3试验方法

将3~4 mg左右生物质样品分别在5、10、20、30 ℃/min的升温速率下进行热解试验,温度从室温升至600℃,反应气氛为99.99%的高纯氮气,气流量为100 mL/min。

2 试验结果与讨论

2.1热解特性分析

下面以30℃/min升温速率下的热解试验为例进行讨论。

表1 样品的工业分析、元素分析、组分分析和热值Table 1 Industrial analysis, elemental analysis, component analysis and calorific value of biomass samples

生物质样品的TGA和DTG曲线整体趋势相似,整个热解过程分为干燥预热、挥发分析出、碳化等阶段3个阶段,见图1。

DTG曲线上出现的峰指示质量发生变化,峰顶与失质量变化速率最大处相对应,可作为生物质样品热解温度区间分段的依据。DTG曲线的第1个峰值出现在室温(20℃)~200℃内,为干燥预热阶段,质量损失率为2.68%~6.40%,见表2。质量损失主要原因是生物质内水分的释放(室温~110℃)及生物质高聚物的解聚(生物质大分子间氢键断开)及玻璃化转变过程(110~200℃左右)[30]。生物质所含水分含量越高,第1阶段失质量率越大。

图1 升温速率30℃/min下的生物质热解曲线Fig.1 Biomass pyrolysis curves at heating rate of 30 ℃/min

表2 样品热解过程的温度区间和失质量率Table 2 Temperature range and mass loss rate of samples in pyrolysis process

挥发分析出阶段是热解过程最主要的阶段,包括纤维素、半纤维素和部分木质素在各自不同温度区间的热分解反应,大分子碳水化合物的链被打碎[31],样品失质量速率随着温度的升高迅速增大。在这个阶段,生物质样品的DTG曲线在350~400℃之间均有一个明显的失质量主峰,这主要是由纤维素和小部分木质素的分解引起的。纤维素失质量温度区间较小,热解固体残余物极少,大部分转化成了挥发分。

在390~430℃左右,进入第3阶段碳化阶段,该阶段主要是木质素的继续热解反应,失质量率为5.29%~8.11%,热解剩余产物主要是炭和灰分。

2.2热分析动力学模型

传统的单升温速率法中,由于k(T)和f(α)或G(α)不能分离,难以保证所选机理模型函数的合理性。

多升温速率法是指用不同升温速率所测得的几条热分析曲线来进行动力学分析,可将k(T)和f(α)或G(α)分离,在相同转化率α下f(α)或G(α)的值不随升温速率的不同发生改变,从而在不引入动力学模型函数的前提条件下得到比较可靠的动力学参数活化能E的数值,因此多升温速率法又称为Model-free Method[32]。

2.2.1计算活化能E

固体分解反应动力学方程一般可表示为

在非等温非均相体系中继续沿用在等温均相反应体系中的动力学方程,在升温速率为β时,非等温非均相反应的动力学方程

式中α为反应物向产物转化的百分数,T为温度,A为指前因子,E为活化能,R为普适气体常数,f(α)为反应机理函数。

1)Friedman法

Friedma法[33]是一种微分的方法,其表达式是直接对式(2)两边取对数运算得出,即

以花生壳为例,在不同升温速率β下进行一系列的TG试验(见图2),获得一组TGA曲线。

图2 不同升温速率下花生壳热解TGA曲线Fig.2 TGA curves of peanut shell at different heating rates

在多重加热速率β下测定,选择等α处,以ln(dα/dt) 与1/T作图(如图3a),直线的斜率为:−E/R,可求得反应的活化能E。

2)Flynn-Wall-Ozawa法

将(3)式进行移项并两端同时积分得到:

式中积分下限T0的积分值趋近于0,积分下限可由0代替。P(u)称为温度积分(temperature integral),

式中u=E/RT。

图3 花生壳热分解过程在不同转化率处关系曲线Fig.3 Thermal decomposition curves of peanut shells at different conversion rates

