杨福兴 陈晓雷 许百男
·综 述·
语言传导束示踪成像在神经外科手术中应用
杨福兴*陈晓雷*许百男*
弓状束上纵束扩散张量成像语言功能
语言是人类的高级神经功能,关于语言传导通路的认识最早来源于19世纪的神经解剖研究。Reil首次提出位于外侧裂深面有一束白质纤维连接额颞顶叶,而Burdach将它命名为弓状束;接着,Geschwind进一步提出弓状束连接Broca和Wernicke语言功能区,且弓状束任何一处损伤都将导致传导性失语,直至今日,此束仍被视为经典语言传导通路[1,2]。近年,得益于扩散张量纤维束示踪(diffu⁃sion tensor imaging fiber tracking,DTI-FT)技术的发展成熟,人们可以进行语言传导束的活体成像,研究各相关纤维束的功能及联系。普遍认为,语言传导路径分为背侧和腹侧通路,背侧主要与语音处理有关,而腹侧主要与语义处理相关[3-5]。背侧语言束的代表是弓状束(arcuate fas⁃ciculus,AF)和上纵束(superior longitudinal fasciculus,SLF),腹侧主要包括中纵束、下纵束、额枕下束、钩束、最外囊、额斜束等[3,6-8]。本文着重关注弓状束和上纵束在神经外科中的应用。
1.1弓状束的解剖CATANI[9]将弓状束分为三个组份,包括连接Broca和Wernicke区的长程纤维,以及前后两组短程纤维;前部纤维连接Broca区和顶下小叶,后部纤维连接顶下小叶和Wernicke区。此外,弓状束也可分为背侧束和腹侧束[10,11]。经尸体解剖证实,腹侧束起自颞中回及颞下回后部,经角回深面,止于额下回岛盖部、前运动皮层腹外侧和额中回后部;而背侧束起自颞上回中后部和颞中回中部,经缘上回深面,止于额下回岛盖部、三角部和前运动皮层腹外侧[10]。
研究表明,分管语言功能的皮层及皮层下纤维在两侧大脑半球的分布是不对称的,右利手人群语言功能区主要位于左侧大脑半球,即语言功能的侧化。功能侧化是以解剖的侧化为基础的。JUAN[11]从解剖上阐明AF的侧化情况,VASSAL[12]则对包括AF在内的8种语言传导束进行分析,进一步证实了语言传导束的侧化现象。
1.2上纵束的解剖及与AF的关系 MAKRIS[13]应用DTI技术把SLF分为4个组分(SLF-I~IV)。SLF-I位于顶上小叶及额上回白质内并延伸至运动前区背侧及前额叶背外侧区域,SLF-II位于岛叶上方的白质中心,从角回向前额叶尾侧延伸,SLF-III从缘上回延伸到运动前区和前额叶腹侧,SLF-IV指的是弓状束。另一种是三分法,分为背侧的SLF-1,中间的SLF-2以及位于腹侧的SLF-3。SLF-1从顶上小叶到额上回和前扣带回皮层,SLF-2从枕叶前部和角回上部向前延伸到额中回和额极,SLF-3从缘上回到额下回岛盖部。SLF三个成分的额侧端分别连接额叶上、中、下回,利用其与额叶的连接差异性可进行SLF重建[14,15]。
传统观点认为AF/SLF是一种密切联系的功能复合体或者甚至把两者互相等同,共同介导语言功能[6]。MAKRIS[13]认为AF是SLF的一部分,一些尸体解剖的结果也支持[16]。其实,解剖研究可清晰的区分两种纤维束及其组份,提示AF和SLF两者不能混为一谈[10]。
为了更好的解析交叉纤维,研究者提出高角度分辨率扩散显像(high angular resolution diffusion imaging,HAR⁃DI)。相对于低角度分辨率的采样体系,HARDI能更准确的估计每个体素内纤维走向,对交叉纤维识别能力强。KUHNT[19]对比普通DTI与HARDI,证实后者可清晰显示瘤周或水肿带的纤维。由于采样体系的改进,一些新算法应运而生,比如双张量无损卡尔曼滤波纤维束示踪技术(two-tensor unscented Kalman filter tractography,UKFT)[20]、q球成像(q-ball imaging,QBI)[21]、扩散频谱成像(diffu⁃sion spectrum imaging,DSI)[22]、约束球形反卷积(con⁃strained spherical deconvolution,CSD)[23]、广义q采样成像(generalized q-sampling imaging,GQI)[24]、Funk Radon余弦变换q球成像(the QBI with Funk Radon and cosine trans⁃form,FRACT)[25]等。CAVERZASI[26]应用QBI重建额枕下束,证实其成像效果比DTI清晰。同样,GQI优于DTI也有证据支持,ZHANG[27]指出术前计划应用GQI可清晰显示瘤周水肿区的纤维,而DTI显示不完整。GQI、QBI与DSI等方法在交叉纤维的解析能力上相差无几[24]。WILKINS[28]做了横向对比指出,CSD具有比其他方法更高的三种或三种以上交叉纤维的检出率。
