张峻 季欣然 唐佩福
综述
脊髓损伤的影像学研究进展
张峻 季欣然 唐佩福
脊髓损伤;磁共振成像;弥散张量成像;超声检查
脊髓影像学检查在脊髓损伤患者的诊断、治疗和康复方面起着重要的作用。传统的影像学检查包括 X 线片、CT 和常规 MRI,将这些检查技术结合可以有效判断脊柱脊髓损伤患者骨和韧带损伤程度和范围,结合神经查体从而指导临床治疗。但是,其对于脊髓细微结构损伤只能提供较少的信息。某种程度上讲,它促进了更加注重于脊髓细微结构和生化功能的新的影像技术的发展,如磁共振弥散张量成像(diffusion tensor imaging,DTI),磁共振波谱(MR spectroscopy,MRS),正电子成像(positron emission tomography,PET),单光子发射断层扫描(single photon emission computed tomography,SPECT),功能磁共振(functional MRI,fMRI)。这些技术发展水平各不相同,有的还处在实验室研究阶段,有的已经应用到了临床诊疗中[1-4]。本综述将传统影像学技术在陈旧性脊髓损伤中的应用进展,新兴影像学技术在脊髓诊断,疗效判断等方面的应用进展进行概述。
陈旧性脊髓损伤与急性损伤病理过程不同,主要表现为脊髓继发性病变与晚期后遗症,包括继发于晚期的脊髓液化、坏死或脑脊液压力梯度破坏后脊髓囊性变及上、下行传导束损害所导致脊髓解剖形态萎缩、受压、变细、结构紊乱等,同时还可伴有髓内囊肿、纤维化、瘢痕组织的形成等。严重者脊髓的完整性与连续性消失,为神经胶质所代替,并可出现蛛网膜粘连及脊髓横断。常规 MRI 检查是目前显示脊髓病变的最佳影像学检查方法。不同作者在报道慢性脊髓损伤的常规 MRI 表现时对其病理类型的描述各有不同。脊髓囊变常规 MRI 序列表现为髓内局限性、边缘锐利的囊性结构病灶,其内信号变化同脑脊液。脊髓软化常规 MRI 表现为病变段脊髓在 T1WI 上信号强度介于脑脊液和正常脊髓实质之间,T2WI 上信号强度等于或高于脑脊液并常较 T1WI 显示的病变范围要大。脊髓萎缩的常规 MRI 诊断标准尚未统一,Herlihy 等[5]以脊髓前后径<6 mm 视为萎缩,Nordqvist[6]把颈髓前后径<7 mm,胸髓前后径<6 mm 作为脊髓萎缩的标准。因正常脊髓前后径在不同个体间及同一个体不同年龄、不同脊髓节段间均有差异,与自身正常脊髓比较才可发现脊髓是否变细。脊髓变细的范围标准以往文献未见报道,脊髓空洞的典型 MRI 表现为髓内带状或管状长 T1、长 T2信号,其信号强度与脑脊液相似。脊髓空洞使脊髓外形增粗,空洞内壁呈结肠袢样。脊髓空洞可延及 3.6~10.1 个脊髓节段。外伤性脊髓空洞的发生率文献报道不一,Kerslake 等[7]在伤后 3 周至 30 年后行常规 MRI 复查的 71 例慢性脊髓外伤中,发现空洞症 10 例,占 14.08%,Herlihy 等[5]报道为 40%。有作者把空洞描述为瘘管,Tsai 等[8]认为只有当空洞壁存有脑脊液信号时才可以认为空洞与蛛网膜下腔相通而称之为瘘管。脊髓栓系是少见的慢性期外伤表现,脊髓与蛛网膜粘连固定于椎管壁使脊髓移位、紧张、变性、功能缺失。脊髓栓系常见于外伤减压术后,属于继发性栓系。脊椎后移和外伤性椎间盘突出均能造成脊髓后移紧贴椎管壁,但这一改变不符合栓系的诊断,无脊髓受压的脊髓粘连且伴脊髓功能缺失才可诊断为栓系。Yamashita 等[9]报道慢性脊髓受压在慢性伤中的发生率为 53%。
传统的 MRI 被认为是诊断脊髓损伤的金标准,但是还没有证据证明影像学诊断和脊髓损伤后的临床实际损伤结果相一致[10]。因此,找到一种能够提供受损脊髓相关微结构和代谢信息的非侵袭性影像学诊断方法,并且构建理论体系从而提供更加精确的临床决策显得越来越有意义。这种影像诊断模式的潜在效用和对脊髓损伤患者的作用是多方面的:首先,进行脊髓受损平面结构完整性的评估,预测伤后神经功能恢复的能力,从而制订康复策略。其次,对脊髓损伤患者神经损害的程度有更好的理解,对儿童神经受损程度进行可靠的评估,因为儿童的体格检查往往是不可靠的[11]。再者,可以开展神经受损导致的细胞反应的测量或针对受损脊髓的生物学治疗。
