红碱淖湖泊表层沉积物重金属生态风险评价

2016-03-06 05:56于学峰刘晓清王亚萍
地球环境学报 2016年2期
关键词:湖泊表层沉积物

于学峰,刘晓清,王亚萍

(1.中国科学院地球环境研究所 黄土与第四纪地质国家重点实验室,西安 710061;2.陕西省环保产业集团有限公司,西安 710075;3.陕西省环境科学研究院,西安 710061)

红碱淖湖泊表层沉积物重金属生态风险评价

于学峰1,刘晓清2,3,王亚萍3

(1.中国科学院地球环境研究所 黄土与第四纪地质国家重点实验室,西安 710061;2.陕西省环保产业集团有限公司,西安 710075;3.陕西省环境科学研究院,西安 710061)

为掌握红碱淖重金属污染水平及其生态风险,我们对红碱淖表层沉积物开展了重金属分析,采用元素富集因子法和潜在生态风险指数法对沉积物重金属进行生态风险评价。结果表明:(1)湖心样品的重金属元素丰度比湖岸样品略高;(2)红碱淖各采样点重金属均处于轻度污染状态,仅Cd存在一定程度的富集;(3)沉积物重金属潜在生态风险指数处于较低水平。

红碱淖;重金属;元素富集因子法;潜在生态风险指数

重金属在生态系统中具有富集性和持久性特征,且具有显著的生物毒性,使之成为严重影响生态环境安全的因素(田林锋等,2012;Varol and Şen,2012)。水体中底泥是重金属污染的储存库和最后的聚居地(弓晓峰等,2006;Peng et al,2009)。湖泊底泥中重金属以多种形式存在,当环境变化时,重金属形态也发生变化并释放,造成湖泊水体污染。近年来,已有很多学者对不同湖泊底泥的重金属污染特征及其生态风险进行了评价(程杰等,2008;焦伟等,2010;李永进等,2011;马婷等,2011;余晖等,2011;刘婉清等,2014;毛志刚等,2014),对指导湖泊生态治理起到了重要作用。

红碱淖是我国最大的沙漠淡水湖,处于毛乌素沙漠与黄土高原生态脆弱区,被称为“塞上明珠”。特殊的地理位置使红碱淖在区域生态环境中具有重要的地位,它具有防风固沙、水源涵养、生物多样性保育等生态功能。它还是世界濒危物种遗鸥的主要栖息地。近年来在气候变化和人类活动等因素作用下,红碱淖湖泊水域面积正不断缩减,面临一系列生态问题(李登科等,2010;雷忻等,2011;刘晓清和王亚萍,2014)。目前,尚无在红碱淖开展表层沉积物重金属污染及其生态风险控制的研究,笔者对红碱淖湖泊表层沉积物开展了系统采样与重金属测试分析,并对重金属污染生态风险进行评估,以期对红碱淖生态环境风险控制提供理论支持,也为红碱淖水环境保护提供科学依据。

1 样品采集与测试

1.1 样品采集

如图1所示,在红碱淖布设了12个采样点。采样点布设尽量考虑平面展布的均匀性,同时又兼顾湖岸、湖心、入湖河口等不同沉积单元的代表性(刘晓清等,2013)。用Van veen采泥器,抓取湖泊底部10 cm×20 cm面积的表层沉积物样品,采样深度为10 cm。样品用密封袋包装后运回实验室。

图1 红碱淖采样点Fig.1 Sampling sites in Hongjiannao Lake

1.2 样品分析测定

样品自然风干后,用玛瑙研钵加工成粒径为74 μm的粉末,以开展As、Hg、Cr、Cu、Zn、Pb、Cr6+、Cd等测试分析。

1.2.1 ICP-MS检测Cr、Cd、Cu、Pb、Zn

准确称取0.1000 g样品,105℃烘干2小时后,置于30 mL塑料坩埚中,加入HF、HClO4在200—250℃电热板加热,白烟冒尽。加5 mL王水,加热至干。用稀 HNO3加热溶解,并用纯水稀释后,用ICP-MS测定Cr、Cd、Cu、Pb、Zn等元素丰度,测量相对误差分别控制在:Cr(15%)、Cd(30%)、Cu(10%)、Pb(10%)、Zn(12%)以内。