扩散张量成像(diffusion tensor imaging,DTI)是目前最成熟的纤维束示踪技术,利用水分子在白质内的弥散运动,获得部分各向异性(fractional anisotropy,FA)等参数,估算每个体素内纤维走向,重建纤维束三维结构,无创显示脑内神经纤维。弓状束DTI成像具有比较好的可靠性,变异系数小[17],但仍有不足之处。首先,扩散张量成像无法鉴别传入及传出纤维[6];其次,DTI无法解决单个体素内包含灰质或脑脊液产生的混杂信号[18];第三,DTI无法解析交叉纤维,容易造成假阴性[6,9]。
其中:N是强度为λ的泊松过程,Vn是独立的随机变量序列,且满足仍是P-独立同分布的随机变量序列,其密度函数为
语言传导束显像可以帮助术者判断语言优势半球、观察肿瘤等病变与功能区及传导束的毗邻关系,术中导航指导最大程度切除和提供最佳的神经功能保护。此外,
4.统一要求与专业特色相结合研究新课标背景下高等师范院校英语教学法课程教学策略,落实国家、学校对教师教育专业的统一要求。
总之,随着硬件和软件的不断进步,语言传导束成像技术将会持续为神经外科医生提供帮助。
证实,而DTI没能显示瘤周及瘤内的纤维。ILLE[32]对27例外侧裂区肿瘤病人,术前采用fMRI和导航经颅磁刺激(navigated transcranial magnetic stimulation,nTMS),执行命名任务定位语言功能区,将结果与金标准进行比较,指出两者阳性预测值均不高,但nTMS比fMRI略有优势,受病变干扰较小。反之,若因为DTI-FT的准确性欠佳便弃之不用也是不可取的。BELLO[33]教授指出术中电刺激联合纤维束导航技术比单用术中电刺激,可有效减少手术时间,减轻病患癫痫发生率。故术中语言传导束显像技术和术中电刺激优势互补,前者为后者提供依据,后者对前者进行修正,两者是辩证统一的,只有熟练的联合DES和DTI-FT才能使患者最佳获益。
通过设置W5500的寄存器与存储器的值,就可以实现W5500和Interent连接起来进行数据通信。W5500的程序设计部分流程如图12所示,以太网模块不管是作为服务器还是客户端,通信时都是通过发送连接请求,所以在程序中也要判断是否需要建立连接,如果判断此次连接为有效连接,则进行接收数据,经过数据处理后再发送相应的数据,发送完成后,完成一次数据交流,需要关闭连接,然后依次循环进行。
还可以预测术后语言障碍的情况。本文着重关注语言传导束成像的术中及术后应用价值。
3.1对手术的价值 语言传导束示踪在神经外科手术中应用需要注意的主要问题一是准确性。为了减少假阳性和假阴性,DTI-FT可以和术中直接电刺激(direct electrical stimulation,DES)联合应用。众所周知,DES是确定功能区和纤维束的金标准,而DTI-FT可镜下显示纤维束形态,两者相辅相成,有利于更好地保护语言功能。VASSAL[29]报道了语言传导束DTI成像在临近语言区胶质瘤手术中的应用,术前重建6种语言传导束,术中联合运用DES,达到肿瘤最优切除及良好的语言功能保护效果。国内学者报道了应用多模态导航结合皮层下电刺激切除岛叶胶质瘤,术后仅11%患者出现永久性语言损害[30]。虽然语言传导束DTI-FT导航技术广泛应用于神经外科手术中,但是准确性欠佳,不能代替术中电刺激。SPENA[31]报道了27例语言区肿瘤病人,采用功能磁共振(functional magnetic reso⁃nance imaging,fMRI)和DTI技术,以DES为标准检验术前计划的可靠性和准确性,结果仅有42.8%fMRI激活区被DES
由于南碧河是翁结水库所在河流,同时下游减水河段为灌区主要退水河段,因此本文利用MIKE11软件在南碧河一维水动力学模型预测结果的基础上,增加入河排污口,构建南碧河一维水质模型。