DTI 已经被证明是脊髓损伤后的一种比标准 T2加权像还要灵敏的生物指标[12-15]。Chang 等[12]使用 DTI 和 MRI评估了 10 例慢性脊髓损伤患者和对照组的 10 名健康者。DTI 的定量参数计算出了颈髓每个水平的指标,DTI 示踪成像参数用来测量轴下指标(3 个不同平面下的指标),包括通过损伤平面的神经束的数量和连接率。神经功能的评估采用脊髓损伤神经分类国际标准。结果证明 MRI 得出的异常影像学表现与脊髓损伤患者的临床表现不一致。然而,DTI 部分各向异性与运动功能相关,正如 DTI 示踪成像的纤维数量和通过受损病灶神经连接率相关。DTI 神经纤维示踪成像表明在运动功能丧失感觉功能残存的患者中没有明显的神经连接通过病灶。Petersen 等[14]使用 DTI,电生理检查评估了 19 例慢性颈脊髓损伤患者,使用 ASIA评分标准进行神经学检查。他们发现与健康对照组相比,部分各向异性评估价值被减弱,DTI 价值的减弱与体感诱发电位的振幅和脊髓损伤后的完整性相关。
另外一种新的诊断脊髓损伤技术是脊髓 fMRI。这种非侵袭性检查模式依靠受检新陈代谢活跃的神经组织血流和氧气含量的变化[16]。信号的变化根据血氧水平的依赖对比和所选区域水内容物增加引起的细胞外水质子信号强化。脊髓 fMRI 能够标出运功和感觉的功能区域。Kornelsen 等[17]通过队列研究主动和被动活动 12 例脊髓损伤患者下肢完成了脊髓 fMRI 检查。他们发现,不管损伤的程度如何,所有的患者的神经元都表现出活跃度,并且主动和被动活动肢体引出了受损水平以下的神经元的活动。
再者,脊髓损伤后缺血是创伤性脊髓损伤病理生理过程的重要环节,并且可作为神经保护性治疗的重要靶点。现有的评估脊髓内血流量的检查方法有明显的不足。Dubory 等[18]利用实时对比增强超声成像(real-time contrast enhanced ultrasound imaging,CEU)观察小鼠脊髓挫伤模型的髓内血流变化。需要在小鼠颈静脉置管重复注射对比剂,在造模成功后 15 min,CEU 观察到在损伤水平及邻近水平有明显的缺血,这项技术为评估限制缺血的导致组织坏死的临床治疗效果提供了新方法。
在脊髓损伤的动物模型中,检验细胞治疗效果的实验性研究随着越来越多,先进的脊髓影像技术将有助于判断这些实验性治疗方法是否有效[19-22]。连续 DTI 可以评估伤后脊髓完整性,治疗期间监测脊髓细微结构的变化。灌注MRI 有助于判断治疗后脊髓血流灌注是否重新建立。PET有助于监测神经修复过程,局部葡萄糖吸收的增加意味着脊髓组织正在愈合。上述都是有临床应用潜力和发展前景的影像学技术。
在评估细胞疗法治疗脊髓损伤的效果中,一些实验性研究验证了先进脊髓影像技术的潜在作用。Schwartz 等[23]破坏小鼠的红核髓束,植入成纤维细胞到损伤部位。DTI不仅可以鉴别正常和受损神经束,还可以分辨胶质瘢痕和对瘢痕形成过程定位。胶质瘢痕是脊髓损伤后神经轴突再生的物理屏障和细胞屏障。所以,DTI 在评价减轻或抑制瘢痕形成的细胞疗法疗效方面具有潜在的优势。Ellington 等[24]进行表皮神经干细胞移植后,使用 DTI 监测脊髓再生效应发现其增加了各向异性、并且减少了损伤部位细胞生长的平均扩散率,提示受损脊髓结构和功能都得到了良好的恢复。虽然这些技术还处在早期临床实施和研发阶段,脊髓 DTI 和 fMRI 对仪器硬件和软件要求都非常高,目前难以普及,但是这些先进的脊髓成像技术将在提供脊髓伤后完整性,细微结构变化等生理信息方面展示出巨大的潜力[4,25-26]。
[1] Vilchez C, Gonzalez-Reinoso M, Cubbison C, et al. Atrophy,focal spinal cord lesions and alterations of diffusion tensorimaging(DTI)parameters in asymptomaticvirus carriers and patients suffering from human T-lymphotrophic virus type 1(HTLV-1)-associated myelopathy/tropical spastic paraparesis(HAM/TSP). J Neurovirol, 2014, 20(6):583-590.
