张清莉 ,刘再强 ,钟玉德 ,王文杰,刘松 ,肖先仪 ,何宽信, 陈学平
1 中国科学技术大学烟草与健康研究中心,安徽省合肥市徽州大道1129号 230051;
2 江西省烟草公司,江西省南昌市洪城路298号 330025;
3安徽省池州市烟草公司,安徽省池州市贵池区长江中路41号 247100
BABA诱导烟草抵御高盐胁迫的初步研究
张清莉1,刘再强2,钟玉德2,王文杰3,刘松1,肖先仪2,何宽信2, 陈学平1
1 中国科学技术大学烟草与健康研究中心,安徽省合肥市徽州大道1129号 230051;
2 江西省烟草公司,江西省南昌市洪城路298号 330025;
3安徽省池州市烟草公司,安徽省池州市贵池区长江中路41号 247100
通过外源BABA处理观察其对高盐胁迫下烟草生长的调节作用,并从抗氧化系统和相关基因表达探讨其作用机理。结果表明:在高盐胁迫下,外源0.2 mmol/L BABA和0.5 mmol/L BABA处理均能显著促进烟草的生长,根长和鲜重均显著增加;与盐胁迫组相比,外源BABA处理能显著提高高盐胁迫下烟草幼苗体内还原型谷胱甘肽(GSH)、脯氨酸、叶绿素和H2O2的含量,同时还能增加烟株超氧化物歧化酶(SOD)、抗坏血酸还原酶(APX)、过氧化物酶(POD)、过氧化氢酶(CAT)的活性;外源BABA还可通过降低高盐胁迫下烟株丙二醛(MDA)含量和相对电导率值来减轻高盐胁迫对细胞膜的损害。半定量PCR结果表明:BABA能够诱导脱落酸(ABA)调控基因NtRAB18、NtERD10D和NtERD10B表达。由此认为BABA提高烟草的耐盐性是通过激发植物体内抗氧化系统和通过ABA途径诱导逆激基因上调的综合结果。
β-氨基丁酸;烟草;高盐胁迫
植物在生长发育过程中会受到各种逆境胁迫,例如干旱[1]、冷冻[2]、洪涝[3]、高温[4]和高盐[5]等,其中高盐胁迫使植物生长发育周期缩短,生物量和经济产量下降,是制约植物生长和发育的最主要因素之一[6]。据不完全统计,目前世界盐渍地约10亿公顷,占世界土壤总面积的10 %,其中中国各类盐渍土就约有1亿公顷[7]。
盐胁迫主要包括渗透胁迫、离子不平衡、营养缺乏和离子毒害[8]。一方面土壤中过量的NaCl导致土壤中水势降低,植物难以从土壤中吸收水分,另一方面溶液中过量的盐离子会阻碍植物对以K+为主的一些必须矿质元素的吸收[9],造成营养离子缺亏,同时植物细胞中过量的Cl-和Na+也会影响细胞内酶的活性,细胞的代谢和生理功能受到不同程度的破坏[10]。高盐胁迫严重影响了烟草的生长和发育,提高烟草耐盐性具有重要意义。
BABA是一种在植物中很少存在的非蛋白质氨基酸。研究报道,BABA能够诱导拟南芥抗高盐和干旱[11]、低钾胁迫[12],大豆抗重金属镉[13],春小麦抗干旱[14]。但有关BABA诱导烟草抵御高盐胁迫的研究尚未见报道。本实验以烟草“云烟87”为试材,研究了不同浓度BABA对NaCl胁迫下烟草的调节作用,测定了烟草中抗氧化酶和抗氧化物质的含量以及相关的基因表达,探索外源BABA提高烟草抵御NaCl胁迫的机理,为BABA诱导烟草抵御高盐胁迫提供理论依据。
烟草品种“云烟87”由安徽农业科学院提供,BABA(纯度为94%)市购,RNA提取试剂盒(RNA prep Pure Plant Kit)购于北京天根生物技术有限公司,Taq聚合酶(TaKaRa Taq)和反转录试剂盒(Prime Script RT Master Mix Perfect Real Time)均购于大连TaKaRa公司。
生长条件分为培养基培养、水培、土培三类。
培养基:烟草种子经75 % (V/V)C2H5OH消毒3 min,20%(V/V)NaClO振荡22 min,灭菌双蒸水清洗5~6次。将清洗过的种子均匀点播在MS(Murashige和Skoog)培养基上,对照组和盐胁迫组均为正常的MS培养基,BABA组添加BABA至终浓度分别为0.2 mmol/L和0.5 mmol/L。预处理15d后将盐胁迫组和BABA组的烟草幼苗移入已加入150 mmol/L NaCl的MS培养基上,进入NaCl胁迫期,对照组移入正常的MS培养基,具体操作如表1。恒温箱中培养,温度(28 ± 2)℃,16h光照/d。进入NaCl胁迫期20d后,观察表型、拍照,测量其根长和鲜重。实验设置3次重复。
