宋梅
摘 要:介绍了屋顶光伏太阳能的实际运行能效,分析了可能影响能效的原因,提出了解决方案。
关键词:屋顶光伏;环境因素;组件损伤;控制系统
DOI:10.16640/j.cnki.37-1222/t.2015.24.071
依据我国光伏平价上网路线图,未来5年内光伏发电成本就将与火电相当。至2050年光伏装机将占全球发电装机的27%,成为第一大电力来源。中国光伏技术的持续革新将驱动新一轮产业高增长,以进一步降低度电成本,并逐步摆脱行业对补贴的依赖,进入健康的高增长周期。同时,在应用方面,中国也将终结“两头在外”的时代,成为引领全球光伏发展的绝对龙头。我国已连续两年新增装机排名第一,在累计装机量上今年将超越德国,成为新的光伏霸主。放眼未来,我国仍将是全球最主要的增量市场,2020年末装机100GW的原目标将大概率突破[1]。
大唐(上海)电力能源公司投资建设了大唐上海综合保税区32MWP屋顶光伏项目,该项目被评为上海市金太阳示范项目。该项目采用用户侧并网发电,按各企业分片组成发电单元的方式设计和建设。电站采取在轻钢屋面厂房、仓库屋顶采取沿屋面坡度3度倾角方式安装太阳能板。根据企业中每座厂房、仓库屋顶光伏组件的容量和厂房内负荷大小合理划分几个区域,然后配备容量适当的逆变器,组成几个独立的发电单元,多点并网。采用国家统一招标规定的230Wp多晶光伏组件,并合理选择设备配置,为下一步在上海乃至全国大面积推广和发展建设做好经验积累。自2012年投产来,光伏电站已成功运营了三年的时间。
1 光伏电站运行数据分析
电站自2013年投产运行以来,光能产出数据见表1。
光伏电站装机容量为32MWp, 共170台光伏发电机组,至2013年5月全部投产,由于设备维修等其他因素并未实现满负荷发电。根据每月统计的产出数据统计出三年来发电量对比如图2和图3。
2013年因施工原因,投产机组逐渐增多。发电量在6月全部投产后呈指数上升趋势,对比可见每年7-9月是发电量高峰期,而11月至1月则发电量较低。2014年和2015年发电量变化曲线变化基本一致,图线变化与上海市气象局统计的上海市平均光照曲线变化趋势基本一致。因此光伏机组对太阳能的利用率与太阳辐射变化较为一致。
根据图3中三年平均每台产出数据,可看出其中2013年9月平均产出量最多,每台机组的平均产出变化较大,机组工作状态不稳定。通过对比发现,只有2013年9月的产出比例超出设计值,其他月份均与设计值相差较大。其中年度总发电量,2013年为设计值的46.3%,2014年为63.2%, 2015年为70%。均未达到设计值参考产能的75%及以上。
2 未达设计值影响因素
太阳能电站产除了受环境因素影响,还与自身构造、电池板材料有关。下面根据研究,可能会产生主要影响的要素分析如下:
2.1 环境因素对太阳能电池板能效的影响
温度和太阳能辐射照度是影响太阳能设备输出效率的两个主要因素。其他环境因素,如风、雨、云层和太能辐射分布会通过对温度和太阳能辐射度的间接影响从而影响设备效率[3]。
2.1.1 温度
当光伏组件在环境温度为25℃时工作时,其实际操作温度将高于环境温度,并导致最高14%的能源转化损失[4]。一般来说,单晶硅额定电池工作温度(NOCT)为40℃。NOCT是指当太阳能组件或电池处于开路状态,并在以下具有代表性情况时所达到的温度[5]。
(1)电池表面光强: 800 W/m2
(2) 环境温度: 20℃
(3)风速:1m/s
(4)电负荷: 无(开路)
(5)倾角:与水平面成45°
(6) 支架结构:后背面打开
通过对光伏组件电能生产监控实验发现[2],高温会导致组件产能下降。高风速会使环境温度下降,从而降低了光伏组件工作温度,提高产能。低温是光伏组件的理想工作环境。当环境温度高于25℃时,电能损失为标准测试条件(STC)功率的10%,光谱、组件衰减和其他因素会导致约7.7%的电能损失。
2.1.2 太阳辐射照度
太阳辐射照度通过影响光伏组件的多个输出因数从而影响输出效率。太阳能电池性能强烈依赖于光谱分布,不同的太阳能电池材料有不同的光谱输出。因此光伏组件的不同材料在不同的光谱分布下将产生不同的电能输出,光谱分布根据地点和每天时间段的不同而有所不同。
2.2 组件损伤
电池板不匹配导致的损毁的电池板会使太阳能电池板电流减小,在额定电压范围内工作时[6],将电能以发热形式散发,使得光伏组件温度升高。当光伏组件在室外超时工作时温度将进一步升高,将有可能导致不可逆转的组件损伤。不被旁路二极管保护的不匹配电池组件将引起电能耗散并产生过热点,从而引起组件损伤。
太阳能电站组件的室外工作功率往往低于额定功率。研究表明气象条件会引起光伏组件效能损失达18%。尽管光伏电站设计使用时间为20-30年,但光伏组件的衰减和过早失效都应考虑在内。对组件潜在衰减的监控是十分必要的。
3 解决方案
3.1 加装跟踪式太阳能板