取转化率a=0.1~0.9、步长为0.1,作lgβ−1/T图,得到几乎完全平行的直线(见图3b),由回归直线的斜率得到各转化率所对应的活化能E的数值。

表3列出了不同加热速率下花生壳热分解过程的活化能。可以看出,在整个转化率范围内,花生壳的活化能并不是一个定值,随着转化率的增加,花生壳的活化能逐渐增加,说明花生壳热解是一个极其复杂的多步反应过程,在不同的温度区间内具有不同的活化能和反应机理。

表3 不同加热速率下花生壳热分解过程的活化能Table 3 Activation energy of peanut shells on thermal decomposition process by different heating rates

在α<0.2、α>0.8的范围内,由于粒度尺寸和浮力以及非均相热解阶段相互重叠等不确定因素的影响,难以保证整条TG曲线在不同升温速率下同一转化率下的温度满足要求,计算所得活化能的高度相关。

在转化率范围a=0.3~0.7,花生壳的活化能的数值几乎不随转化率变化,与花生壳的DTG曲线上的峰吻合,处于挥发分析出阶段。用Friedman法和Flynn-Wall-Ozawa 法求得的反应活化能基本一致,平均值为148.12 kJ/mol,相关系数r几乎都在0.99~1.00之间,说明计算的活化能是可靠的。

2.2.2用Malek法确定最概然机理函数

Malek法是由定义函数y(α)和确定f(α)和G(α)的一种方法。

根据式(3)、(5)并采用同KAS法同样的温度近似,将3个方程合并可得

式中Z(α)为定义函数。将不同升温速率下的试验数据α、β、T、dα/dt和E代入公式,作Z(α)-α关系曲线,视该曲线为试验曲线。

将人为数据α和各种可能的动力学模型函数f(α)、G(α)带入上式,作Z(α)-α关系曲线,构成标准曲线。常用固态反应动力学机理函数见表4。

表4 常用固态反应动力学机理函数Table 4 Commonly used kinetic mechanism functions for solid-state reactions

由图4可知,在转化率范围a=0.3~0.7,试验曲线和曲线AE3(Avrami-Erofeev方程)趋向相同,基本重叠,判定该热分解反应动力学机理可以用随机成核和随后生

根据回归直线的斜率,在转化率范围a=0.3~0.7,得到:lnA=27.70 s-1。

2.2.3不同生物质反应的动力学速率参数

根据上述计算过程,可获得其他5种生物质的反应的动力学速率参数,见表5。

活化能作为活化分子的平均能量与反应物分子平均能量的差值,在挥发分析出阶段,典型生物质热解活化能基本介于144.61~167.34 kJ/mol之间。其中,玉米秸秆和小麦秸秆作为禾本科作物,活化能较高,分别为167.34和167.20 kJ/mol;棉秆、松树木屑和花生壳相对木质化程度较高,活化能较低,分别为154.06、147.29 和146.91 kJ/mol。甜高粱渣经过生物化学处理后,活化能最低,为144.61 kJ/mol。

图4 花生壳的Z(α)-α试验与标准曲线Fig.4 Standard curves and experiment curves of Z(α) vs α for peanut shells

玉米秸秆、小麦秸秆、棉秆、松树木屑、花生壳、甜高粱渣等反应动力学机理均符合Avrami-Erofeev函数,说明不同生物质原料,其成分和结构基本相同,热化学反应机理基本相同。但反应级数有一定的差异,玉米秸秆、花生壳的反应级数为3,小麦秸秆、棉秆、甜高粱渣的反应级数为2,松树木屑的反应级数为1.5。

热解动力学方程得出的指前因子没有明确的物理意义;碰撞理论的指前因子是频率因子,是反应系统中单位体积、单位时间内分子之间的碰撞数。上述生物质原料的指前因子lnA介于26.66~33.97 s-1之间。

表5 典型生物质热化学反应的动力学速率参数[34-36]Table 5 Kinetic rate parameters of biomass thermodynamic reaction

3 结 论

1)生物质样品的热解过程可分为:干燥预热、挥发分析出、碳化等3个阶段。

2)用非等温多重扫描速率法和Malek法分别计算花生壳分解过程动力学参数,花生壳的活化能随着转化率的增加而增加。在转化率范围为0.3~0.7,其活化能平均值为148.12 kJ/mol,反应机理系成核与生长模型。

3)在挥发分析出阶段,典型生物质热解活化能基本介于144.61~167.34 kJ/mol之间;反应动力学机理均符合Avrami-Erofeev函数,说明不同生物质原料,其成分和结构基本相同,热化学反应机理基本相同。但反应级数有一定的差异;指前因子介于26.66~33.97 s-1之间。

[参考文献]

[1] 姚向君,田宜水. 生物质能资源清洁转化利用技术[M]. 北京:化学工业出版社,2005.

