水环境中四环素类抗生素降解及去除研究进展

2016-03-17 07:48张杏艳陈中华邓海明杨楷龚胜卢文学蓝海恩
生态毒理学报 2016年6期
关键词:类抗生素水体抗生素

张杏艳,陈中华,邓海明,杨楷,龚胜,卢文学,蓝海恩

广西壮族自治区畜牧研究所,南宁 530001

水环境中四环素类抗生素降解及去除研究进展

张杏艳,陈中华,邓海明,杨楷,龚胜,卢文学,蓝海恩*

广西壮族自治区畜牧研究所,南宁 530001

四环素类抗生素是治疗与预防人类和动物疾病及细菌感染的一类广谱抗菌药。在畜牧养殖中,四环素类抗生素做为疾病治疗药物和促生长剂应用广泛,使用量巨大。本文综述了四环素类抗生素在水环境中的污染现状及其在水中的降解和去除研究进展。

四环素;抗生素;生态毒理;污染现状;降解;去除

四环素类抗生素(tetracycline antibiotics, TCs)是一类具有并四苯结构的广谱抗生素(图1),主要包括金霉素(chlotetracycline, CTC)、土霉素(oxytetracycline, OTC)、四环素(tetracycline, TET)及强力霉素(doxycycline, DOC)等。TCs可抑制肠道细菌繁殖,促进牲畜生长,60年代后被作为饲料添加剂在我国广泛应用[1]。我国缺乏完善的兽药抗生素使用监控系统,TCs滥用情况普遍。2010年我国仅CTC的使用量就高达71 900 t,比美国整个TCs总的年使用量要高22倍[2]。2013年我国TCs的使用量为12 000 t,是英国整个抗生素总使用量的11倍[3]。抗生素摄入体内后很难被消化系统吸收,大多数抗生素以原药形式随粪便和尿液排出体外[4],如TCs排泄率达69%~86%[5]。而将动物粪便还田在中国是非常普遍的做法。经测算,2011年中国排放到环境中的畜禽粪便达21.21亿t,预计到2020年和2030年中国畜禽粪便的排放量将分别达到28.75亿t和37.43亿t[6]。这些畜禽粪便多有TCs残留,如猪粪中,OTC、TET、CTC平均含量分别为9.09、5.22、3.57 mg·kg-1[7]。TCs水溶性较好,易随畜禽粪便还田进入土壤并最终进入地表水体。在一些养殖场的周围水体中,TCs含量可达到异常高的水平[8-9]。目前,我国尚无抗生素环境标准,而抗生素可能导致生物毒性和致病菌产生抗药性基因等环境风险[10],抗生素环境污染已引起人们的高度关注。本文综述了TCs在水体中的污染现状,降解及去除的研究进展。

图1 四环素类抗生素(TCs)的分子结构Fig. 1 The molecular structure of the tetracycline antibiotics (TCs)

表1 水体中TCs的浓度Table 1 The concentrations of TCs in water environment

注:OTC、TET、DOC、CTC表示土霉素、四环素、强力霉素和金霉素。

Note: OTC, TET, DOC and CTC mean oxytetracycline, tetracycline, doxycycline, and chlotetracycline.

1 水体中TCs的污染(The pollution status of TCs in water environment)

TCs为酸碱两性物质,且其盐酸盐性质较稳定[11]。TCs盐酸盐在水溶液中溶解度较大[12],因此,随粪便施用进入到环境的中TCs很容易随雨水进入到水体,水体也最先受到TCs的污染。

TCs在不同水体中的浓度与其特性和来源有关,猪场等养殖废水中TCs残留量最高,可达mg·L-1级别,畜禽养殖排污口及周边水体次之,在几到几十μg·L-1级别,而地表水多在10 μg·L-1以下(表1)。而地下水和饮用水源也已检测到OTC和TET的存在,浓度分别为0.0086 μg·L-1和0.0036 μg·L-1[13]。

TCs除浓度不断增长之外,影响范围也在不断扩大。2010年江苏27个规模化养殖场排水口和周围环境53个水体样品中,OTC、CTC、TET和DOC的检出率分别为60.4%、60.4%、34.0%和17.0%[14]。2014年北京温榆河2 478 km2流域面积62个采样点中,CTC、OTC、TET、DOC的检出率已达到91%、91%、93%、64%[15]。2015年TCs在全国58个流域的预测平均浓度在几到几十ng·L-1之间,全国超一半的水域受抗生素的污染,东部流域抗生素污染比西部流域严重,北方流域和南方流域抗生素污染最严重的是海河和珠江,其抗生素环境预测浓度比雅鲁藏布江等西部流域高出几十倍[3]。