1.2.2 原子荧光法测定As、Hg

称取0.100 g样品于25 mL比色管中,加入10 mL王水(1+1),水浴中加热2 h,冷却,用纯水稀释,放置澄清。

取清液5 mL于25 mL比色管中,加2 mL还原剂(硫脲、VC),放置1h,在原子荧光仪测定As。

取清液5 mL在原子荧光仪测定Hg。

1.2.3 二苯碳酰二肼比色法检测Cr6+

称取5.000 g样品(105℃烘干2小时)于300 mL塑料瓶中,加入50 mL水,震荡8 h,放置澄清。取清液10 mL于25 mL比色管中,加2.5 mL二苯碳酰二肼显色剂,加水稀释至刻度。用分光光度计在540 nm处测定吸光度。

以上测试均在中国地质调查局西安地质调查中心完成。

2 红碱淖表层沉积物几种重金属测试结果

2.1 测试结果

表1列出了红碱淖各点位几种重金属含量、变化范围及其变异系数。总体上红碱淖表层沉积物重金属含量较低。表层沉积物中重金属平均含量从高到低分别为:Cr > Zn > Pb > Hg > Cu > As > Cd。所测七种重金属元素在红碱淖表现出较大的变异性,即不同点位测试结果差别较大。除Pb、As和Cr外,其他5种元素在12个点位的变异系数均大于0.55。 Cd的变异系数最大,达到0.68。

2.2 与国家土壤环境质量标准的比较

中华人民共和国国家标准土壤环境质量标准(GB 15618—1995)规定了不同类型土壤中重金属含量的上限(夏家淇,1996)。本文对比了红碱淖湖泊表层沉积物均值、极大值和极小值与不同土壤环境分类的重金属含量(表2)。

由表2可以看出,红碱淖重金属元素含量均值均在国家一类土壤标准上限以内,整体上重金属污染程度较轻。从12个样点的极值来看,大部分元素的最大值也未超出一类土壤标准上限值,只有Cd的最大值超出了土壤二类标准上限值,说明该湖泊Cd存在一定范围内的富集。

表1 几种重金属元素(含六价铬)测试结果Tab.1 Heavy metals (including Cr6+) in the surface sediment of Hongjiannao Lake

表2 红碱淖表层沉积物样品与国家土壤环境质量标准的对比Tab.2 The comparison of samples in Hongjiannao Lake with the Environmental Quality Standard for Soils

3 红碱淖重金属污染生态风险评价

目前重金属生态风险评估的方法较多,主要有:地质累积指数法(Sutherland,2000;Qu et al,2001;杨丽原等,2003)、富集因子法(Blaser et al,2000;Sutherland,2000;滕彦国等,2003;Hernandez et al,2003;Tania et al,2003)、沉积物质量基准法(Long et al,1995;徐争启等,2004)、潜在生态风险指数法(Hakanson,1980)、污染负荷指数法(Long et al,1998)等。由瑞典著名地球化学家Hakanson(1980)提出的潜在生态风险指数法,是很多地区开展重金属元素潜在风险评估的常用方法。该方法涉及到单项污染系数、重金属毒性响应系数以及潜在生态危害系数, 不仅考虑了土壤重金属的含量, 而且将重金属的生态效应、环境效应与毒理学联系在一起,采用可比的、等价属性指数分级法进行评价。

本研究采用元素富集因子法和潜在生态风险指数法评价红碱淖湖泊表层沉积物重金属生态风险。

3.1 元素富集因子法

元素富集因子是指测试体系元素相对于某一参比体系富集情况的一个指标。利用元素富集因子法,结合某地元素背景值资料,可以评估某种元素富集情况,从而判断重金属污染情况。

用Al作为参比元素,分别使用《中国土壤元素背景值》中陕西省相关元素平均值(中国环境监测总站,1990)和上地壳平均元素丰度(Taylor and McClennan,1985),计算红碱淖表层沉积物中As、Cr、Cd、Hg、Cu、Pb、Zn富集因子(EF)。

EF计算公式如下(Zhang et al,1993):