语言传导束示踪在神经外科手术中应用需要注意的另一个问题是脑漂移。导致脑漂移的原因有很多,如术中脑脊液的流失、脑肿胀、脑组织向术腔移位、人为的牵拉等。目前纠正脑漂移的方法有术中磁共振、术中超声等。于是,术中语言传导束显像常结合以上方法以多模态的形式在神经外科手术中发挥作用。术中磁共振可纠正导航脑漂移,提示残余肿瘤,提高病变切除率,保护语言功能。国内陈晓雷团队[34-36]较早应用fMRI及DTI技术,联合术中高场强磁共振多模态导航下精准切除语言区肿瘤,保护弓状束,肿瘤全切除率达到79.2%,长期随访仅有极少数发生永久性语言障碍。此外,KUHNT[37]报道了应用DTI-FT技术显示语言传导束结合术中磁共振多模态导航下切除神经上皮肿瘤,有利于最大化切除肿瘤及最优化保护语言功能。D’ANDREA[38]进一步证实联合fMRI、DTI和术中磁共振有利于提高语言区肿瘤切除率和减少神经功能损害。然而,术中磁共振由于造价昂贵而且操作费时等缺点不能被广泛应用,相比之下术中超声显示出优越性。GULATI等[39]运用fMRI、DTI以及术中超声导航切除语言区肿瘤,证实有利于最大化切除肿瘤和更好的保护语言功能。STEFAN[40]使用概率性示踪技术提取语言纤维束用于术中导航,并且将术中超声集成于导航系统,以期同时解决交叉纤维和脑漂移两大问题,证实了两种技术集成的可靠性和有效性。随着科技的发展,虚拟现实和增强现实技术被应用于神经外科手术领域,SUN等[41]率先使用DTI集成虚拟现实指导语言区胶质瘤手术,辅以术中磁共振扫描纠正脑漂移,提高了肿瘤全切率及平均切除程度,并且降低了神经功能损害。
在该三维飞行任务空间建立以起点S为原点、S点正东方向为x轴,y轴垂直于x轴且与水平面平行,z轴为过原点且垂直于xoy平面的三维坐标轴Oxyz,如图2所示。
3.2对预后的价值 对于临近语言区的脑肿瘤患者,DTI弓状束显像可预测术后语言功能的恢复情况。HAYASHI和KINOSHITA团队[42,43]发表了两项研究,分别以手术前后弓状束面积以及平均FA值的变化作为观察指标,使用西部失语症量表检测手术前后的语言变化,分析观察指标与语言之间的相关性,证实术后弓状束显影面积增加或术前弓状束FA值升高,预示着术后语言功能可以得到较好的恢复。但两个研究的样本量都很小,而且术后语言评价时间点选择欠佳。KINOSHITA仅评价术后12d以内的语言功能,而此段时间常伴随着术区水肿等因素,会对语言功能造成影响,故检测语言功能的恢复情况应该设立在术后3个月较妥。
BAILEY[44]总结了76例语言区肿瘤手术病人,观察术前fMRI病变到语言皮层激活区距离和DTI上纵束被肿瘤侵犯的程度,研究以上两种因素与手术前后语言功能的关系,提出术前DTI所示SLF侵犯程度与术前语言功能相关联,但与术后语言功能无关。遗憾的是没有纳入弓状束,毕竟它是目前最经典的语言传导束。而且BAILEY仅研究术前纤维束侵犯程度与语言的关系,未涉及术后纤维束的情况。CAVERZASI[45]克服了以上两点不足,他对35例胶质瘤患者进行HARDI及QBI成像,每例均重建8种语言相关传导束,发现仅有术后AF和SLF颞顶成分(SLF-temporoparietal,SLF-tp)的完整性可预测远期的语言功能。此研究采用术后出院前重建的弓状束形态估计预后,有效避免了手术等混杂因素的影响。
目前语言传导束成像有一些共同特征:①肿瘤占位效应造成功能区移位,使得无法准确选择感兴趣区(region of interest,ROI);②瘤周水肿及肿瘤浸润使得瘤周脑组织FA值下降,妨碍了语言传导束成像;③不同算法导致的差别(概率性和确定性示踪),有学者提出概率算法更适合弓状束的重建[46]。所以,为了提高准确性和可靠性,语言传导束示踪成像应联合应用fMRI、nTMS、DES等技术,采集可靠的数据,运用先进的算法,辅以术中磁共振或术中超声等手段,尽量减少假阳性和假阴性,才能更好的为神经外科手术保驾护航。
[1]CATANI M,MESULAM M.The arcuate fasciculus and the dis⁃connection theme in language and aphasia:history and current state[J].Cortex,2008,44(8):953-961.