2 TCs在环境中的降解(The degradation of TCs in environment)

TCs在不同环境介质和条件下降解的半衰期差别很大(表2),短则几小时,长可超过160 d。TCs在环境中主要发生非生物降解和生物降解,其中,非生物降解包括光降解、氧化降解、水解,生物降解包括微生物降解和植物降解。

2.1 光降解

表2 TCs在不同环境介质及条件下降解的半衰期Table 2 Half-life of TCs in different environmental media and condition

2.2 氧化降解

TCs在电、强氧化剂的作用下会发生氧化降解。电化学氧化降解对CTC的去除效率为40%~50%,其降解机理在于在酸性体系中,CTC分子结构中的苯环受到羟基自由基的进攻而活化并逐步降解,而在中性和碱性体系中,CTC则在羟基自由基和超氧自由基的共同作用下降解;若在pH=3的电解体系中引入亚铁离子,在光照产生的超氧自由基作用下CTC与亚铁络合脱除2个氢生成产物(532=479+56-2),亚铁离子的引入使得CTC的氧化降解达到60%~94%[40]。而强氧化剂臭氧的氧化能力极强,可对双键、芳香族化合物、杂环化合物、胺等化合物直接氧化或分解生成羟基自由基[41]。臭氧对TCs的氧化机理为先对C11a-C12和C2-C3两个双键、芳香环和氨基进行氧化,产生质核比为461、477、509和416的化合物,再进一步氧化至产生质核比为432、480、448、525和496的化合物,臭氧的强氧化作用对TCs的降解效率非常高,只需臭氧处理4~6 min,TET就可以完全去除[42],如,20 mg·L-1的TET经过5 min臭氧处理就可以完全降解[43]。水中TET的氧化降解受pH、臭氧浓度、臭氧流速的影响显著,且TET的降解随pH、臭氧浓度、臭氧流速的升高而增强[44]。臭氧在增大OTC生物可降解性的同时,还能减少其对活性污泥细菌的毒性[45]。高铁酸钾(Fe(VI))对TET的氧化降解受pH和Fe(VI)浓度的影响较大,其降解效率取决于pH和初始Fe(VI)浓度[46]。氧化降解法处理的效率高,反应速度快,使用范围广泛,但处理费用比较高,反应器复杂,反应条件严格还有会副产物产生。

2.3 水解

水解是TCs在水环境中降解的主要途径[47]。TCs分子中含有酚羟基、烯醇和二甲氨基等多个功能团,在酸性条件下C-6羟基和C-5上的氢正好处于反式构型,易发生消除反应,生成无活性橙黄色脱水物,而C-4二甲氨基易发生可逆的差向异构化反应,在碱性条件下TCs可生成具有内酯结构的异构体。此外,OTC由于存在C-5羟基与C-4二甲氨基之间形成的氢键,4位的差向异构化比TET难,而CTC由于C-7氯原子的空间排斥作用,使4位异构化反应比TET更容易发生。TCs在水体中降解途径主要为差向异构化,不过差向化还不是TCs在水体中的降解终点,如CTC水解产物就有de-CTC、iso-CTC以及它们的差向异构体。TCs的水解受pH和温度的影响较大,在TCs降解速率随pH和温度的升高而升高,而离子强度对TCs的水解则无明显影响[35,48]。水解的过程比较长且效果有限,在实际应用中多作为辅助手段使用。

2.4 微生物降解

微生物可以改变抗生素的结构和理化性质,将抗生素从大分子化合物降解成小分子化合物,直至转变成H2O和CO2。在抗生素的生物降解中,耐药细菌的作用最大,耐药菌可直接破坏和修饰抗生素而使其失活,光合菌、发酵丝状菌、芽孢杆菌、枯草杆菌、乳酸菌、放线菌、酵母菌、硝化细菌、酵母均具有抗生素降解功能[49]。耐药菌对TCs的降解机制大概有3种:①水解,TCs含有酰胺键等易水解的敏感化学键,耐药菌通过酶消除这些化学键而使TCs失去活性;②乙酰转移,耐药菌通过对TCs羟基或酰胺基等活泼基团的共价修饰导致其失去靶点结合能力而使其失活,乙酰转移是细菌使抗生素失活的常用机制;③氧化还原机制,TET可被耐药性酶TetX氧化。研究表明,在猪粪中添加外源微生物可以提高猪粪中TCs的降解,且外源微生物对TCs的降解率为:CTC > OTC > TET[50]。在堆肥中添加外源复合菌系之后,CTC的降解率可提高20%[51]。白腐菌产生的天然木质素过氧化物酶和锰过氧化物酶在体外对TET和OTC有很强的降解能力[52-53],谷胱甘肽硫转移酶可将60%~70%的抗生素转变为对微生物没有毒性的成分[54]。微生物降解法高效无污染,其难点在于微生物菌株的筛选及复合菌种组合条件的控制,微生物降解法在堆肥及废水处理过程中应用广泛。