其中:Ei为计算富集因子的某种元素,Al为参比元素,m代表元素实测数据与参比元素的比值,c代表比较体系元素与参比元素的比值。

元素富集因子可以用来表示研究体系中某种元素相对于参比体系的富集程度,通常数值大于1代表研究体系某元素相对参比体系富集,数值越大富集程度越高,数值等于1代表研究体系与参比体系元素变化一致,数值小于1代表研究体系与参比体系元素无富集。计算结果如表3和表4所示。

如表3和表4所示,红碱淖湖泊表层沉积物除Cd和As两个元素外,其余元素的富集因子均小于1,未表现明显富集。Cd在1、7、8、9、10、11号样点无论相对于陕西省A层土壤还是上地壳平均丰度均表现为相对富集;As仅相对于上地壳平均元素丰度的富集因子均大于1,这暗示陕西省土壤As元素背景值本身高于上地壳平均值。可见,红碱淖湖泊表层沉积物元素富集因子表明该湖泊未受明显污染。

表3 红碱淖底泥重金属元素相对陕西省土壤平均元素丰度的富集因子Tab.3 The EF of heavy metals in Hongjiannao Lake relative to soils in Shaanxi Province

表4 红碱淖表层沉积物重金属元素相对上地壳平均元素丰度的富集因子Tab.4 The EF of heavy metals in Hongjiannao Lake relative to the upper continental crust

3.2 潜在生态风险指数法

潜在生态风险指数法是目前常用的评价重金属污染程度的方法。分为单一元素生态风险评价和多元素生态风险评价,计算公式如下:

沉积物污染程度Cde:

潜在生态风险指数RI:

其中:Ci为某元素实测值,为该元素环境背景值,为某元素毒性响应参数(几种元素的毒性响应系数通常取:Hg=40,Cd=30,As=10,Pb=5,Cu=5,Cr=2,Zn=1)。采用陕西省A层土壤均值作为元素背景值(中国环境监测总站,1990),计算七种元素潜在生态风险指数。结果列于表5。

表5 红碱淖湖泊表层沉积物重金属潜在生态风险指数计算结果Tab.5 The potential ecological risk index of heavy metals in the surface sediment of Hongjiannao Lake

表6 给出了污染程度(Cde)和生态风险等级(RI)判别区间。值得注意的是,Hakanson(1980)除了计算本次研究的其中重金属污染物外,还包含了多氯联苯(PCBs),为了更客观地评价重金属的生态危害,本文根据Hakanson(1980)的数据,采用除去PCBs影响的方法,重新计算了分类等级数值范围。计算原则如下:

首先将Hakanson(1980)的数据中PCBs对应的Cfi分为三个等级:较低(1)、中等(2)和较高(4);然后将相应的Cde数值范围分别减去1、2、4即得出其中重金属污染程度(Ci)

f评价标准。将上述Cfi分级分别乘以PCBs的毒性系数40得到三个级别的PCBs的Eri数据40、80和160;然后将相应的Eri数值范围分别减去40、80、160即得出其中重金属潜在危害程度(RI)评价标准。

表6 污染程度和潜在生态风险等级Tab.6 Grades for pollution and potential ecological risk assessment

红碱淖各取样点重金属元素的在2.06—9.97变化,均值为6.04,污染程度处于较低的水平,Cf

i值超过7的有五个点(1、7、9、10、11号样点),但均未超过中等污染的范围。RI在22.52到179.18之间变化,均值为93.50,有6个样点RI值高于110,分别是1、7、8、9、10、11样点,其他点位RI值均小于110,为较低污染水平。

由表5可知,对RI值贡献最大的元素是Cd。究其原因,一方面是Cd的毒性系数较高;另一方面,根据元素富集因子评价结果,Cd在样点1、7、8、9、10、11均表现为相对富集(表3,表4),以上两方面的原因致使RI值在上述几个样点超过110,表现为中等危害。

通过不同方法对红碱淖湖泊表层沉积物重金属进行了生态风评估,其评估结果具有很强的相似性,显示红碱淖重金属污染程度总体上较低,仅Cd存在一定程度的富集。

4 红碱淖表层沉积物重金属元素与其他湖泊的对比

红碱淖表层沉积物重金属元素与其他湖泊的比较如表7所示。同其他湖泊相比,红碱淖所测重金属污染物均处于较低水平(表7),如红碱淖湖泊表层沉积物As元素含量仅比巢湖的结果略高,低于其他湖泊测试结果;Hg含量为所有对比湖泊中最低的;Cr含量仅比洪泽湖和太湖略高,而低于其他湖泊;Cu、Zn、Pb、Cd含量均为所有参比湖泊中最低的。