[2] 王久臣,戴林,田宜水,等. 中国生物质能产业发展现状及趋势分析[J]. 农业工程学报,2007,23(9):276-282. Wang Jiuchen, Dai Lin, Tian Yishui, et al. Analysis of the development status and trends of biomass energy industry in China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2007, 23(9): 276-282. (in Chinese with English abstract)

[3] Yaman S. Pyrolysis of biomass to produce fuels and chemical feedstocks[J]. Energy Conversion and Management, 2004, 45(5): 651-671.

[4] 张晓东,许敏,孙荣峰,等. 玉米秸热解动力学研究[J]. 燃料化学学报,2006,34(1):123-125. Zhang Xiaodong, Xu Min, Sun Rongfeng, et al. Study on the kinetics of corn stalk pyrolysis by TG-DTG analysis[J]. Journal of Fuel Chemistry & Technology, 2006, 34(1): 123-125. (in Chinese with English abstract)

[5] 赖艳华,吕明新. 秸秆类生物质热解特性及其动力学研究[J].太阳能学报,2002,23(2):203-206. Lai Yanhua, Lu Mingxin, Ma Chunyuan, et al. Study on the characteristics and dynamics of pyrolysis process agricultural residues[J]. Acta Energiae Solaris Sinica, 2006, 34: 123-125. (in Chinese with English abstract)

[6] 齐国利,董芃. 生物质热解的动力学特性研究[J]. 电站系统工程,2006,22(5):12-14. Qi Guoli, Dong Peng. Study on kinetics of pyrolysis of biomass[J]. Power System Engineering, 2006, 22(5): 12-14. (in Chinese with English abstract)

[7] 宋春财,胡浩权,朱盛维,等. 生物质秸秆热重分析及几种动力学模型结果比较[J]. 燃料化学学报,2003,31(4):311-316. Song Chuncai, Hu Haoquan, Zhu Shengwei, et al. Biomass pyrolysis and its kinetic parameters with different methods[J]. Journal of Fuel Chemistry & Technology, 2003, 31(4): 311-316. (in Chinese with English abstract)

[8] 王明峰,蒋恩臣,周岭. 玉米秸秆热解动力学分析[J]. 农业工程学报,2009,25(2):204-207. Wang Mingfeng, Jiang Enchen, Zhou Ling. Kinetic analysis of cornstalk pyrolysis[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(2): 204-207. (in Chinese with English abstract)

[9] 傅旭峰,仲兆平,肖刚,等. 几种生物质热解特性及动力学的对比[J]. 农业工程学报,2009,25(1):199-202. Fu Xufeng, Zhong Zhaoping, Xiao Gang, et al. Comparative study on pyrolysis characteristics and dynamics of grass biomass[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(1): 199-202. (in Chinese with English abstract)

[10] 肖瑞瑞,杨伟,于广锁. 常见农林生物质稻草的催化热解动力学特性[J]. 化工进展,2013,32(5):1001-1005. Xiao Ruirui, Yang Wei, Yu Guangsuo. Characteristics of catalytic pyrolysis kinetics of straw[J]. Chemical Industry & Engineering Progress, 2013, 32(5): 1001-1005. (in Chinese with English abstract)

[11] 郭清杰,王君,陈明强,等. 采用双外推法计算稻壳热解活化能[J]. 化学与生物工程,2008(7):28-30. Guo Qingjie, Wang Jun, Chen Mingqiang, et al. Calculation of the activation energy for thermolysis of rice husks using double exploration method[J]. Chemistry & Bioengineering, 2008(7): 28-30. (in Chinese with English abstract)

