鞠丽丽,吴菊花,翁锡全,蔺海旗,林文弢
(1.广东生态工程职业学院,广州 510500;2.广西科技大学 体育学院,广西 柳州 545000;3.广州体育学院,广州 510500;4.华南理工大学,广州 510500)
低氧运动调控PPARα表达的研究述评
鞠丽丽1,吴菊花2,翁锡全3,蔺海旗4,林文弢3
(1.广东生态工程职业学院,广州 510500;2.广西科技大学 体育学院,广西 柳州 545000;3.广州体育学院,广州 510500;4.华南理工大学,广州 510500)
过氧化物酶体增殖物激活受体α(PPARα)是参与调控脂代谢、抑制炎症反应和促进脂肪细胞分化的重要细胞核受体。而低氧运动可通过激活一系列分子应答机制,促进机体不同组织PPARα表达及其介导的信号分子通路重新整合,从而改变机体脂代谢体系。利用文献资料法,梳理低氧刺激对机体PPARα表达影响的相关研究,总结不同组织PPARα对其低氧运动产生代偿性适应的可能分子机制,旨在更好地解释低氧环境下运动机体PPARα在调控脂代谢中的作用。
低氧运动;PPARα;脂代谢
科学运动能有效改善骨骼肌生理机能,增强代谢酶活性,调节血脂代谢,同时也是辅助治疗肥胖、糖尿病、心血管疾病等其他代谢性疾病的重要干预手段[1]。过氧化物酶体增殖物激活受体α(peroxisome proliferator activated receptors α,PPARα)是核受体超家族中由配体激活的核转录因子,可通过作用于靶基因的启动子调节基因转录,调控脂代谢、抑制炎症反应,促进白色脂肪“棕色化”等。而低氧环境下运动,可能通过诱导多种生物学反应过程,增强了机体的氧化酶活性,加速脂肪分解代谢,是运动控制体重的一个潜在靶标[2]。本文旨在阐述PPARα的结构及生物学功能,分析低氧运动对PPARα的影响,总结低氧运动下PPARα调节脂代谢的可能分子机制,为低氧运动控体重提供新途径。
1.1 PPARα的结构
1990年,Issemann等[3]首次发现PPARs。PPARs能调控独特的基因组表达,是能量平衡和营养代谢的转录调节子,其由PPARα、PPARβ和PPARγ三种亚型组成,且不同亚型由不同基因编码。PPARα结构包含4个功能结构域和6个结构区域(A/B,C,D,E/F),由468个氨基酸残基组成。PPARα的A/B激活功能区,是激酶的磷酸化作用位点,可增加PPARα与配体亲和力,影响其转录活性。C区具有高度保守性,可促进PPARα和目标基因上的PPARα反应元件(PPRE)结合;E/F配体结合区(LBD)负责与特异配体结合,增加目的基因表达,协助转录过程。
1.2 PPARα的生物学功能
PPARα能与配体结合而活化,其高表达于肝脏、骨骼肌、心肌、肾皮质等能量代谢旺盛的组织,与糖脂代谢、能量平衡调节、抑制炎症反应等密切相关[4]。研究显示,激活的PPARα与心血管等疾病代谢密切相关,如大鼠在缺血缺氧状态下,心肌通过下调PPARα表达,增加葡萄糖代谢供能比例,降低脂肪酸氧化供能比例,以减少心肌氧耗,增加心肌对缺血缺氧的耐受性,对心脏起到保护作用[2]。此外,研究还发现,激活的PPARα在促进白色脂肪“棕色化”中具有重要作用[5]。肌肉因子Irisin(鸢尾素)是一种跨膜蛋白,其作用于白色脂肪细胞,使PPARα mRNA表达水平升高了三倍多,若采用药物阻断PPARα的表达则抑制了Irisin的白色脂肪“棕色化”作用。
1.2.1 PPARα与脂代谢
众多实验证明,啮齿类动物中的PPARα激活会引发肝肿瘤和过氧化物增殖,而令人高兴的是,此作用并不在人类身上发生[6]。基因敲除PPARα的小鼠在饥饿状态下其脂肪酸转运和氧化会严重受损,并出现肝脏脂肪变性,而在进食状态下,肝脏仅存在轻微的脂肪变性[7]。这可能是由于PPARα表达受抑,引起肝内脂肪氧化酶基因转录水平下降,导致脂蛋白合成代谢障碍,脂质在肝脏沉积,加速了脂肪肝的发生。此外,研究表明,活化的PPARα可增加肝内脂蛋白脂肪酶(LPL)活性,而LPL可水解甘油三酯(TG),同时抑制肝细胞中ApoCⅢ基因转录,从而促进甘油三酯脂蛋白的代谢[8]。