表7 红碱淖表层沉积物重金属元素与其他湖泊的比较Tab.7 The comparison of heavy metals contents in the surface sediment of Hongjiannao Lake with that in other lakes of China

(续表7 Continued Tab. 7)

5 结论

(1)通过两种方法对红碱淖湖泊表层沉积物重金属的生态危害开展了评估,结果显示红碱淖重金属污染程度总体上较低,均为低污染水平。由于Cd存在一定程度的富集, 且因Cd毒性系数较高,致使该湖泊表层沉积物重金属潜在生态危害指数处于中等污染水平下限。

(2)与我国其他淡水湖相比,红碱淖表层沉积物所测重金属丰度平均处于较低水平,指示该湖泊受人为污染的影响较小。

(3)尽管多项评价指标均显示红碱淖湖泊表层沉积物重金属污染水平属较低水平,但随着湖泊退缩和周边人类活动加剧,保护红碱淖生态环境仍不容忽视,尤其应严格限制污染物直接向湖泊排放。

程 杰, 李学德, 花日茂, 等. 2008. 巢湖水体沉积物重金属的分布及生态风险评价[J].农业环境科学学报, 27(4): 1403 – 1408. [Cheng J, Li X D, Hua R M, et al. 2008. Distribution and ecological risk assessment of heavy metals in sediments of Chaohu Lake [J].Journal of Agro-Environment Science, 27(4): 1403 – 1408.]

弓晓峰, 陈春丽, 周文斌, 等. 2006. 鄱阳湖底泥中重金属污染现状评价 [J].环境科学,27(4): 732 – 736. [Gong X F, Chen C L, Zhou W B, et al. 2006. Assessment on heavy metal pollution in the sediment of Poyang Lake [J].Environmental Science, 27(4): 732 – 736.]

焦 伟,卢少勇, 李光德, 等. 2010. 滇池内湖滨带重金属污染及其生态风险评价[J].农业环境科学学报, 29(4): 740 – 745. [Jiao W, Lu S Y, Li G D, et al. 2010. Heavy metals pollution and potential ecological risk assessment of inner lakeside belt of Lake Dianchi [J].Journal of Agro-Environment Science, 29(4): 740 – 745.]

雷 忻, 王文强, 廉振民. 2011. 陕西红碱淖遗鸥研究现状分析[J].延安大学学报(自然科学版), 30(4): 93 – 96. [Lei X, Wang W Q, Lian Z M. 2011. A Review of studies on the status ofLarus relictusin Hongjiannao Lake, Shaanxi Province [J].Journal of Yanan University (Natural Science Edition), 30(4):93 – 96.]

李登科, 何慧娟, 刘安麟. 2010. 人类活动和气候变化对红碱淖植被覆盖变化的影响[J].中国沙漠, 30(4): 831 – 836. [Li D K, He H J, Liu A L. 2010. Impact of human activities and climate change on vegetation around Honhjian Nur Lake in northwestern China [J].Journal of Desert Research, 30(4): 831 – 836.]

李永进, 汤玉喜, 唐洁袁, 等. 2011. 洞庭湖滩地重金属分布及其生态风险评价[J].中南林业科技大学学报, 31(2): 55 – 59. [Li Y J, Tang Y X, Tang J Y, et al. 2011. Distribution and ecological risk assessment of heavy metal elements in soils of the beaches in Dongting Lake [J].Journal of Central South University of Forestry & Technology, 31(2): 55 – 59.]

李玉斌, 冯 流, 刘征涛, 等. 2012. 中国主要淡水湖泊沉积物中重金属生态风险研究[J].环境科学与技术, 35(2): 200 – 205. [Li Y B, Feng L, Liu Z T, et al. 2012. Ecological risk assessment of sediment heavy metals in main lakes of China [J].Environmental Science & Technology, 35(2): 200 – 205.]