[2]GESCHWIND N.The organization of language and the brain[J]. Science,1970,170(3961):940-944.
[3]SAUR D,KREHER BW,SCHNELL S,et al.Ventral and dorsal pathways for language[J].Proc Natl Acad Sci USA,2008,105 (46):18035-18040.
[4]CHANG EF,RAYGOR KP,BERGER MS.Contemporary model of language organization:an overview for neurosurgeons[J].J. Neurosurg,2015,122(2):250-261.
[5]BRAUER J,ANWANDER A,PERANI D,et al.Dorsal and ven⁃tral pathways in language development[J].Brain Lang.,2013, 127(2):289-295.
[6]DICK AS,TREMBLAY P.Beyond the arcuate fasciculus:consen⁃ sus and controversy in the connectional anatomy of language[J]. Brain,2012,135(12):3529-3550.
[7]CATANI M,DELL'ACQUA F,VERGANI F,et al.Short frontal lobe connections of the human brain[J].Cortex,2012,48(2):273-291.
[8]FUJII M,MAESAWA S,MOTOMURA K,et al.Intraoperative subcortical mapping of a language-associated deep frontal tract connecting the superior frontal gyrus to Broca's area in the domi⁃nant hemisphere of patients with glioma[J].J Neurosurg,2015, 122(6):1390-1396.
[9]CATANI M,JONES DK,FFYTCHE DH.Perisylvian language networks of the human brain[J].Ann Neurol,2005,57(1):8-16.
[10]YAGMURLU K,MIDDLEBROOKS EH,TANRIOVER N,et al. Fiber tracts of the dorsal language stream in the human brain[J]. J Neurosurg,2016,124(5):1396-1405.
[11]FERNANDEZ-MIRANDA JC,WANG Y,PATHAK S,et al. Asymmetry,connectivity,and segmentation of the arcuate fasci⁃cle in the human brain[J].Brain Struct Funct,2015,220(3):1665-1680.
[12]VASSAL F,SCHNEIDER F,BOUTET C,et al.Combined DTI Tractography and Functional MRI Study of the Language Connec⁃tome in Healthy Volunteers:Extensive Mapping of White Matter Fascicles and Cortical Activations[J].PLoS One,2016,11(3):e0152614.
[13]MAKRIS N,KENNEDY DN,MCINERNEY S,et al.Segmenta⁃tion of subcomponents within the superior longitudinal fascicle in humans:a quantitative,in vivo,DT-MRI study[J].Cereb Cortex, 2005,15(6):854-869.
[14]HECHT EE,GUTMAN DA,BRADLEY BA,et al.Virtual dissec⁃tion and comparative connectivity of the superior longitudinal fas⁃ciculus in chimpanzees and humans[J].Neuroimage,2015,108:124-137.
[15]THIEBAUT DE SCHOTTEN M,DELL'ACQUA F,FORKEL SJ, et al.A lateralized brain network for visuospatial attention[J]. Nat Neurosci,2011,14(10):1245-1246.