表1 培养基条件Tab.1 Medium condition
水培条件:将烟草种子均匀撒在由霍格兰营养液润湿的灭菌营养土里,选取生长一致幼苗分别移入加入同体积霍格兰营养液的锥形瓶中。温度(28± 2)℃,16h光照/d预处理3d后,将盐胁迫组和BABA组烟草幼苗移入含有150 mmol/L NaCl的霍格兰营养液中,对照组更换营养液,具体操作如表2所示。进入NaCl胁迫期48h后同时取样测生理指标和提取RNA。实验设置3次重复。
表2 水培条件Tab.2 Hydroponics culture
土培条件:将烟草种子均匀撒在霍格兰营养液润湿的灭菌营养土里,温度(28 ± 2)℃,16h光照/d培养至幼苗生长至3、4叶真叶期时分苗。选取生长一致烟苗移栽到花盆里。每个花盆种植一株,4个花盆为一组,设置3组重复。具体操作见表3。预处理72h后进入NaCl胁迫期,70d后观察其表型,拍照。
表3 土培条件Tab.3 Soil culture condition
参照Michael等的方法[15],略有改动。取待测新鲜叶片约0.10 g去中脉剪碎置于试管中,加入5 mL 3%水杨酸,于沸水浴中提取10 min后冷却,吸取2 mL上清液 (空白管吸取2 mL 3%水杨酸),加入2 mL茚三酮显色液,3 mL冰乙酸,沸水浴中反应40 min后冷却,加入5 mL甲苯萃取,测定其在520 nm波长下的吸光度值。
参照Stewart 和 Bewley的方法[16],略有改动。取待测新鲜叶片约0.20 g,加入10%的三氯乙酸溶液2.0 mL研磨,离心10 min后吸取上清溶液1.8 mL(空白管吸取1.8 mL三氯乙酸),加入1.8 mL 0.6%硫代巴比妥酸溶液,于沸水浴中反应15 min,冷却后离心,测定其在450 nm、532 nm、600 nm波长下的吸光度值。
测试步骤参照苏州科铭生物技术有限公司GSH测试试剂盒说明书。
参照朱广廉等的方法[17],略有改动。取待测新鲜叶片约0.2 g去中脉剪碎置于试管中,加入10 mL 80%的丙酮混匀用黑布包裹过夜。待叶片组织全部变白以后测其在645 nm、652 nm、663nm波长下的吸光度值。
参照陈建勋等的方法[18],略有改动。将待测叶片用自来水冲洗3次去污、蒸馏水冲洗3次去离子,选取等大小的待测叶片约1.0 g,加入50 mL双蒸水浸泡24 h后测其电导率R1。将上述叶片在沸水浴中煮沸30分钟后,冷却,补足蒸发掉的水分后测其电导率R2。相对电导率=R1/R2×100%。
取待测新鲜叶片约0.2 g,加入1 mL 50 mmol/L pH=7.0的缓冲液(含 有1% PVP,0.01 mmol/L EDTANa2),在预先冷冻的研钵中迅速研磨后再加入3 mL缓冲液,混匀后1200 rad/s离心15 min。吸取上清液置于4 ℃中冷藏备用。
APX活力的测定:参照Nakano、Asada的方法[19],略有改动。反应混合液2.9 mL (50 mmol/L pH=7.0的磷酸缓冲液中含有0.1 mol/L EDTANa2、0.06 mmol/L H2O2)中加入0.1 mL酶液(空白管加入0.1mL磷酸缓冲液)混匀后在氘灯下测其在290 nm波长下0 s和120 s的吸光度值。
POD活力的测定:按照Kar和Mishra 的愈创木酚法[20],略有改动。4.7 mL混合液(50 mmol/L pH=5.5的磷酸缓冲液2.7 mL,2% 的H2O21.0 mL,0.05 mmol/L愈创木酚1.0 mL)中加入0.3 mL酶液(空白管为0.3 mL pH=7.0的磷酸缓冲液)混匀后,水浴37℃反应15 min,冷却后测定其在470 nm波长下的吸光度值。
SOD活力的测定:参照Bewley的NBT方法[21],略有改动。混合液2.9 mL(50 mmol/L pH=7.8的磷酸缓冲液1.5 mL,130 mmol/L的甲硫氨酸溶液0.3 mL、750 μmol/L 的 NBT 0.3 mL、100 μmol/L 的EDTANa20.3 mL、蒸馏水0.5 mL)中加入0.3 mL 20 μmol/L核黄素、0.10 mL酶液(空白管加入0.10 mL pH=7.0的磷酸缓冲液)。1支对照管罩上黑布,一支对照管和测试管置于4000 lx的光照下反应30 min。反应结束后测其在560 nm波长下的吸光度值。