1.2.2 PPARα与炎症反应
PPARα可抑制免疫应答,其配体可通过核因子-κB(NF-κB)信号通路抑制亚单位p65/ReLa转录活性,从而抑制炎症反应,然而当PPARα功能受到抑制时,转化生长因子β1(FGF-β1)、肿瘤坏死因子α(TNF-α)等炎性介质可通过NF-κB的信号通路被释放,引发肝脏炎症[9]。同样,Videla等[10]认为PPARα下调可增加肝脏炎性因子活性,促进脂肪变性向脂肪性肝炎的转化,但结果仍需证实。此外,PPARα激动剂作用于非脂肪肝小鼠,其肝脏炎性反应相关基因表达降低,说明PPARα有直接的抗炎作用。
1.2.3 PPARα与细胞分化
PPARα影响脂肪细胞分化。研究表明,激活的PPARα可增加小脂肪细胞的数量而减少大脂肪细胞,并促进白色脂肪向棕色脂肪的转化。最近研究发现,PPARα激动剂联合使用维甲酸可控制解偶联蛋白(UCP)的表达,并促使白色脂肪“棕色化”的发生[11]。此外,Ⅲ型纤连蛋白结构域5(FNDC5)可显著上调白色脂肪细胞中PPARα mRNA水平,而采用PPARα的拮抗剂(GW6471)进行阻断后,则显著抑制了PPARα发挥“棕色化”的作用[12]。肌肉因子Irisin作用于白色脂肪细胞后PPARα mRNA水平显著上调,则影响了脂肪细胞分化[13]。
调控PPARα表达的因素众多,主要包括正向调节和负向调控两方面。低氧暴露、低氧运动、冷暴露和饥饿等均可影响PPARα表达。而低氧暴露又是特殊的低氧运动,其泛指有机体以任何方式暴露于高原自然低氧或人工低氧环境(O2浓度低于20.9%)下进行运动的一种方式。低氧运动能有效控制体重,促进脂代谢,还可治疗糖尿病、高血压、心脏病等其他代谢性疾病[14]。雷雨等[15]指出低氧暴露和低氧运动能显著降低大鼠体重和体脂水平,且低氧运动降体重的效果特别显著。同样Korkushko等[16]也发现冠状动脉老年疾病患者进行间歇性低氧训练干预后,其心肌缺血和心绞痛的发生率明显降低,血脂代谢也基本恢复正常。此外,长时间高原低氧暴露能够提高大鼠骨骼肌PPARα mRNA、CPT1基因、蛋白表达水平,增加线粒体β-氧化速率,加快脂肪酸分解代谢。Feng L S等[17]研究显示,短期高原低氧暴露可显著降低骨骼肌中PPARα mRNA 和CPT1 mRNA 的活性,但随低氧暴露时间的延长其活性又逐渐提高。更有意思的是,高原低氧暴露30 d比急性高原暴露更能显著提高PPARα的活性。而James A等[18]在构建大鼠低氧运动能量代谢时间依赖性模型时发现,于10%低氧环境中暴露2 d和10 d后,大鼠左心室UCP3、CPT1表达增加,而PPARα表达未发生变化。另外还发现,运动过程中的机体缺氧同样可诱导骨骼肌PPARα表达升高[19]。由上可知,人为制造的低氧环境和运动所致的生理性缺氧都可影响PPARα表达,即可能在机体缺氧时,PPARα通过调节UCP3、CPT1等表达来调控脂肪氧化代谢和细胞应激,进而控制体重。此外,PPARα的表达还存在负向调控因子,但到目前为止,此方面的具体影响尚未清楚,仍需继续探索。
2.1 低氧运动对肝脏中PPARα的影响
肝脏是脂类代谢的重要场所,肝脏内的高脂肪酸水平可激活PPARα,随后影响脂肪酸代谢相关酶基因的表达。而有研究显示低氧暴露、低氧运动等应激条件下,肝脏PPARα的表达降低,以满足机体的供能需求。Li J G等[20]对小鼠进行12周的间歇低氧暴露后发现,小鼠肝脏中乙酰辅酶 A 羧化酶(ACC)和固醇调节元件结合蛋白(SREBP-1 mRNA)表达显著增加,同时肝脏中脂肪合成显著升高。与此相似,Piguet A C和Tong L等[21-22]也对小鼠进行低氧暴露,发现肝脏中ACC的表达升高,肝脏中脂类合成增加,而PPARα mRNA和CPT1表达显著降低,且脂肪酸氧化减少。随后又研究发现,低氧运动可降低CPT1蛋白表达,抑制长链脂肪酸向线粒体内的转运,提高肝脏脂肪酸的转运能力,从而降低大鼠体重及体脂。但综合相关研究发现,低氧暴露和低氧运动均可降低大鼠肝脏PPARα、CPT1基因和蛋白表达,而增加PPARα mRNA和CPT1等在骨骼肌中的基因、蛋白表达水平[23]。综上可知,肝脏是脂肪合成的重要器官,低氧暴露可提高肝脏中脂肪合成关键蛋白ACC和SREBP-1 mRNA等表达,促进肝脏中脂类合成,而降低分解蛋白PPARα、CPT1的表达,减少脂类在肝脏中氧化,从而将肝脏合成的脂肪转运至骨骼肌等能量代谢旺盛的组织氧化利用,达到降低体重、体脂的目的。