[16]MARTINO J,DE WITT HAMER PC,BERGER MS,et al.Analy⁃sis of the subcomponents and cortical terminations of the perisyl⁃vian superior longitudinal fasciculus:a fiber dissection and DTI tractographystudy[J].BrainStructFunct,2013,218(1):105-121.
[17]KRISTO G,LEEMANS A,DE GELDER B,et al.Reliability of the corticospinal tract and arcuate fasciculus reconstructed with DTI-based tractography:implications for clinical practice[J]. Eur Radiol,2013,23(1):28-36.
[18]ALEXANDER AL,HASAN KM,LAZAR M,et al.Analysis ofpartial volume effects in diffusion-tensor MRI[J].Magn Reson Med,2001,45(5):770-780.
[19]KUHNT D,BAUER MH,EGGER J,et al.Fiber tractography based on diffusion tensor imaging compared with high-angu⁃lar-resolution diffusion imaging with compressed sensing:initial experience[J].Neurosurgery,2013,72 Suppl 1:165-175.
[20]CHEN Z,TIE Y,OLUBIYI O,et al.Reconstruction of the arcu⁃ate fasciculus for surgical planning in the setting of peritumoral edema using two-tensor unscented Kalman filter tractography[J]. Neuroimage Clin,2015,7:815-822.
[21]TUCH DS.Q-ball imaging[J].Magn Reson Med,2004,52(6):1358-1372.
[22]WEDEEN VJ,HAGMANN P,TSENG WY,et al.Mapping com⁃plex tissue architecture with diffusion spectrum magnetic reso⁃nance imaging[J].Magn Reson Med,2005,54(6):1377-1386.
[23]TOURNIER JD,CALAMANTE F,CONNELLY A.Robust deter⁃mination of the fibre orientation distribution in diffusion MRI:non-negativity constrained super-resolved spherical deconvolu⁃tion[J].Neuroimage,2007,35(4):1459-1472.
[24]YEH FC,WEDEEN VJ,TSENG WY.Generalized q-sampling imaging[J].IEEE Trans Med Imaging,2010,29(9):1626-1635.
[25]HALDAR JP,LEAHY RM.Linear transforms for Fourier data on the sphere:application to high angular resolution diffusion MRI of the brain[J].Neuroimage,2013,71:233-247.
[26]CAVERZASI E,PAPINUTTO N,AMIRBEKIAN B,et al.Q-ball of inferior fronto-occipital fasciculus and beyond[J].PLoS One, 2014,9(6):e100274.
[27]ZHANG H,WANG Y,LU T,et al.Differences between general⁃ized q-sampling imaging and diffusion tensor imaging in the pre⁃operative visualization of the nerve fiber tracts within peritumoral edema in brain[J].Neurosurgery,2013,73(6):1044-1053;dis⁃cussion 1053.
[28]WILKINS B,LEE N,GAJAWELLI N,et al.Fiber estimation and tractography in diffusion MRI:development of simulated brain images and comparison of multi-fiber analysis methods at clini⁃cal b-values[J].Neuroimage,2015,109:341-356.
[29]VASSAL F,SCHNEIDER F,SONTHEIMER A,et al.Intraopera⁃tive visualisation of language fascicles by diffusion tensor imag⁃ing-based tractography in glioma surgery[J].Acta Neurochir (Wien),2013,155(3):437-448.
[30]ZHUANG DX,WU JS,YAO CJ,et al.Intraoperative multi-infor⁃mation-guided resection of dominant-sided insular gliomas in a 3T intraoperative MRI integrated neurosurgical suite[J].World Neurosurg,2016,89:84-92.
[31]SPENA G,NAVA A,CASSINI F,et al.Preoperative and intraop⁃ erative brain mapping for the resection of eloquent-area tumors. A prospective analysis of methodology,correlation,and useful⁃ness based on clinical outcomes[J].Acta Neurochir(Wien), 2010,152(11):1835-1846.
[32]ILLE S,SOLLMANN N,HAUCK T,et al.Impairment of preoper⁃ative language mapping by lesion location:a functional magnetic resonance imaging,navigated transcranial magnetic stimulation, and direct cortical stimulation study[J].J Neurosurg,2015,123 (2):314-324.