CAT、H2O2测定依据南京建成生物试剂公司CAT、H2O2测试试剂盒说明书。
叶片总RNA提取参照植物总RNA提取试剂盒说明书。RNA反转录参照TaKaRa反转录试剂盒说明书。内参基因为18S rRNA (AJ236016.1),目的基因为NtRAB18、NtERD10B和NtERD10D。
表4 基因引物序列Tab.4 Gene sequences of primers
实验数据表示为平均值 ± 标准偏差,数据分析采用单因素方差分析,置信区间P<0.05,统计分析软件使用origin 9.0和DPS 9.5。
由图1所示,与自然生长的烟草相比,NaCl胁迫抑制了烟草的生长,其表现为叶片面积减小(图1B),根长(图1A、C)、茎长(图1C)缩短,而在NaCl胁迫下,BABA处理能够明显缓解以上情况。BABA组较盐胁迫组的烟草叶片面积增大(图1B),根、茎增长(图1A、C),根系也较盐胁迫组发达(图1C),盐胁迫组和BABA组的鲜重(图1D)和根长(图1E)均达到显著性差异。其中,添加0.2 mmol/L BABA处理的烟苗比盐胁迫组的鲜重(图1D)和根长(图1E)分别增加了96.83%和146.42%,0.5 mmol/L BABA比盐胁迫组鲜重(图1D)和根长(图1E)分别增加了96.64%和235.71%。结果表明,BABA能够缓解盐胁迫对烟草生长的抑制作用。
图1 NaCl胁迫下BABA对烟草(A、B、C)长势、烟草幼苗(A)的鲜重(D)和根长(E)的影响Fig.1 Effect of BABA on the growth (A.B.C) of tobacco as well as the fresh weight (D) and root length (E) of tobacco seedling s (A) under NaCl stress
植物组织遭受逆境危害后,膜脂过氧化加剧,MDA大量积累,细胞膜结构、功能被破坏,导致电解质外渗[22-24]。MDA含量和相对电导率通常作为植物受氧化胁迫程度的指标。由图2(A)所示,0.2 mmol/L 和0.5 mmol/L BABA降低了烟叶中MDA的含量,分别比盐胁迫组降低了22.00% 和29.54%。同时0.5 mmol/L BABA组的MDA含量与自然生长的烟草幼苗没有达到显著性差异。由图2(B)所示,0.2 mmol/L 和0.5 mmol/L BABA 降低了烟叶的相对电导率,分别比盐胁迫组降低了25.71% 和17.91%。结果表明,BABA能够降低高盐胁迫对烟草细胞膜结构和功能的损伤。
图2 对照组、盐胁迫组和BABA组烟草幼苗MDA(A)含量与相对电导率(B)Fig.2 MDA (A) and the relative electrical conductivity (B) in tobacco seedlings of the control,salt stress and BABA groups
图3 对照组、盐胁迫组、BABA组烟草幼苗叶绿素(A)、脯氨酸(B)、GSH(C)含量Fig.3 Content of chlorophyll (A),proline (B) and GSH (C) in t obacco seedlings of control,salt stress and BABA groups
盐胁迫抑制叶绿体中叶绿素合成,并破坏已合成的叶绿素,使植物的光能利用和CO2同化受到抑制[24]。本研究中0.2 mmol/L 和0.5 mmol/L BABA分别使烟草幼苗的叶绿素A较盐胁迫组增加了16.42%和12.41%,叶绿素B较盐胁迫组增加了83.96%和49.97%,总的叶绿素较盐胁迫组分别增加了23.82%和16.52%,见图3(A)。
脯氨酸是植物体内重要的渗透调解物质。在遭受胁迫时植物通过大量积累脯氨酸来提高溶质浓度、降低体内水势[25]。同时脯氨酸与蛋白质结合,能增强蛋 白质的水合作用,保护这些生物大分子的结构和功能的稳定[26]。烟草的盐适细胞中脯氨酸含量占游离氨基酸总量的80%[27]。本实验中烟草在遭受NaCl胁迫下开始积累脯氨酸,比自然生长时增加了41.56%。添加BABA处理后能显著增加烟草体内脯氨酸的含量,0.2 mmol/L 和0.5 mmol/L BABA使烟草幼苗脯氨酸含量较盐胁迫组分别增加了1394%和927%,见图3(B)。