2.5 植物降解

植物可通过直接吸收或根系分泌物以及根系微生物转化对抗生素进行降解。研究表明,CTC可被植物直接吸收[49]。植物修复可能是实际修复抗生素污染的水体的最可行的方法。植物修复最常见的做法就是人工湿地修复系统和水生植物浮床。水烛和芦苇是常见的水生植物,对TCs具有很好的去除效果,在以水烛、芦苇构建的人工湿地对DOC的去除效率分别为65%~75%和62%[55]。大漂和凤眼莲对水中TCs也具有清除作用,凤眼莲在抗生素浓度< 2.5 mg·L-1的污水中对TCs的去除效率可达80%,且凤眼莲去除水中盐酸金霉素与盐酸土霉素的效果优于大漂[56]。水生蔬菜也可去除水环境中的TCs,且受季节变化影响比较大,在夏季,水芹过滤床系统对TCs的去除效率明显高于空心菜滤床系统,其对TCs的去除效率分别为71.83%和33.28%,但在冬季,2组水生植物滤床系统对TCs的去除效率差异不显著[57]。植物降解法无需添加化学试剂,也不会造成二次污染,且成本低,处理效果好,不足之处在于植物降解法占用的土地面积比较大,人工湿地多为地表潜流,在处理过程中偶尔会产生臭味。植物降解法更适用于处理城镇周边及规模化养殖场氧化塘废水中的抗生素。

3 水环境中TCs的去除(The elimination of TCs in environment)

综上所述,TCs在环境中可通过多种降解反应去除,污水处理厂处理工艺综合了多种降解反应,是目前去除环境中TCs的最主要的方式。

污水处理厂对TCs总的去除效率为18%~100%,其中对CTC的去除效率为18%~47%,对TET和OTC的去除效率为100%,污水处理厂对TCs的去除主要发生在初级阶段(格栅、曝气、初级沉淀),初级阶段对OTC的去除率超过60%[58]。不同的污水处理工艺对TCs的去除效率差别很大,见表3。活性污泥工艺是废水中TCs去除的主要途径[59]。活性污泥对TCs的去除机制以吸附作用为主,除对CTC产生少量的生物降解外,对OTC和TET则几乎不产生生物降解,活性污泥对TCs去除率的大小顺序为:OTC > TET > CTC;并随着pH值的增大,活性污泥对3种抗生素的吸附量均逐渐减小,且在同一pH值条件下的去除率大小始终为:OTC > TET > CTC[60]。A2/O工艺主要通过生物降解和吸附作用去除TCs,其吸附作用对TET、OTC、CTC的去除贡献分别为29%、38%、39%,生物降解为21%、22%、47%[61],A2/O工艺对TCs的去除能力高于活性污泥工艺。反渗透、活性炭、臭氧等这些污水处理技术对抗生素有明显的降低和消除作用[62],然而这些技术在污水处理厂却很少配备。污水处理工艺对TCs的去除效率受污泥停留时间、水力停留时间、温度、pH值、钙镁离子浓度、微生物总量和细菌耐受性的影响。

表3 不同污水处理工艺对TCs的去除效率Table 3 Removal efficiency of TCs by different wastewater treatment process

活性污泥法处理能力高,出水水质好,但运行成本高,能量消耗大,管理复杂且有污泥膨胀问题;膜生物反应器运行稳定,可封闭运转,无臭,能耗低,但成本高,生物膜片容易脱落,影响出水水质;氧化法反应速度快,适用范围广,效率高,但处理费用较高,反应条件复杂。

4 展望(Prospect)

综上所述,我国TCs的使用量巨大,TCs的污染有越演愈烈的趋势。虽然人们对TCs的污染和降解途径做了大量的研究,但仍然有许多问题尚待解决,如:

(1)TCs在局部和较短时间内的环境浓度比较容易测定,但其在环境中的迁移转化过程复杂,目前缺乏精准的可大范围长时间预测TCs环境浓度的模型,TCs剩余的环境容量需进一步确定,我国也还没有TCs的环境质量标准和排放标准。