[33]BELLO L,GAMBINI A,CASTELLANO A,et al.Motor and lan⁃guage DTI fiber tracking combined with intraoperative subcorti⁃cal mapping for surgical removal of gliomas[J].Neuroimage, 2008,39(1):369-382.
[34]CHEN XL,XU BN,WANG F,et al.Functional neuro-naviga⁃tion and intraoperative magnetic resonance imaging for the resec⁃tion of gliomas involving eloquent language structures[J].Zhong⁃hua Wai Ke Za Zhi,2011,49(8):688-692.
[35]ZHAO Y,CHEN X,WANG F,et al.Integration of diffusion ten⁃sor-based arcuate fasciculus fibre navigation and intraoperative MRI into glioma surgery[J].J Clin Neurosci,2012,19(2):255-261.
[36]张家墅,陈晓雷,侯远征,等.术中磁共振联合功能神经导航在中央区胶质瘤手术的应用[J].中国神经精神疾病杂志, 2012,38(4):239-243.
[37]KUHNT D,BAUER MH,BECKER A,et al.Intraoperative visu⁃alization of fiber tracking based reconstruction of language path⁃ways in glioma surgery[J].Neurosurgery,2012,70(4):911-919;discussion 919-920.
[38]D'ANDREA G,FAMILIARI P,DI LAURO A,et al.Safe Resec⁃tion of Gliomas of the Dominant Angular Gyrus Availing of Pre⁃operative FMRI and Intraoperative DTI:Preliminary Series and Surgical Technique[J].World Neurosurg,2016,87:627-639.
[39]GULATI S,BERNTSEN EM,SOLHEIM O,et al.Surgical resec⁃tion of high-grade gliomas in eloquent regions guided by blood oxygenation level dependent functional magnetic resonance imag⁃ing,diffusion tensor tractography,and intraoperative navigated 3D ultrasound[J].Minim Invasive Neurosurg,2009,52(1):17-24.
[40]RUECKRIEGEL SM,LINSENMANN T,KESSLER AF,et al. Feasibility of the combined application of navigated probabilistic fiber tracking and navigated ultrasonography in brain tumor sur⁃gery[J].World Neurosurg,2016,90:306-314.
[41]SUN GC,WANG F,CHEN XL,et al.Impact of virtual and aug⁃mented reality based on intraoperative MRI and functional neuro⁃navigation in glioma surgery involving eloquent areas:a Prospec⁃tive controlled study[J].World Neurosurg,2016.DOI:10.1016/j. wneu.2016.07.107.[Epub ahead of print]
[42]HAYASHI Y,KINOSHITA M,NAKADA M,et al.Correlation between language function and the left arcuate fasciculus detect⁃ed by diffusion tensor imaging tractography after brain tumor sur⁃gery[J].J Neurosurg,2012,117(5):839-843.
[43]KINOSHITA M,NAKADA M,OKITA H,et al.Predictive value of fractional anisotropy of the arcuate fasciculus for the function⁃al recovery of language after brain tumor resection:a preliminary study[J].Clin Neurol Neurosurg,2014,117:45-50.
[44]BAILEY PD,ZACA D,BASHA MM,et al.Presurgical fMRI and DTI for the prediction of perioperative motor and language defi⁃cits in primary or metastatic brain lesions[J].J Neuroimaging, 2015,25(5):776-784.
[45]CAVERZASI E,HERVEY-JUMPER SL,JORDAN KM,et al. Identifying preoperative language tracts and predicting postopera⁃tive functional recovery using HARDI q-ball fiber tractography in patients with gliomas[J].J Neurosurg,2016,125(1):33-45.
[46]LI Z,PECK KK,BRENNAN NP,et al.Diffusion tensor tractogra⁃phy of the arcuate fasciculus in patients with brain tumors:Com⁃parison between deterministic and probabilistic models[J].J Biomed Sci Eng,2013,6(2):192-200.
(责任编辑:甘章平)
10.3969/j.issn.1002-0152.2016.09.012
*中国人民解放军总医院神经外科(北京100853)
(Email:xbn301@126.com)
R651
A
2016-07-06)