刘婉清, 倪兆奎, 吴志强, 等. 2014. 江湖关系变化对鄱阳湖沉积物重金属分布及生态风险影响[J].环境科学, 35(5): 1750 – 1758. [Liu W Q, Ni Z K, Wu Z Q, et al. 2014. Influence of the river-lake relation change on the distribution of heavy metal and ecological risk assessment in the surface sediment of Poyang Lake [J].Environmental Science, 35(5) : 1750 – 1758.]

刘晓清, 王亚萍. 2014. 陕西红碱淖湖泊水体富营养化评价[J].人民黄河, 36(12): 76 – 78. [Liu X Q, Wang Y P. 2014. Evaluation of the eutrophication in Hongjiannao Lake [J].Yellow River, 36(12): 76 – 78.]

刘晓清, 王亚萍, 张振文, 等. 2013. 陕西红碱淖湖底表层沉积物粒度特征[J].地球环境学报, 4(4): 1371 – 1378. [Liu X Q, Wang Y P, Zhang Z W, et al. 2013. Grain-size characteristics of the surface deposit in Hongjiannao Lake in northern Shaanxi Province [J].Journal of Earth Environment, 4(4): 1371 – 1378.]

马 婷, 赵大勇, 曾 巾, 等. 2011. 南京主要湖泊表层沉积物中重金属污染潜在生态风险评价[J].生态与农村环境学报, 27(6): 37 – 42. [Ma T, Zhao D Y, Zeng J, et al. 2011. Potential ecological risk assessment of heavy metal pollutants in surface sediments of the lakes in Nanjing [J].Journal of Ecology and Rural Environment, 27(6): 37 – 42.]

毛志刚, 谷孝鸿, 陆小明, 等. 2014. 太湖东部不同类型湖区疏浚后沉积物重金属污染及潜在生态风险评价[J]. 环

境科学, 35 (1): 186 – 193. [Mao Z G, Gu X H, Lu X M, et al. 2014. Pollution distribution and potential ecological risk assessment of heavy metals in sediments from the different eastern dredging regions of Lake Taihu [J].Environmental Science, 35(1): 186 – 193.]

滕彦国, 倪师军, 庹先国, 等. 2003. 应用标准化方法评价攀枝花地区表层土壤的重金属污染[J].土壤学报, 40(3): 374 – 379. [Teng Y G, Ni S J, Tuo X G, et al. 2003. Application of a normalization procedure in assessing heavy metal pollution in topsoil, Panzhihua region [J].Acta Pedologica Sinica, 40(3): 374 – 379.]

田林锋, 胡继伟, 罗桂林, 等.2012. 贵州百花湖沉积物重金属稳定性及潜在生态风险性研究[J].环境科学学报, 32(4): 885 – 894. [Tian L F, Hu J W, Luo G L, et al. 2012. Ecological risk and stability of heavy metals in sediments from Lake Baihua in Guizhou Province [J].Acta Scientiae Circumstantiae, 32(4): 885 – 894.]

夏家淇. 1996. 土壤环境质量标准详解[M]. 北京: 中国环境科学出版社. [Xia J Q. 1996. Explanation of soil environmental standard in detail [M]. Beijing: China Environmental Science Press.]

徐争启, 倪师军, 张成江, 等. 2004. 应用污染负荷指数法评价攀枝花地区金沙江水系沉积物中的重金[J].四川环境, 23(3): 64 – 67. [Xu Z Q, Ni S J, Zhang C J, et al. 2004. Assessment on heavy metals in the sediments of Jinsha River in Panzhihua area by pollution load index [J].Sichuan Environment, 23(3): 64 – 67.]

杨丽原, 沈 吉, 张祖陆, 等. 2003. 南四湖表层底泥重金属污染及其风险性评价[J].湖泊科学, 15(3): 252 – 256. [Yang L Y, Shen J, Zhang Z L, et al. 2003. Distribution and ecological risk assessment for heavy metals in super fi cial sediments of Nansihu Lake [J].Journal of Lake Sciences, 15(3): 252 – 256.]

余 辉, 张文斌, 余建平. 2011. 洪泽湖表层沉积物重金属分布特征及其风险评价[J].环境科学, 32(2): 437 – 444. [Yu H, Zhang W B, Yu J P. 2011. Distribution and potential ecological risk assessment of heavy metals in surface sediments of Hongze Lake [J].Environmental Science, 32(2): 437 – 444.]