GSH是叶绿体中重要的抗氧化剂,保护细胞在光合成时免受氧化伤害[28]。GSH是植物体内含有-SH的还原物质,不仅能够清除细胞内的氧化物质,还能通过GSH-和R-S-S-R之间的交换作用将R-S-S-R转化为-SH,使受损的结构蛋白和酶还原[29]。据Chen报道添加GSH可明显提高盐胁迫下叶片抗氧化酶活性和抗氧化物质含量,延缓对液泡膜的伤害[30]。本研究中0.2 mmol/L 和0.5 mmol/L BABA使烟草幼苗体内GSH含量较盐胁迫组分别增加了20.69%和25.13%,见图3(C)。
结果表明,盐胁迫下BABA能够使烟草体内脯氨酸和GSH含量上升,保护叶绿素的结构和功能,从而提高烟草的耐盐性。其中,脯氨酸的大量合成,可能是BABA提高烟草耐盐性的主要途径。
H2O2是植物细胞内的信号传导分子,在一定浓度范围内,诱导启动与植物胁迫耐性相关的基因表达和生化反应[31]。逆境胁迫的初期诱导植物体内以H2O2为代表的活性氧积累,作为植物感受逆境胁迫的第二信使,调控下游信号,诱导下游调控基因的表达[31-32]。McAinsh等发现,外源H2O2可使细胞质中Ca2+升高,诱导气孔关闭[33],从而降低叶片蒸腾作用,防止细胞脱水。Hong等[34]报道,盐胁迫诱导水稻产生积累H2O2,并且H2O2参与调控OsGR2和OsGR3的表达提高水稻抗逆性。本研究中0.2 mmol/L BABA处理后烟草幼苗H2O2含量较盐胁迫组增加了39.77%,0.5 mmol/L BABA处理较盐胁迫组增加了47.51%,见图4。
图4 对照组、盐胁迫组、BABA组烟草幼苗H2O2的含量Fig.4 H2O2 content in tobacco seedlings of control,salt stress and BABA groups
NaCl通过对植物的渗透胁迫,一方面造成离子毒害,另一方面引起活性氧中间体(Reactive Oxygen Species,ROS)爆发,破坏细胞正常的生理活动[35]。ROS能够诱导损伤线粒体DNA,形成脂质或核苷酸过氧化物;使不饱和脂肪酸间发起各种抗氧化连锁反应[36,37]。叶绿体、线粒体和过氧化物酶体是植物产生ROS的主要地方[38,39],同时也形成了抵御ROS机制,植物抗氧化胁迫的能力与其抗逆性呈正相关关系[40]。SOD是植物体内重要的抗氧化酶,其能将O2-转化为H2O2[41],再由POD、APX、CAT、GSH等将H2O2转化为H2O,从而降低氧化胁迫对植物造成的伤害[38,42,43]。由图5(D)所示,0.2 mmol/L BABA处理下,烟草幼苗SOD比活力较盐胁迫组提高了14.15%,0.5 mmol/L BABA处理较盐胁迫组提高了12.10%,机体将过多氧化性极强的超氧化物离子(O2-)转化为H2O2从而减轻氧化胁迫。APX是植物清除H2O2的关键酶,其以还原型抗坏血酸(ASA)为底物将H2O2还原为H2O,生成的氧化型抗坏血酸(DASA)通过GSH还原为ASA。由图5(A)所示,0.2 mmol/L BABA处理下,烟草幼苗APX含量较盐胁迫组升高2.30%,0.5 mmol/L BABA处理下,APX活力较盐胁迫组升高0.80%。由图5(B)所示,0.2 mmol/L BABA处理下,烟草幼苗CAT活力较盐胁迫组提高了34.95%,0.5 mmol/L BABA处理较盐胁迫组提高36.30%。由图5(C)所示,0.2 mmol/L BABA处理下,烟草幼苗POD活力较盐胁迫组提高了123.4%,0.5 mmol/L BABA处理较盐胁迫组提高60.87%。最后H2O2含量增加可能是因为SOD将转换为的速率大于APX、CAT、POD将H2O2转换为H2O的速率。结果表明,BABA能够提高烟草在遭受盐胁迫时的抗氧化酶活性,其中SOD将破坏性强的转换为破坏性较弱的H2O2,并由CAT、APX、POD和GSH等将过量的H2O2转化为H2O而维持细胞内H2O2的平衡,而BABA能使烟草体内的H2O2含量上升,可能是H2O2其能行使信号分子的作用,从而有效地降低高盐胁迫对烟草的伤害。