(2)TCs的降解途径多样,但在实际应用中对TCs的去除有限或成本较高,微生物去除法受限于微生物对TCs的耐受性。高效、简便、安全、经济的多组合方式去除TCs有待进一步研究。

(3)TCs畜牧养殖来源量最大,然而我国普遍缺乏处理TCs的基础设施,各种小型的,适用于规模化养殖厂和小养殖户的TCs去除方法和设备亟待开发和研究。

致谢:感谢海南大学环境科学系副教授葛成军在文章修改中给予的帮助。

[1] 池振兴. 四环素类污染物毒性的微观机制研究[D]. 济南: 山东大学, 2012: 1-4

Chi Z X. Investigation on the micromechanism of the toxicity of tetracyclines[D]. Jinan: Shandong University, 2012: 1-4 (in Chinese)

[2] 郭欣妍, 王娜, 许静, 等. 兽药抗生素的环境暴露水平及其环境归趋研究进展[J]. 环境科学与技术, 2014, 37(9): 76-86

Guo X Y, Wang N, Xu J, et al. Research progress on environmental exposure levels and environmental fate of veterinary antibiotics [J]. Environmental Science & Technology, 2014, 37(9): 76-86 (in Chinese)

[3] Zhang Q Q, Ying G G, Pan C G, et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: Source analysis, multimedia modeling, and linkage to bacterial resistance [J]. Environmental Science & Technology, 2015, 49(11): 6772-6782

[4] Kay P, Blackwell P A, Boxall A, et al. Transport of veterinary antibiotics in overland flow following the application of slurry to arable land [J]. Chemosphere, 2005, 59(7): 951-959

[5] Toxicology Data Network [EB/OL]. (2013-05-01) [2016-02-24]. http://www.toxnet.nlm.nih.gov.

[6] 朱宁, 马骥. 中国畜禽粪便产生量的变动特征及未来发展展望[J]. 农业展望, 2014(1): 46-48

Zhu N, Ma J.Changes and outlook about production amount of livestock and poultry manure in China [J]. Agricultural Outlook, 2014(1): 46-48 (in Chinese)

[7] 张树清, 张夫道, 刘秀梅, 等. 规模化养殖畜禽粪主要有害成分测定分析研究[J]. 植物营养与肥料学报, 2005, 11(6): 822-829

Zhang S Q, Zhang F D, Liu X M, et al. Determination and analysis on main harmful composition in excrement of scale livestock and poultry feedlots[J]. Plant Nutrition and Fertilizer Science, 2005, 11(6): 822-829 (in Chinese)

[8] Leung H W, Minh T B, Murphy M B, et al. Distribution, fate and risk assessment of antibiotics in sewage treatment plants in Hong Kong, South China [J]. Environment International, 2012, 42: 1-9

[9] Gao L, Shi Y, Li W, et al. Occurrence of antibiotics in eight sewage treatment plants in Beijing, China [J]. Chemosphere, 2012, 86(6): 665-671

[10] 周启星, 罗义, 王美娥. 抗生素的环境残留、生态毒性及抗性基因污染[J]. 生态毒理学报, 2007, 2(3): 243-251

Zhou Q X, Luo Y, Wang M E. Environmental residues and ecotoxicity of antibiotics and their resistance gene pollution: A review [J]. Asian Journal of Ecotoxicology, 2007, 2(3): 243-251 (in Chinese)

[11] Brain R A, Wilson C J, Johnson D J, et al. Effects of a mixture of tetracyclines to Lemna gibba and Myriophyllum sibiricum evaluated in aquatic microcosms [J]. Environmental Pollution (Barking, Essex: 1987), 2005, 138(3): 425-442

[12] Thiele-Bruhn S. Pharmaceutical antibiotic compounds in soils—A review [J]. Journal of Plant Nutrition and Soil Science, 2003, 166(2): 145-167

[13] Tong L, Li P, Wang Y, et al. Analysis of veterinary antibiotic residues in swine wastewater and environmental water samples using optimized SPE-LC/MS/MS [J]. Chemosphere, 2009, 74: 1090-1097

[14] 魏瑞成, 葛峰, 陈明, 等. 江苏省畜禽养殖场水环境中四环类抗生素污染研究[J]. 农业环境科学学报, 2010, 29(6): 1205-1210

Wei R C, Ge F, Chen M, et al. Pollution of tetracyclines from livestock and poultry farms in aquatic environment in Jiangsu Province, China [J]. Journal of Agro-Environment Science, 2010, 29(6): 1205-1210 (in Chinese)