中国环境监测总站. 1990. 中国土壤元素背景值[M]. 北京:中国环境科学出版社. [China National Environmental Monitoring Centre. 1990. Background values of elements in soils of China [M]. Beijing: China Environmental Science Press.]

Blaser P, Zimmermann S, Luster J, et al. 2000. Critical examination of trace element enrichments and depletions in soils: As, Cr, Cu, Ni, Pb and Zn in Swiss forest soils [J].The Science of the Total Environment, 249: 257 – 280.

Hakanson Lars. 1980. An ecological risk index for aquatic pollution control: A sedimentological approach [J].Water Research, 14(8): 975–1001.

Hernandez L, Probst A, Probst J L, et al. 2003. Heavy metal distribution in some French forest soils: evidence for atmospheric contamination [J].The Science of the Total Environment, 312: 195 – 219.

Long E R,MacDonald D D, Smith S L, et al. 1995. Incidence of adverse biological effects within Ranges of chemical concentrations in marine and estuarine sediments [J].EnvironmentalManagement, 19: 81 – 97.

Long E R, Field L J,MacDonald D D. 1998. Predicting toxicity in marine sediments with numerical sediment quality guidelines [J].Environmental Toxicology and Chemistry, 17(4): 714 – 727.

Peng J F, Song Y H, Peng Y, et al. 2009. The remediation of heavy metals contaminated sediment [J].Journal of HazardousMaterials, 161(2 / 3): 633 – 640.

Qu W, Dickman M, Wang S. 2001. Multivariate analysis of heavy metal and nutrient concentrations in sediments of Taihu Lake, China [J].Hydrobiologia, 450(1 – 3): 83 – 89.

Sutherland R A. 2000. Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii [J].EnvironmentalGeology, 39: 611 – 627.

Tania L, Micaela P,Malcolm C. 2003. Heavy metal distribution and controlling factors within coastal plain sediments, bells creek catchment, southeast Queensland, Australia [J].Environment International, 29: 935 – 948.

Taylor S R, McClennan S. 1985. The continental crust: its composition and evolution [M]. Palo Alto, California: Blackwell Scienti fi c Publications.

Varol M, Şen B. 2012. Assessment of nutrient and heavy metal contamination in surface water and sediments of the upper Tigris River, Turkey [J].Catena, 92: 1 – 10.

Zhang X Y, Arimoto R, An Z S, et al. 1993. Atmospheric trace elements over source regions for Chinese dust: concentrations, sources and atmospheric deposition on the Loess Plateau [J].Atmospheric Environment Part A, 27: 2051 – 2067.

Ecological risk assessment of heavy metals in the surface sediment of Hongjiannao Lake, Shaanxi Province, China

YU Xuefeng1, LIU Xiaoqing2,3, WANG Yaping3
(1. State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; 2. Shaanxi Environmental Protection Industry Group, Co. Ltd., Xi'an 710075, China; 3. Shaanxi Provincial Academy of Environmental Sciences, Xi'an 710061, China)