2.2 低氧运动对骨骼肌中PPARα的影响
骨骼肌是机体重要的耗氧器官之一,能量代谢旺盛,其形态结构和功能可随着冷暴露、低氧刺激而产生适应性变化。有研究表明,高住高练比低住低练更能显著提高大鼠腓肠肌中PPARα和CPT1 mRNA的表达[24]。另有研究指出,低氧运动同样可提高骨骼肌中PPARα和CPT1表达,激活脂代谢途径,促进脂肪酸氧化等[25]。同样,2周低氧(12.3%O2)暴露和低氧运动后,小鼠骨骼肌中PPARα和CPT1 mRNA表达显著升高,促进了骨骼肌中脂肪酸的氧化[26-27]。LI G等[28]研究发现,WT野生型小鼠经过4周低氧间歇运动后,其骨骼肌PPARα蛋白表达量比PPARα高表达组小鼠显著增加41%。低氧耐力训练能显著上调AMPKα2基因高表达组小鼠骨骼肌PPARα的蛋白表达水平,显著降低PPARα mRNA浓度;而对AMPKα2基因敲除组小鼠PPARα mRNA、蛋白表达影响不显著。可知,低氧暴露和低氧运动能影响PPARα的表达,但低氧耐力运动的环境对PPARα蛋白表达的影响比PPARα mRNA的影响更显著。此外有研究证明,运动强度也可影响骨骼肌PPARα mRNA和蛋白表达,且呈正相关。
诸多研究证实,PPARα信号转导途径是调控脂代谢的重要途径之一。PPARα是脂肪酸的感受器和能量调节器,低氧运动环境下,可通过降低肝脏中PPARα、CPT1的表达增加其在骨骼肌中的含量,进而调控脂肪酸向线粒体的转运,即减少脂类在肝脏中的氧化,从而将肝脏合成的脂肪转运至心肌、骨骼肌等能量代谢旺盛的组织氧化利用[29]。低氧刺激下,PPARα可通过调控ACC、SREBP-1 mRNA及细胞色素c,调节线粒体的微粒体w-氧化和β-氧化,进一步提高线粒体氧化脂肪酸的能力[30]。PPARα除促进脂肪酸转运、活化外,还可调节载脂蛋白的代谢。中等强度游泳训练可提高大鼠脂联素受体1(AdipoR1)、PPARα mRNA的表达,提示PPARα可能通过调节AdipoR1对大鼠脂代谢进行调控。也有研究显示,PPARα还可通过上调apoAⅠ、apoAⅡ和LPL基因表达,调控载脂蛋白代谢,导致血浆HDL增加[31]。总之,近年来,PPARα调控脂代谢的作用机制备受关注,但长期低氧刺激或低氧耐力运动中,是否存在其他信号通路活化PPARα并调节脂代谢,亦需深入研究。
PPARα可调控脂代谢、抑制炎症反应,并且在调节脂肪细胞分化中扮演重要角色。低氧运动影响PPARα表达促进白色脂肪“棕色化”,将有望成为治疗人类肥胖、糖尿病等代谢性疾病的新靶点。近十几年,PPARα调控脂代谢和促进脂肪细胞分化等方面的机制研究备受关注,而目前低氧运动对机体PPARα调控作用的研究尚浅。因而,如何合理利用低氧运动调节脂代谢、减控体重仍存在需要进一步解决的重要问题,如:人工低氧浓度的优化设置、低氧干预时长及运动强度的大小和运动方式等对机体不同组织PPARα的作用影响等。此外,低氧耐力运动中,是否存在其他信号通路激活PPARα调节糖脂代谢和促进白色脂肪“棕色化”、抑制炎症反应等作用机制尚未完全阐明,并且低氧运动对不同组织PPARα调控作用也不完全相同,其分子调控机制仍需更多的实验证实。深入探究和解决这些问题,将有助于阐明低氧运动影响PPARα调节脂代谢和能量平衡的重要作用,更为低氧运动减脂控体重等提供新思路。
[1] Smith B W, Adams L A. Nonalcoholic fatty liver disease and diabetes mellitus: pathogenesis and treatment[J]. Nat Rev Endocrinol,2011,7(8):456-465.