通过长达13个月的集线器模块监控[3],对跟踪式太阳能板(TFP)和固定式太阳能板(FFP)得出如下结论。夏季固定式太阳能板接收的入射能远大于直接照射时所接收能量,冬天则有相反的结果。跟踪式太阳能板的电能转化效率远远大于固定式太能板。研究表明跟踪系统可以在清晨和傍晚的时间显著段增大电能输出。
3.2 引入控制系统进行监控
在太阳能系统中,太阳能辐射具有不可操作性,并且太阳能辐射随着季节和时间变化而变化,在控制理论中这种变化成为一项干扰。太阳能电站的动态参数(非线性和不确定性)十分适合先进控制理论。endprint
控制系统可以分为两部分。第一部分是本地控制,通过设置好的日光反射装置,将时间和太阳辐射角度反馈给上层控制系统。第二部分逻辑层面是数字控制系统(DCS),通过接收到的数据控制进行计算,给出下一步指令。
现阶段的太阳能板追踪系统控制趋势是利用开环控制系统,根据太阳能辐射的地点和时间,给出太阳辐射方向。当接收器接到温度和流量分布的模拟信号后,计算机根据输入算法中的模拟公式给出每块板支架的偏移量。控制参数的准确性会因时间、经度和纬度、支架位置、处理器精确度和环境干扰等因素而产生误差。
很多太阳辐射位置算法的研究均利用了小型计算机。很多算法利用微型计算机增加了追踪精确度。但研究表明此种算法只在有效时间段内有效[7]。大型计算机在长期数据监测下可以准确预测太阳辐射位置并将误差缩小至0.003度,但经济成本太高。
3.3 降低环境温度
通过加空调等散热装置对屋顶光伏进行技术改造,从而消除环境温度变化产生的影响。将散热装置的温度控制数据作为控制参数,设定为光伏组件的理想环境工作温度,将温度对光能产出的影响降至最小。也可灵活采用物理降温,机器清扫等方式,根据季节及气候变化进行应对。
4 结论
本文通过对大唐上海综合保税区32MWP屋顶光伏太阳能2013年至2015年的产出数据进行分析,对比发现产出值仅达设计值的70%。发电量曲线变化同光照曲线变化一致,但单机产出率低。
温度是影响光伏组件产出的重要因素。当环境温度高于25oC时,电能损失为标准测试条件(STC)功率的10%,光谱、组件衰减和其他因素会导致约7.7%的电能损失。光伏组件的不同材料在不同的光谱分布下将产生不同的电能输出。电路原因造成的组件不可逆损伤也是原因之一。
可以通过加装跟踪式太阳能板,引入监控控制系统和机械降温等方式提高光能产出率。
参考文献:
[1]http://solar.ofweek.com/2015-10/ART-260009-8610-29018000.html专访李仙德:中英能源合作将如何发展?
[2]大唐上海综合保税区光伏项目,大唐(上海)电力能源有限公司
[3]Long-term monitoring of photovoltaic devices, E.E. van Dyk, E.L. Meyer, F.J. Vorster, A.W.R. Leitch ,Renewable Energy 25(2002)183-197,
[4]Van Dyk EE, Scott BJ, Meyer EL, Leithch AWR.Temperature dependence of output parameters of crystalline silicon photovoltaic modules. South African Jsci 2000; 96:198-200. (下转第125页)
(上接第78页)
[5]IEC 1215. Crystalline silicon terrestrial photovoltaic modules- design qualification and type approval, 1993.
[6]Hermann W, Wiesner W, Vaa?en W. Hot spot investigations on PV modules — new concepts for test standard and consequences for module design with respect to bypass diodes. In: 26th IEEE Photovoltaic Specialists Conference, 1997:1129-32.
[7]Eduardo F. Camacho, Manuel Berenguel, Ignacio Alvarado, Daniel Limon. Control of Solar Power Systems: a survey. Proceeding of the 9th International Symposium on Dynamics and Control of Process Systems, page 809-814.endprint