Background, aim and scopeAs the biggest desert freshwater lake in China, Hongjiannao Lake, located in the southern margin of Mu Us Desert, plays an important role in the regional ecosystem. It is the habitats ofLarus relictuswhich is classi fi ed as “vulnerable” on the Red List of International Union for the Conservation of Nature (IUCN). However, the degradation of aquatic ecosystem in this region was found to be accelerating in recent years under the context of global warming and the intensi fi ed human activities. The ecological risk of heavy metals in the surface sediment of Hongjiannao Lake remains unknown so far. Therefore, the aim of this study is to provide the basic data for protecting the lake ecosystem by assessing the potential ecological risk of heavy metals in the surface sediment of the lake.Materials and methodsTwelve samples of surface sediment in the lake was taken by the Van veen grab sampler. The distribution of sampling sites in the lake were designed to be even to ensure the representativeness of the samples. Cr, Cd, Cu, Pb and Zn were analyzed by ICP-MS. The relative error of this method was controlled within 15% for Cr, 30% for Cd, 10% for Cu, 10% for Pb, and 12% for Zn. As, Hg were analyzed by atomic fl uorescence spectrometry. The relative error of this method was controlled within 10% for As and 25% for Hg. Cr6+was measured by diphenylcarbonydraide-spectrophotometer method with the relative error controlled within 15%. Three approaches were used in the assessment of the ecological risk of heavy metals in the surface sediment of Hongjiannao Lake: (1) the comparison of samples in Hongjiannao Lake with the Environmental Quality Standard for Soils in China (GB 15618—1995) (EQSS). (2) The enrichment factor (EF) to showthe state of the enrichment for each element relative to the reference system. The reference system is selected respectively as soils in Shaanxi Province to show the enrichment relative to the local environment, and the upper continental crust (UCC) to show the enrichment relative to the global mean content of upper continental crust. And (3) the potential ecological risk index (RI) to assess the potential risk of the toxicity of heavy metals to the lake ecosystem.ResultsThe result shows that the heavy metals in the surface sediment of Hongjiannao Lake are generally at a low level. The order of content from higher to lower is Cr > Zn > Pb > Hg > Cu > As > Cd. Except for Pb, As and Cr, the coef fi cient variations (CV) of other four metals (Cd, Cu, Zn and Hg) among twelve sites are higher than 0.55 with Cd to be the highest in 0.68. Obviously, the contents of heavy metals of the surface sediments in the center of the lake (sites 7 to 12) are higher than those near the lakeshore (sites 1 to 6).DiscussionCompared with the EQSS, the mean value of each heavy metal is within the upper limit value of the fi rst class soil in EQSS, indicating that the risk of heavy metals to this lake is at a lighter degree. Even for the maximum value of each element among the twelve samples, most of them are within the upper limit value of the fi rst class soil in EQSS, except for Cd. There are only two samples with the maximum value of Cd extend the upper limit value of the second class soil in EQSS. For most elements in the surface sediment of Hongjiannao Lake, the values of enrichment factor are lower than 1, indicating that there is no obvious enrichment for most elements, except for Cd and As. Cd assumes obvious enrichment both relative to soils in Shaanxi Province and to UCC at sites 1, 7, 8, 9, 10, 11. For As, it assumes enrichment only relative to UCC, but there is no enrichment relative to soils in Shaanxi Province, implying that the background content of As in soils in Shaanxi Province is higher than that in UCC. Thevalue of heavy metals for each sampling site varies from 2.06 to 9.97, with the mean value of 6.04. The RI value of heavy metals for each sampling site varies from 22.52 to 179.18, with the mean value of 93.50. There are six sites (1, 7, 8, 9, 10, 11) where the RI value are higher than 110, indicating that the risk of heavy metals in the center of the lake is light higher than that near the lakeshore. Generally, both thevalue and the RI value show that the potential risk of heavy metals in the lake is at a low level.ConclusionsThe above results show that: (1) the contents of heavy metals of the surface sediments in the center of the lake are higher than those near the lakeshore; (2) generally, the pollution of heavy metals in the lake is at a very low level, with the mild enrichment of Cd; and (3) the potential ecological risk of heavy metals in the surface sediment of Hongjiannao Lake is at a low level.Recommendations and perspectivesThe assessment provides the basic data for protecting the aquatic ecosystem in Hongjiannao Lake. Although the current risk of heavy metals in the surface sediment is not severe, the strict measures should be taken in the future to forbid the discharge of polluted water into the lake.

Hongjiannao Lake; heavy metal; enrichment factor (EF); risk index (RI)

YU Xuefeng, E-mail: xfyu@loess.llqg.ac.cn

10.7515/JEE201602007

2015-11-04;录用日期:2016-02-26

Received Date:2015-11-04;Accepted Date:2016-02-26

环境保护部“良好湖泊生态环境保护专项”;黄土与第四纪地质国家重点实验室自主部署课题

Foundation Item:MEP Special Fund for Lake Eco-environmental Protection; MOST Special fund for SKLLQG

于学峰,E-mail: xfyu@loess.llqg.ac.cn

猜你喜欢
湖泊表层沉积物
晚更新世以来南黄海陆架沉积物源分析
渤海油田某FPSO污水舱沉积物的分散处理
半潜式平台表层卡套管处理与认识
水体表层沉积物对磷的吸收及释放研究进展
你相信吗?湖泊也可以“生死轮回”
奇异的湖泊
南大西洋深海沉积物中可培养放线菌的多样性
超声波光整强化40Cr表层显微硬度研究