[15] Zhang Q Q, Jia A, Wan Y, et al. Occurrences of three classes of antibiotics in a natural river basin: Association with antibiotic-resistant Escherichia coli [J]. Environmental Science & Technology, 2014, 48: 14317-14325

[16] 刘虹, 张国平, 刘丛强. 固相萃取-色谱测定水, 沉积物及土壤中氯霉素和3种四环素类抗生素[J]. 分析化学, 2007, 35(3): 315-319

Liu H, Zhang G P, Liu C Q. Determination of chloramphenicol and three tetracyclines by solid phase extraction and high performance liquid chromatography-ultraviolet detection[J]. Chinese Journal of Analytical Chemistry, 2007, 35(3): 315-319 (in Chinese)

[17] Lindsey M E, Meyer T M, Thurman E M, et al. Analysis of trace levels of sulfonamide and tetracycline antimicrobials in groundwater and surface water using solid-phase extraction and liquid chromatography/ mass spectrometry [J]. Analytical Chemistry, 2001, 73(19): 4640-4646

[18] Pailler J Y, Krein A, Pfister L, et al. Solid phase extraction coupled to liquid chromatography-tandem mass spectrometry analysis of sulfonamides, tetracyclines, analgesics and hormones in surface water and wastewater in Luxembourg [J]. The Science of The Total Environment, 2009, 407(16): 4736-4743

[19] Luo Y, Xu L, Rysz M, et al. Occurrence and transport of tetracycline, sulfonamide, quinolone, and macrolide antibiotics in the Haihe River Basin, China [J]. Environmental Science & Technology, 2011, 45(5): 1827-1833

[20] Kim S, Carlson K.Temporal and spatial trends in the occurrence of human and veterinary antibiotics in aqueous and river sediment matrices [J]. Environmental Science & Technology, 2007, 41(1): 50-57

[21] Ruan Y F, Chen J M, Guo C S, et al. Distribution characteristics of typical antibiotics in surface water and sediments from freshwater aquaculture water in Tianjin suburban areas, China [J]. Journal of Agro-Environment Science, 2011, 30(12): 2586-2593

[22] Batt A L, Bruce I B, Aga D S. Evaluating the vulnerability of surface water to antibiotic contamination from varying wastewater treatment plant discharges [J]. Environmental Pollution, 2006, 142(2): 295-302

[23] Jiang H, Zhang D, Xiao S, et al. Occurrence and sources of antibiotics and their metabolites in river water, WWTPs, and swine wastewater in Jiulongjiang River basin, South China [J]. Environmental Science & Pollution Research, 2013, 20(12): 9075-9083

[24] 李伟明, 鲍艳宇, 周启星. 四环素类抗生素降解途径及其主要降解产物研究进展[J]. 应用生态学报, 2012, 23(8): 2300-2308

Li W M, Bao Y Y, Zhou Q X. Degradation pathways and main degradation products of tetracycline antibiotics: Research progress[J]. Chinese Journal of Applied Ecology, 2012, 23(8): 2300-2308 (in Chinese)

[25] Jiao S J, Zheng S R, Yin D Q, et al. Aqueous photolysis of tetracycline and toxicity of photolytic products to luminescent bacteria [J]. Chemosphere, 2008, 73(3): 377-382

[26] 黄丽萍. 水中典型抗生素的光化学降解研究[D]. 上海: 东华大学, 2011: 27-49

Huang L P. Studies on photochemical degradation of typical antibiotics [D]. Shanghai: Huangdong University, 2011: 27-49 (in Chinese)

[27] Liu W, Wang H, Chen X J, et al. Research on degradation of antibiotics in the environment [J]. Progress in Veterinary Medicine, 2009, 30(3): 89-94

[28] Reyes C, Fernandez J, Freer J, et al. Degradation and inactivation of tetracycline by TiO2photocatalysis [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 184: 141 -146

[29] Gao J M, Zheng Z G, Wang Y. Photodegradation of tetracycline by TiO2/ZnO [J]. Chongqing Environmental Science, 2003, 25(1): 17-19

[30] 宋晨怡, 尹大强. 四环素光催化降解特性与选择性研究[J]. 环境科学, 2014, 35(2): 619-625

Song C Y, Yin D Q. Characteristics and selectivity of photocatalytic-degradation of tetracycline hydrochloride[J]. Environmental Science, 2014, 35(2): 619-625 (in Chinese)

