关于第二原子键连通指数

2016-03-01 11:21汤自凯侯耀平
关键词:顶点刻画原子

汤自凯 侯耀平

摘 要 设G=(V,E)是简单连通图,第二原子键连通指数是一种的新的原子键连通指数ABC2,即

ABC2 = ABC2(G)=∑uv∈E(G)nu+nv-2nunv,

其中nu(nv)表示图中到边e=uv的顶点u(v)距离比到顶点v(u)距离小的顶点数.本文刻画了具有第一小、第二小与第一大、第二大第二原子键连通指数的树及具有最小第二原子键连通指数的单圈图.

关键词 第二原子键连通指数;树;单圈图

All graphs in this article are simple and finite. The vertex and edge sets of a graph G are V(G) and E(G), respectively. The degree of a vertex u in G is denoted by degG(u) or du: The number of vertices of G is denoted by n(G) and is called the order of G. The distance dG(u,v) between vertices u and v∈V(G) is the number of edges on a shortest path connecting u and v in G. Molecular descriptors play a significant role in chemistry, pharmacology, etc, Among which, topological indices have a prominent place[1]. There are numerous topological descriptors that were applied in theoretical chemistry, especially in QSPR/QSAR research[2-5].

The atom-bond connectivity index is a novel topological index ABC and was conceived by Estrada, Torres, Rodriguez and Gutman[6], defined as

References:

[1] TODESCHNI R, CONSONNI V. Handbook of molecular descriptors[M]. Weinheim: Wiley-VCH, 2000.

[2] WIENER H. Structural determination of paraffin boiling points[J]. J Am Chem Soc,1947,69(1):17-20.

[3] HOSOYA H. Topological index. A newly proposed quantity characterizing the topological nature of structural isomers of saturated hydrocarbons[J]. Bull Chem Soc Jpn, 1971,44(9):2332-2339.

[4] DAS K C, GUTMAN I. Estimating the Szeged index[J]. Appl Math Lett, 2009,22(11):1680-1684.

[5] LIU B, GUTMAN I. On a conjecture on Randic indices[J]. MATCH Commun Math Comput Chem, 2009,157(8):1766-1772.

[6] ESTRADA E, TORRES L, RODR L, et al. An atom-bond connectivity index: Modelling the enthalpy of formation of alkanes[J]. Indian J Chem, 1998,37(10):849-855.

[7] ESTRADA E. Atom-bond connectivity and the energetic of branched alkanes[J].Chem Phys Lett, 2008,463(4):422-425.

[8] FURTULA B, GRAOVAC A, VUKICEVIC D. Atom-bond connectivity index of trees[J]. Discrete Appl Math, 2009,157(13):2828-2835.

[9] XING R, ZHOU B, DU Z. Further results on atom-bond connectivity index of trees[J]. Discrete Appl Math, 2010,158(14):1536-1545.

[10] DAS K C. Atom-bond connectivity index of graphs[J]. Discrete Appl Math, 2010,158(11):1181-1188.

[11] GRAOVAC A, GHORBANI M. A new version of atom-bond connectivity index[J].Acta Chim Slov, 2010,57(3):609-612.

[12] GUTMAN I. A formula for the wiener number of trees and its extension to graphs containing cycles [J]. Graph Theory Notes New York, 1994,27(9):9-15.

[13] KHADIKAR P V, KARMARKAR S, AGRAWAL V K. A novel PI index and its applications to QSPR/QSAR studies[J]. J Chem Inf Comput Sci, 2001,41(4):934-949.

(编辑 胡文杰)

猜你喜欢
顶点刻画原子
一类无理函数的动力系统刻画
原子究竟有多小?
原子可以结合吗?
带你认识原子
流逝的岁月 流淌的歌声
“图形的认识”复习专题
细致刻画,突显至爱
删繁就简三秋树
数学问答
一个人在顶点