[12] 王章霞,陈明强,王君,等. 稻壳热解特性及其动力学研究[J]. 安徽理工大学学报:自然科学版,2009(1):43-46. [13] 王明峰,蒋恩臣,张强,等. 稻壳热解模型建立与应用[J].农业工程学报,2011,27(增刊2):114-118. Wang Mingfeng, Jiang Enchen, Zhang Qiang, et al.Model construction and application for rice husk pyrolysis[J].Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(Supp.2): 114-118. (in Chinese with English abstract)

[14] 赵保峰,张晓东,孙立,等. 稻壳热解的动力学模拟[J]. 工程热物理学报,2008,29(5):747-750. Zhao Baofeng, Zhang Xiaodong, Sun Li, et al. Kinetic simulation of rice husk pyrolysis[J]. Journal of Engineering Thermophysics, 2008, 29(5): 747-750. (in Chinese with English abstract)

[15] 王昶,徐敬,贾青竹. 植物类生物质热解特性及动力学研究[J]. 天津科技大学学报,2007,22(1):8-12. Wang Chang, Xu Jing, Jia Qingzhu. Study on characteristics and dynamics of pyrolysis process of wood biomass[J]. Journal of Tianjin University of Science & Technology, 2007, 22(1): 8-12. (in Chinese with English abstract)

[16] 文丽华,王树荣,施海云,等. 木材热解特性和动力学研究[J]. 消防科学与技术,2004,23(1):2-5. Wen Lihua, Wang Shurong, Shi Haiyun, et al. Kinetic study on the pyrolysis of wood[J]. Fire Science & Technology, 2004, 23(1): 2-5. (in Chinese with English abstract)

[17] 杜海清,王晶,白雪峰. 木质类生物质热解过程的热重分析研究[J]. 黑龙江大学自然科学学报,2008,25(1):85-89. Du Haiqing, Wang Jing, Bai Xuefeng. Study on pyrolysis process of lignocellulosic biomass by thermogravimetric analysis[J]. Journal of Natural Science of Heilongjiang University, 2008, 25(1): 85-89. (in Chinese with English abstract)

[18] 曾凡阳,刘朝,王文钊,等. 生物质热重实验及动力学分析[J]. 工业加热,2008,37(3):6-8. Zeng Fanyang, Liu Chao, Wang Wenzhao, et al. Thermogrvimetric Experiment and Kinetic Analysis of Biomass[J]. Industrial Heating, 2008, 37(3): 6-8. (in Chinese with English abstract)

[19] 曲雯雯,夏洪应,彭金辉,等. 核桃壳热解特性及动力学分析[J]. 农业工程学报,2009,25(2):194-198. (in Chinese with English abstract)

[20] 郑志锋,黄元波,蒋剑春,等. 核桃壳热解特性及几种动力学模型结果比较[J]. 太阳能学报,2011(11):1677-1682. Zheng Zhifeng, Huang Yuanbo, Jiang Jianchun, et al. Pyrolysis characteristics of walnut shell and its kinetic parameters with different methods[J]. Acta Energiae Solaris Sinica, 2011, 32(11): 1677-1682. (in Chinese with English abstract)

[21] 黄娜,高岱巍,李建伟,等. 生物质三组分热解反应及动力学的比较[J]. 北京化工大学学报,2007,34(5):462-466. Huang Na, Gao Daiwei, Li Jianwei, et al. Comparison of the pyrolysis and kinetics of three components of biomass[J]. Journal of Beijing University of Chemical Technology, 2007, 34(5): 462-466. (in Chinese with English abstract)

[22] White J E, Catallo W J, Legendre B L. Biomass pyrolysis kinetics: A comparative critical review with relevant agricultural residue case studies[J]. Journal of Analytical and Applied Pyrolysis, 2011, 91(1): 1-33.

[23] Damartzis T, Vamvuka D, Sfakiotakis S, et al. Thermal degradation studies and kinetic modeling of cardoon (Carnaracardunculus) pyrolysis using thermogravimetric analysis (TGA)[J]. Bioresource Technology, 2011, 102(10): 6230-6238.