[31] 朱向东, 王玉军, 孙瑞娟, 等. 溶液酸度对四环素类物质光降解和光催化降解速率的影响[J]. 生态与农村环境学报, 2012, 28(6): 742-745

Zhu X D, Wang Y J, Sun R J, et al. Effect of solution pH on photodegradation and photocatalytic degradation of tetracyclines[J]. Journal of Ecology and Rural Environment, 2012, 28(6): 742-745 (in Chinese)

[32] Castillo C, Criado S, Dfaz M, et al. Riboflavin as a sensitiser in the photodegradation of tetracyclines. Kinetics, mechanism and microbiological implications [J]. Dyes and Pigments, 2007, 72: 178-184

[33] 李华. 水体中四环素类抗生素的光化学行为研究[D]. 武汉: 华中科技大学, 2011: 11-42

Li H. Photochemical behavior of tetracyclines in aquatic system [D]. Wuhan: Huazhong University, 2011:11-42 (in Chinese)

[34] Pouliquen H, Delepee R, Larhantec-Verdier M, et al. Comparative hydrolysis and photolysis of four antibacterial agents (oxytetracycline oxolinic acid, flumequine and florfenicol) in deionised water, freshwater, and seawater under abiotic conditions [J]. Aquaculture, 2007, 262: 23-28

[35] Loftin K A, Adams C D, Meyer M T, et al. Effects of ionic strength, temperature, and pH on degradation of selected antibiotics [J]. Journal of Environmental Quality, 2008, 37(2): 378-386

[36] 张健, 关连珠, 颜丽. 不同畜禽粪便所含金霉素在土壤中的动态变化及降解途径[J]. 生态学杂志, 2011, 30(6): 1125-1130

Zhang J, Guan L Z, Yan L. Dynamics and degradation approach of different domestic animal feces chloroteracyline in soil [J]. Chinese Journal of Ecology, 2011, 30(6): 1125-1130 (in Chinese)

[37] Bao Y, Zhou Q, Guan L, et al. Depletion of chlortetracycline during composting of aged and spiked manures [J]. Waste Management (New York, N.Y.), 2009, 29(4): 1416-1423

[38] 匡光伟, 孙志良, 陈小军, 等. 四环素类抗菌药物在鸡粪中的降解研究[J]. 农业环境科学学报, 2007, 26(5): 1784-1788

Kuang G W, Sun Z L, Chen X J, et al. Degradation of tetracyclines in chicken feces [J]. Journal of Agro-Environment Science, 2007, 26(5): 1784-1788 (in Chinese)

[39] Wu X F, Wei Y S, Zheng J X, et al. The behavior of tetracyclines and their degradation products during swine manure composting [J]. Bioresource Technology, 2011, 102(10): 5924-5931

[40] 相欣奕. 氧化技术降解典型有机污染物研究[D]. 重庆: 重庆大学, 2013: 23-122

Xiang X Y. Pathways and application of oxidative degradation of typical organic pollutants[D]. Chongqing: Chongqing University, 2013: 23-122 (in Chinese)

[41] 孙秋月. 饮用水臭氧催化氧化工艺去除典型抗生素的研究[D]. 济南: 山东建筑大学, 2014: 25-45

Sun Q Y. Research on removal of typical antibiotics by ozone catalytic oxidation process in drinking water [D]. Jinan: Shandong Architecture University, 2014: 25-45 (in Chinese)

[42] Khan M H, Bae H, Jung J Y. Tetracycline degradation by ozonation in the aqueous phase: Proposed degradation intermediates and pathway [J]. Journal of Hazardous Materials, 2010, 181(1-3): 659-665

[43] Wu J G, Jiang Y X, Zha L Y, et al. Tetracycline degradation by ozonation, and evaluation of biodegradability and toxicity of ozonation byproducts [J]. Canadian Journal of Civil Engineering, 2010, 37(11): 1485-1491

[44] Wang Y, Zhang H, Zhang J H, et al. Degradation of tetracycline in aqueous media by ozonation in an internal loop-lift reactor [J]. Journal of Hazardous Materials, 2011, 192(1): 35-43

[45] Uslu M O, Balcioglu I A. Ozonation of animal wastes containing oxytetracycline [J]. Ozone Science and Engineering, 2008, 30(4): 290-299

[46] Yang S F, Doong R A. Preparation of potassium ferrate for the degradation of tetracycline [J]. ACS Symposium Series, 2008, 985(25): 404-419