[2] Middleton DM, Mohamed FB, Barakat N, et al. An investigation of motion correction algorithms for pediatric spinal cord DTI in healthy subjects and patients with spinal cord injury. Magn Reson Imaging, 2014, 32(5):433-439.
[3] Bazley FA, Pourmorteza A, Gupta S, et al. DTI for assessing axonal integrity after contusive spinal cord injury and transplantation of oligodendrocyte progenitor cells. Conf Proc IEEE Eng Med Biol Soc, 2012, 2012:82-85.
[4] Boelmans K, Kaufmann J, Schmelzer S, et al. Hirayama disease is a pure spinal motor neuron disorder--a combined DTI and transcranial magnetic stimulation study. J Neurol, 2013,260(2):540-548.
[5] Herlihy AH, Oatridge A, Curati WL, et al. FLAIR imaging using nonselective inversion pulses combined with slice excitation order cycling and k-space reordering to reduce flow artifacts. Magn Reson Med, 2001, 46(2):354-364.
[6] Nordqvist L. The sagittal diameter of the spinal cord and subarachnoid space in different age groups. A roentgenographic post-mortem study. Acta Radiol Diagn, 1964, 227:1-96.
[7] Kerslake RW, Jaspan T, Worthington BS. Magnetic resonance imaging of spinal trauma. Br J Radiol, 1991, 64(761):386-402.
[8] Tsai JC, Petrovich MS, Sadun AA. Histopathological and ultrastructural examination of optic nerve sheath decompression. Br J Ophthalmol, 1995, 79(2):182-185.
[9] Yamashita Y, Takahashi M, Matsuno Y, et al. Chronic injuries of the spinal cord: assessment with MR imaging. Radiology,1990, 175(3):849-854.
[10] Chafetz RS, Gaughan JP, Vogel LC, et al. The international standards for neurological classification of spinal cord injury:intra-rater agreement of total motor and sensory scores in the pediatric population. J Spinal Cord Med, 2009, 32(2):157-161.
[11] Demir A, Ries M, Moonen CT, et al. Diffusion-weighted MR imaging with apparent diffusion coefficient and apparent diffusion tensor maps in cervical spondylotic myelopathy. Radiology, 2003, 229(1):37-43.
[12] Chang Y, Jung TD, Yoo DS, et al. Diffusion tensor imaging and fiber tractography of patients with cervical spinal cord injury. J Neurotrauma, 2010, 27(11):2033-2040.
[13] Facon D, Ozanne A, Fillard P, et al. MR diffusion tensor imaging and fiber tracking in spinal cord compression. AJNR Am J Neuroradiol, 2005, 26(6):1587-1594.
[14] Petersen JA, Wilm BJ, von Meyenburg J, et al. Chronic cervical spinal cord injury: DTI correlates with clinical and electrophysiological measures. J Neurotrauma, 2012, 29(8):1556-1566.
[15] Shanmuganathan K, Gullapalli RP, Zhuo J, et al. Diffusion tensor MR imaging in cervical spine trauma. AJNR Am J Neuroradiol, 2008, 29(4):655-659.