[2] Urdampilleta A, Gonzálezmuniesa P, Portillo M P, et al.Usefulness of combining intermittent hypoxia and physical exercise in the treatment of obesity [J]. Journal of physiology and biochemistry, 2012, 68(2): 289-304.
[3] Issemann I, Green S. Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators[J]. Nature, 1990(347): 645-650.
[4] Kohler H P, Grant P J. Plasminogen activator inhibitor type 1 and coronary artery disease[J].N Engl J Mcd,2002,342(24):1792-1800.
[5] 王姣.PPARa激动剂联合全反式维甲酸通过P38MAPK信号通路促使小鼠白色脂肪细胞向棕色脂肪细胞转化[D].郑州:郑州大学第一附属医院,2014.
[6] Cheung C.Akiyama T E.Ward J M.Diminished hepatocellular proliferation in mice humanized for the nuclear receptor peroxisome proliferator-activated receptor alpha[J].Cancer Res,2004,64(11):3849-3854.
[7] Kidani Y, Bensinger S J. Liver X receptor and peroxisome proliferator activated receptor as integrators of lipid homeostasis and immunity[J]. Immunol Rev,2012,249(1):72-83.
[8] LIU M L. New evolution of the researches in the peroxisome proliferators activated receptor[J].Foreign Medical sciences Section of Pathophysiology and Clinical Medicine,2001,21(5):413-417.
[9] Delerive P, Fruchart J C, Staels B. Peroxisome proliferator-activated receptors in inflammation control[J].J Endocrinol,2001, 169(3):453-459.
[10] Videla L A, Pettinelli P. Misregulation of PPAR Functioning and Its Pathogenic Consequences Associated With Nonalcoholic Fatty Liver Disease in Human Obesity[J]. PPAR Research, 2012(11):239-261.
[11] Bonet M L,Ribot J,Palou A.Lipid metabolism in mammalian tissues and its control by retinoic acid[J]. Biochimica et Biophysica Acta ,2012,1882(1):177-189.
[12] Bostrom P, Wu J, Jedrychowski M P, et al. A PGC-1α-dependent myokine that drives browing of white fat and thermogenesis[J]. Nature,2012,481(7382):463-468.
[13] Mercader J, Palou A, Bonet M L.Induction of uncoupling protein-l in mouse embryonic fibroblast-derived adipocytes by retinoic acid[J], Obesity, 2010,18(4):655-662.
[14] 翁锡全,林文弢,黄丽英.低氧健身原理及其应用探讨[J].中国体育科技,2006,42(5):96-100.
[15] 雷雨,张万秋,崔丽萍.低氧及低氧结合运动对肥胖大鼠身体成分的影响[J].四川体育科学,2010(2):39-41.
[16] Korkushko O V, Shatilo V B, Ishchuk V A. Effectiveness of intermittent normabaric hypoxic trainings in elderly patients with coronary artery disease[J]. Adv Gerontol,2010,23(3):476-482.
[17] Feng L S, Lu Y L, Zhang L, et al. Effect of Hypoxic Training on Fatty Acid Oxcidation in Obese Rats [J]. The FASEB Journal, 2013, 27(7): lb760.
[18] Horscroft J A, Burgess S L, Hu Y, et al. Altered Oxygen Utilisation in Rat Left Ventricle and Soleus after 14 Days, but Not 2 Days, of Environmental Hypoxia[J]. Plos One, 2015, 10(9): e0138564.