[47] 阿丹. 人工湿地对14种常用抗生素的去除效果及影响因素研究[D]. 广州: 暨南大学, 2012: 1-18

A D. The removal efficiency and impact factors of 14 antibiotics in constructed wetlands [D]. Guangzhou: Jinan University, 2012:1-18 (in Chinese)

[48] 郑丽英. 金霉素的水解动力学研究[J]. 广州化工, 2010, 38(12): 182-183, 191

Zheng L Y. Hydrolysis kinetics of the chlortetracycline [J]. Guangzhou Chemical Industry, 2010, 38(12): 182-183, 191 (in Chinese)

[49] 刘伟, 王慧, 陈小军, 等. 抗生素在环境中降解的研究进展[J]. 动物医学进展, 2009, 30(3): 89-94

Liu W, Wang H, Chen X J, et al. Research on degradation of antibiotics in the environment [J]. Progress in Veterinary Medicine, 2009, 30(3): 89-94 (in Chinese)

[50] 张健, 关连珠. 猪粪中3种四环素类抗生素在土壤中的动态变化及降解途径[J]. 植物营养与肥料学报, 2013, 19(3): 727-732

Zhang J, Gan L Z. Dynamics and mechanism of degradation of three tetracycline antibiotics from pig manures in soil [J]. Journal of Plant Nutrition and Fertilizer, 2013, 19(3): 727-732 (in Chinese)

[51] 秦莉, 高茹英, 李国学, 等. 外源复合菌系对堆肥纤维素和金霉素降解效果的研究[J]. 农业环境科学学报, 2009, 28(4): 820-823

Qin L, Gao R Y, Li G X, et al. Decomposition effect of additive of composite microbial system on cellulose and chlortetracycline in compositing [J]. Journal of Agro-Environment Science, 2009, 28(4): 820-823 (in Chinese)

[52] Wen X H, Jia Y N, Li J X. Degradation of tetracycline and oxytetracycline by crude lignin peroxidase prepared from Phanerochaete chrysosporium—A white rot fungus [J]. Chemosphere, 2009, 75(8): 1003-1007

[53] Wen X H, Jia Y N, Li J X. Enzymatic degradation of tetracycline and oxytetracycline by crude manganese peroxidase prepared from Phanerochaete chrysosporium [J]. Journal of Hazardous Materials, 2010, 177(1-3): 924-928

[54] Park H, Choung Y K. Degradation of antibiotics (tetracycline, sulfathiazole, ampicillin) using enzymes of glutathion S-transferase [J]. Human and Ecological Risk Assessment, 2007, 13(5): 1147-1155

[55] María H V, Guido F, Michael P, et al. Removal of antibiotics from urban wastewater by constructed wetland optimization [J]. Chemosphere, 2011, 83(5): 713-719

[56] 陈小洁, 李凤玉, 郝雅宾. 两种水生植物对抗生素污染水体的修复作用[J]. 亚热带植物科学, 2012, 41(4): 1-7

Chen X J, Li F Y, Hao Y B. The preliminary exploration of remediation the antibiotics polluted water by two hydrophytes [J]. Subtropical Plant Science, 2012, 41(4): 1-7 (in Chinese)

[57] 廖杰, 徐熙安, 刘玉洪, 等. 水生植物滤床深度处理养殖废水过程中抗生素与抗性基因的响应研究[J]. 环境科学学报, 2015, 35(8): 2464-2470

Liao J, Xu X A, Liu Y H, et al. Removal and response of antibiotics and antibiotic resistance genes during advanced treatment of livestock wastewater by aquatic plant filter bed [J]. Acta Scientiae Circumstantiae, 2015, 35(8): 2464-2470 (in Chinese)

[58] Chang X S, Michael T M, Liu X Y, et al. Determination of antibiotics in sewage from hospitals, nursery and slaughter house, wastewater treatment plant and source water in Chongqing region of Three Gorge Reservoir in China [J]. Environmental Pollution, 2010, 158(5): 1444-1450

[59] Zhou L J, Ying G G, Liu S, et al. Occurrence and fate of eleven classes of antibiotics in two typical wastewater treatment plants in South China [J]. Science of The Total Environment, 2013, 452-453: 356-376

[60] 李慧. 四环素类抗生素(TCs)在活性污泥处理系统中的去除行为研究[D]. 泰安: 山东农业大学, 2013: 33-61

Li H. The study of removal of tetracycline antibiotics (TCs) on activated sludge [D]. Tai'an: Shandong Agriculture University, 2013: 33-61 (in Chinese)

[61] Huang M A, Zhang W, Liu C, et al. Fate of trace tetracycline with resistant bacteria and resistance genes in an improved AAO wastewater treatment plant [J]. Process Safety and Environmental Protection, 2015, 93: 68-74