[24] Amutio M, Lopez G, Aguado R, et al. Kinetic study of lignocellulosic biomass oxidative pyrolysis[J]. Fuel, 2012, 95: 305-311.

[25] Ranzi E, Corbetta M, Manenti F, et al. Kinetic modeling of the thermal degradation and combustion of biomass[J]. Chemical Engineering Science, 2014, 110: 2-12.

[26] Shen D K, Gu S, Jin B, et al. Thermal degradation mechanisms of wood under inert and oxidative environments using DAEM methods[J]. Bioresource Technology, 2011, 102(2): 2047-2052.

[27] Gašparovič L, Labovský J, Markoš J, et al. Calculation of kinetic parameters of the thermal decomposition of wood by distributed activation energy model (DAEM)[J]. Chemical and Biochemical Engineering Quarterly, 2012, 26(1): 45-53.

[28] Parveen M, Islam M R, Haniu H. Thermal Decomposition Behavior Study of Two Agricultural Solid Wastes for Production of Bio-Fuels by Pyrolysis Technology[J]. Journal of Thermal Science and Technology, 2011, 6(1): 132-139.

[29] Tsamba A J, Yang W, Blasiak W. Pyrolysis characteristics and global kinetics of coconut and cashew nut shells[J]. Fuel Processing Technology, 2006, 87(6): 523-530.

[30] 闵凡飞,张明旭,陈清如,等. 新鲜生物质催化热解特性的研究[J].林产化学与工业,2008,28(3):28-33. Min Fanfei, Zhang Mingxu, Chen Qingru, et al. Study on catalytic pyrolysis of fresh biomass[J]. Chemistry & Industry of Forest Products, 2008, 28(3): 28-34. (in Chinese with English abstract)

[31] 王威岗,韦杰,董长青. 木质纤维热解的热重和反应动力学研究[J]. 可再生能源,2007,25(5):23-36. Wang Weigang, Wei Jie, Dong Changqing. Thermogravimetric and thermokinetic study on pyrolysis of cellulose[J]. Renewable Energy Resources, 2007, 25(5): 23-36. (in Chinese with English abstract)

[32] Vyazovkin S, Wight C A. Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data[J]. Thermochimicaacta, 1999, 340: 53-68.

[33] FriedmanH L. Kinetics of thermal degradation of char-forming plastic from thermogravimetry. Application to a phenolic plastic[J]. J Polym Sci part C, 1964(6): 183-195.

[34] Šesták J, Berggren G. Study of the kinetics of the mechanism of solid-state reactions at increasing temperatures[J]. Thermochim Acta, 1971, 31(1): 1-12.

[35] HeideK, Höland W, Gŏlker H, et al. Die bestimmung kinetischer parameter endothermer zersetzungsreaktionen unter nicht-isothermen bedingungenThermochim. Acta, 1975, 13(4): 365-378.

[36] Zhang J J, Ge L G, Zha X L, et al. Thermal decomposition kinetics of the Zn(II) complex with norfloxacin in static air atmosphere[J]. J Therm Anal Cal, 1999, 58(2): 269-278.

Thermokinetics analysis of biomass based on model-free different heating rate method

Tian Yishui1,2, Wang Ru1,3
(1. Rural Energy and Environmental Research Institute, Chinese Academy of Agricultural Engineering, Beijing 100125, China; 2. Key Laboratory of Energy Resource Utilization from Agricultural Residues, Ministry of Agriculture, Beijing 100125, China; 3. College of Engineering of China Agricultural University, Beijing 100083, China)