[16] Kornelsen J, Stroman PW. Detection of the neuronal activity occurring caudal to the site of spinal cord injury that is elicited during lower limb movement tasks. Spinal Cord, 2007, 45(7):485-490.
[17] Kornelsen J, Mackey S. Potential clinical applications for spinal functional MRI. Curr Pain Headache Rep, 2007, 11(3):165-170.
[18] Dubory A, Laemmel E, Badner A, et al. Contrast enhanced ultrasound imaging for assessment of spinal cord blood flow in experimental spinal cord injury. J Vis Exp, 2015,(99):e52536.
[19] Taso M, Girard OM, Duhamel G, et al. Tract-specific and agerelated variations of the spinal cord microstructure: a multiparametric MRI study using diffusion tensor imaging(DTI)and inhomogeneous magnetization transfer(ihMT). NMR Biomed,2016, 29(6):817-832.
[20] Morozova SN, Bryukhov VV, Trifonova OV, et al. A DTI study of the spinal cord lesion in patients with multiple sclerosis during the follow-up after relapse. Zh Nevrol Psikhiatr Im S S Korsakova, 2016, 116:21-26.
[21] Martin AR, Aleksanderek I, Cohen-Adad J, et al. Translating state-of-the-art spinal cord MRI techniques to clinical use: A systematic review of clinical studies utilizing DTI, MT, MWF,MRS, and fMRI. Neuroimage Clin, 2015, 10:192-238.
[22] Lindberg PG, Sanchez K, Ozcan F, et al. Correlation of force control with regional spinal DTI in patients with cervical spondylosis without signs of spinal cord injury on conventional MRI. Eur Radiol, 2016, 26(3):733-742.
[23] Schwartz ED, Duda J, Shumsky JS, et al. Spinal cord diffusion tensor imaging and fiber tracking can identify white matter tract disruption and glial scar orientation following lateral funiculotomy. J Neurotrauma, 2005, 22(12):1388-1398.
[24] Ellington BM, Schmit BD, Gourab K, et al. Diffusion heterogeneity tensor MRI(?-Dti): mathematics and initial applications in spinal cord regeneration after trauma - biomed 2009. Biomed Sci Instrum, 2009, 45:167-172.
[25] Hodel J, Besson P, Outteryck O, et al. Pulse-triggered DTI sequence with reduced FOV and coronal acquisition at 3T for the assessment of the cervical spinal cord in patients with myelitis. AJNR Am J Neuroradiol, 2013, 34(3):676-682.
[26] Sąsiadek MJ, Szewczyk P, Bladowska J. Application of diffusion tensor imaging(DTI)in pathological changes of the spinal cord. Med Sci Monit, 2012, 18(6):RA73-79.
(本文编辑:王萌)
Advances in imaging studies of spinal cord injury
ZHANG Jun, JI Xin-ran, TANG Pei-fu. Department of Orthopaedics, PLA General Hospital, Beijing, 100853, PRC
TANG Pei-fu, Email: pftang301@163.com
Intramedullary hemorrhage, loss of blood spinal cord barrier integrity, perilesional ischemia,microvascular damage and subtle structural changes happen after spinal cord injury, but a safe and effective imaging examination technology to discover series of microstructural changes after the trauma of the spinal cord is lacking. Traditional imaging techniques can effectively determine the level and range of bone and ligament damage in patients with spinal cord injury. However, regarding to the fine structure of the spinal cord, it can only provide insufficient information. To some extent, it promotes the development of new imaging technology on the spinal fine structure and biochemical functions. But the development levels are not identical, some are still in the laboratory, and some are applied to the clinical diagnosis and treatment. In this paper, the application of traditional imaging technology in the old spinal cord injury, the application of new imaging technology in the diagnosis of spinal cord, curative effects and so on are summarized.
Spinal cord injuries; Magnetic resonance imaging; Diffusion tensor imaging; Ultrasonography
10.3969/j.issn.2095-252X.2016.08.008 中图分类号:R683.2, R445
北京市科委重大项目(D161100002816005);博士后基金(2014M562548、2015T81100)
100853 北京,解放军总医院骨科(张峻、季欣然、唐佩福);010010 呼和浩特,内蒙古医科大学附属医院骨科(张峻)
唐佩福,Email: pftang301@163.com
(2016-06-11)