[62] Huang C H, Sedlak D L. Analysis of estrogenic hormones in municipal wastewater effluent and surface water using enzyme-linked immunosorbent assay and gas chromatography/tandem mass spectrometry [J]. Environmental Toxicology and Chemistry, 2001, 20: 133-139

[63] Gulkowska A, Leung H W, So M K, et al. Removal of antibiotics from wastewater by sewage treatment facilities in Hong Kong and Shenzhen, China [J]. Water Research, 2008, 42(1-2): 395-403

[64] Drillia P, Dokianakis S N, Fountoulakis M S, et al. On the occasional biodegradation of pharmaceuticals in the activated sludge process: The example of the antibiotic sulfamethoxazole [J]. Journal of Hazardous Materials, 2005, 122(3): 259-265

[65] Zhou P, Asce M, Su C, et al.Treatment of high-strength pharmaceutical wastewater and removal of antibiotics in anaerobic and aerobic biological treatment processes [J]. Journal of Environmental Engineering, 2006, 132(1): 129-136

[66] Batt A L, Kim S, Aga D S. Comparison of the occurrence of antibiotics in four full-scale wastewater treatment plants with varying designs and operations [J]. Chemosphere, 2007, 68(3): 428-435

[67] Huang M H, Zhang W, Liu C, et al. Fate of trace tetracycline with resistant bacteria and resistance genes in an improved AAO wastewater treatment plant [J]. Process Safety and Environmental Protection, 2015, 93: 68-74

[68] Matos M, Pereira M A, Parpot P, et al. Influence of tetracycline on the microbial community composition and activity of nitrifying biofilms [J]. Chemosphere, 2014, 117(1): 295-302

[69] 刘秀艳, 高永, 张魁. 四环素生产废水处理技术探索及工程实践[J]. 河北建筑工程学院学报, 2005, 23(1): 25-27

Liu X Y, Gao Y, Zhang K. Research and engineering practice on treating the wastewater from acheomycin producing process [J]. Journal of Hebei Institute of Architecture Engineering, 2005, 23(1): 25-27 (in Chinese)

A Review on Degradation and Elimination of Tetracycline Antibiotics in Water Environment

Zhang Xingyan, Chen Zhonghua, Deng Haiming, Yang Kai, Gong Sheng, Lu Wenxue, Lan Haien*

Guangxi Institute of Animal Husbandry, Nanning 530001, China

Received 24 February 2016 accepted 13 May 2016

Tetracycline antibiotics (TCs) are the broad-spectrum antibacterial drugs which prevent human and livestock bacterial infection and treat their disease. TCs are widely used in livestock and poultry culture industry as disease treatment drugs and growth promoter, and the amount of TCs consumed is enormous. The pollution status of TCs in water environment, and their degradation and elimination methods are summarized in this article.

tetracycline; antibiotics; pollution status; degradation and elimination; ecotoxicology

广西壮族自治区畜牧总站项目(A0287 201605813)

张杏艳(1986-),女,硕士,研究方向为畜牧养殖环境质量及生态毒理学,E-mail: zhangxingyan.06@163.com;

*通讯作者(Corresponding author), E-mail: Ihe.0504@163.com

10.7524/AJE.1673-5897.20160224001

2016-02-24 录用日期:2016-05-13

1673-5897(2016)6-044-09

X171.5

A

蓝海恩(1969-),男,高级畜牧师,主要从事养猪及养殖技术研究工作,共发表论文20余篇。

张杏艳, 陈中华, 邓海明, 等. 水环境中四环素类抗生素降解及去除研究进展[J]. 生态毒理学报,2016, 11(6): 44-52

Zhang X Y, Chen Z H, Deng H M, et al. A review on degradation and elimination of tetracycline antibiotics in water environment [J]. Asian Journal of Ecotoxicology, 2016, 11(6): 44-52 (in Chinese)

猜你喜欢
类抗生素水体抗生素
抗生素联合,搭配使用有讲究
农村黑臭水体治理和污水处理浅探
TiO2基光催化剂在降解水体污染物中的研究进展
新型铁碳微电解材料去除喹诺酮类抗生素研究
水产品中三种糖肽类抗生素检测方法的优化
皮肤受伤后不一定要用抗生素
生态修复理念在河道水体治理中的应用
抗生素的故事
广元:治理黑臭水体 再还水清岸美
注射用头孢菌素类抗生素与常用注射液的配伍稳定性