[19] Chung S Y, Kao C H, Villarroya F, et al. Bhlhe40 Represses PGC-1α Activity on Metabolic Gene Promoters in Myogenic Cells[J]. Mol Cell Biol, 2015, 35(14):2518-2529.
[20] Li J G, Grigoryev D N, Ye S Q, et al. Chronic intermittent hypoxia upregulates genes of lipid biosynthesis in obese mice [J]. J Appl Physiol, 2005, 99 (11):1643-1648.
[21] Piguet A C, Stroka D, Zimmermann A, et al. Hypoxia aggravates non-alcoholic steatohepatitis in mice lacking hepatocellular PTEN[J]. Clin Sci,2010,118(6):401-410.
[22] Tong L. Acetyl-coenzyme A carboxylase : crucial metabolic enzyme and attractive target for drug discovery[J]. Cellular & Molecular Life Sciences Cmls, 2005, 62(16):1784-1803.
[23] 荆文.低氧训练对高脂饮食大鼠肝脏microRNA表达及脂代谢的调节研究[D].上海:上海体育学院,2014.
[24] 武雅琼,温含,苏丽,等.不同强度有氧运动对小鼠骨骼肌的PPARα/δ表达、肌纤维类型和运动能力的影响[J].体育科学,2009,29(1):58-65.
[25] 姚璐,谢谨,李松波.低氧和低氧训练对AMPKα2转基因小鼠骨骼肌CPT-1表达的影响[J].北京体育大学学报,2011,34(1):51-57.
[26] Grundy S M, Brewer H B, Cleeman J I, et al. Definition of metabolic syndrome: Report of the National Heart, Lung, and Blood Institute/American Heart Association conference on scientific issues related to definition[J]. Arteriosclerosis Thrombosis & Vascular Biology, 2004, 109(3):433-438.
[27] Urdampilleta A, González-Muniesa P, Portillo M P, et al. Usefulness of combining intermittent hypoxia and physical exercise in the treatment of obesity [J]. Journal of physiology and biochemistry, 2012, 68(2): 289-304.
[28] Li G, Wang J X, Ye J P, et al. PPARα Protein Expression Was Increased by Four Weeks of Intermittent Hypoxic Training via AMPKα2-Dependent Manner in Mouse Skeletal Muscle[J].Plos One, 2015, 10(4): e0122593.
[29] 林文弢,吴菊花,鞠丽丽.转录共激活分子PGC-α与肥胖者减体重研究现状的探讨[J].广州体育学院学报,2015,35(1):91-105.
[30] Desvergne B, Wahli W. Peroxisome proliferator-activated recepitors nuclear control of metabolism[J]. Endocr Rev, 1999,20(5): 649-688.
[31] Lee C H, Olson P, Evans R M, Lipid metabolism, metabolic diseases, and peroxisome proliferator-activated receptors[J]. Endocrinology, 2003,144(6):2201-2207.
Review on the Regulation of PPARα Expression by Hypoxic Exercise
JU Li-li1, WU Ju-hua2, WENG Xi-quan3, LIN Hai-qi4, LIN Wen-tao3
(1.Guangdong Ecological Engineering Vocational College, Guangzhou 510500, China;2.School of Physical Education, Guangxi University of Science and Technology,Liuzhou 545000, China;3.Guangzhou Sport University, Guangzhou 510500, China;4.South China University of Technology, Guangzhou 510500, China)
Peroxisome proliferator-activated receptor α(PPARα) is an important nuclear receptor involved in regulating lipid metabolism, inhibiting inflammatory reaction and promoting adipocyte differentiation. However, hypoxic exercise can promote the expression of PPARαin different tissues and reestablish the signal pathway through the activation of a series of molecular response mechanisms, thus altering the body lipid metabolism system. The aim of this study applies method of literature to comb the previous studies on the effect of hypoxia stimulation on the expression of PPARα, and summarize the possible molecular mechanism of compensatory adaptation of PPARα to hypoxic exercise in different tissues. The aim of this study is to better explain the effects of PPARαon the regulation of lipid metabolism in hypoxic environment.
hypoxia exercise;PPARα;lipid metabolism
2016-08-01
中央高校基本科研业务费项目(2015QNXM05)
鞠丽丽(1988-),女,山东潍坊人,硕士,研究方向为运动人体科学。
林文弢(1957-),男,广东惠来人,教授,研究方向为运动生物化学。
G804.7
A
1008-3596(2016)06-0077-05