Abstract:Thermokinetics analysis can test the relationship between physical and chemical properties of material and temperature through controlling heating rate. Through thermokinetics analysis, we can study the combustion, pyrolysis and gasification reaction kinetics of biomass, decide the reaction kinetics model and calculate the reaction kinetics parameters, such as activation energy and pre-exponential factor. In the article, we chose 6 kinds of biomass raw materials, including corn straw, wheat straw, cotton stalk, pine sawdust, peanut shell, and residue of sweet sorghum. The thermal gravity analysis (TG) experiments were carried out, and 8 loss curves were obtained under non-isothermal conditions at linear heating rate of 5, 10, 20 and 30 ℃/min. The 99.99% nitrogen continuously passed and the temperature rose from room temperature to 600℃. The initial sample weight was always within the range of 3-4 mg. The method of different heating rates was applied to non-isothermal data. The Friedman method and the Flynn-Wall-Ozawa method were used for the estimation of the activation energy, and the Malek method was used for the decision of the reaction kinetics model, which were defined as the sample of the pre-exponential factor and the conversion function, respectively. The results showed that the pyrolysis process of biomass included 3 main stages: drying and preheating stage, volatile matter evaporation stage and carbonization stage. The higher the total moisture in biomass, the greater the mass loss rate for the sample at the first stage. Volatile matter evaporation stage was the most important stage in the pyrolysis process, in which the mass loss rate of the sample increased rapidly with the increase of the temperature. The carbonization stage was mainly the continued pyrolysis of lignin, and carbon and ash were the final products. In the whole range of conversion rate, the activation energy of biomass was not a fixed value, and it would increase gradually with the increase of conversion rate. Due to the influence of the particle size, the buoyancy and the non homogeneous phase, in the range of conversion rate <0.2, and >0.8, the TG curve was difficult to meet the requirements of the temperature at different heating rates under the same conversion rate. In the volatile matter evaporation stage, the activation energies obtained by Friedman method and Flynn-Wall-Ozawa method were almost the same and hardly changed with the conversion rate. The pyrolysis activation energy of the biomass ranged from 144.61 to 167.34 kJ/mol, and the correlation coefficient was almost between 0.99 and 1.00. This shows that the calculation method of the activation energy is reliable in this paper. Among biomass raw materials, corn straw and wheat straw belonged to gramineous crops, whose activation energy was high, 167.34 and 167.20 kJ/mol respectively; lignification degree of cotton stalk, pine sawdust and peanut shell was higher, whose activation energy was lower, 154.06, 147.29 and 146.91 kJ/mol respectively; residue of sweet sorghum was processed by biochemical process, whose activation energy was the lowest, 144.61 kJ/mol. The reaction kinetics models of the biomass conformed the Avrami-Erofeev function. This shows that because the composition and structure of different biomass materials are basically the same, the reaction kinetics models are basically the same. But, there were some differences in the reaction orders. The reaction order of corn stalk and peanut shell was 3; the reaction order of wheat straw, cotton stalk and residue of sweet sorghum was 2; and the reaction order of pine sawdust was 1.5. The pre-exponential factor of the biomass ranged from 26.66 to 33.97 s-1. Our results show that biomass pyrolysis is an extremely complex multi-step process, which has different activation energy and reaction kinetics model in different temperature range. This is important theoretical basis for the optimization of process conditions and engineering amplification of biomass pyrolysis process.

Keywords:biomass; thermodynamics; temperature; thermal analysis; activation energy; reaction kinetics model

作者简介:田宜水,男,辽宁阜新人,研究员,主要从事生物质能、秸秆综合利用和农业循环经济研究工作。北京农业部规划设计研究院,100125。Email:yishuit@yahoo.com。中国农业工程学会会员:田宜水(E041200402S)

基金项目:2014年农村能源综合建设项目

收稿日期:2015-07-08

修订日期:2015-12-17

中图分类号:TK6

文献标志码:A

文章编号:1002-6819(2016)-03-0234-07

doi:10.11975/j.issn.1002-6819.2016.03.034 10.11975/j.issn.1002-6819.2016.03.034http://www.tcsae.org

猜你喜欢
生物质温度
“温度”“熔化和凝固”知识巩固
生物质挥发分燃烧NO生成规律研究
一张票的温度
《生物质化学工程》第九届编委会名单
《造纸与生物质材料》(英文)2020年第3期摘要
停留在心的温度
燃煤联姻生物质困局
生物质纤维在针织行业的应用
生物质碳基固体酸的制备及其催化性能研究
测个温度再盖被