图5 对照组、盐胁迫组、BABA组烟草幼苗APX(A)、CAT(B)、POD(C)、SOD(D)活力变化Fig.5 Activity changes of APX (A),CAT (B),POD (C) and SOD (D ) in tobacco seedlings of control,salt stress and BABA groups
图6 对照组、盐胁迫组和 BABA组叶片中NtRAB18、NtERD10B、NtERD10D 基因的表达Fig.6 Genetic expressions of NtRAB18,NtERD10B and NtERD10D in tobacco leaves of control,salt stress and BABA groups
目前,通过导入功能基因获得耐盐性较好的转基因作物取得了一定进展[7,44-45],但转基因植物的安全性问题限制了其生产应用。通过外源施加BABA诱导烟草特定基因的表达从而提高其耐盐性具有安全性好、操作简便等优越性。Kasuga等报道,烟草中NtERD10B和NtERD10D受转录因子DREB1A调控,与烟草水分胁迫密切相关[46]。NtERD10B与NtERD10D均含有DER/CRT元件,该元件是与干旱、低温胁迫相关基因所共有的启动子区域元件。包含该元件的基因在逆境胁迫下大量表达,可提高植物的抗逆性[47,48]。NtERD10B编码胚胎发育晚期丰富蛋白2族(D11 LEA)并与植物脱水密切相关。这类蛋白在烟草细胞内具有保护蛋白结构和分子伴侣的功能并受ABA和脱水信号的调节[49,50]。NtERD10B基因对水分胁迫尤为敏感,其表达量的大小已经成为衡量植物受水分胁迫程度的标准[46,49]。由图6可知,通过外源施加BABA,NtERD10B、NtERD10D基因表达量较盐胁迫组均显著增加。植物在逆境胁迫下ABA含量会发生变化,而许多逆境胁迫下的基因也受外源ABA的调控,ABA是植物体内重要的逆境胁迫信号分子[11,51-53]。NtRAB18的启动子含有DRE-和ABRE调节元件,通过ABA依赖和不依赖两种途径,受ABA诱导表达[54-56]。由图6可知,0.2 mmol/L BABA和0.5 mmol/L BABA处理,均能显著提高NaCl胁迫下烟草幼苗叶片NtRAB18的表达量。由此可知,BABA可以通过ABA途径来提高烟草耐盐性。
高盐胁迫使烟草生长受到抑制,其叶片面积减小,根长变短,根系没有正常生长的烟草发达,同时烟草细胞膜脂过氧化程度增加、膜透性增加,电解质外渗,叶绿素被破坏。外源施加0.2 mmol/L和0.5 mmol/L BABA均能有效缓解以上情况,促进烟草在盐胁迫下生长。分析认为BABA提高烟草耐盐性一方面通过增加烟草体内脯氨酸、叶绿素、GSH含量,另一方面通过提高抗氧化酶SOD的活性,将毒性较强的O2-转化为H2O2,并由 CAT、APX、POD等将过量的H2O2转化为H2O维持细胞内H2O2平衡。同时,BABA能使烟草体内的H2O2含量上升,这可能与H2O2能作为感受逆境胁迫的第二信使有关。BABA提高烟草的耐盐性与烟草ABA途径的相关基因表达有关,一方面它提高含有DRE/CRT元件的NtERD10B、NtERD10D基因的表达量,另一方面提高含有DRE-和ABRE元件的NtRAB18基因的表达量。结果表明BABA提高烟草的耐盐性是通过激发植物体内抗氧化系统以及通过ABA途径提高NtERD10D、NtERD10B和NtRAB18等逆激基因的表达而实现的。
另外,本实验结果许多指标与抗旱指标密切相关[11,49,57],我们在另外实验中也发现BABA能够降低干旱对烟草生长的胁迫。我国许多烟区会遇到干旱威胁,因此BABA在提高烟草耐旱作用方面可能具有很好的潜在应用前景。
[1]Macková H,Hronková M,Dobrá J,et al.Enhanced drought and heat stress tolerance of tobacco plants with ectopically enhanced cytokinin oxidase/dehydrogenase gene expression[J].Journal of experimental botany,2013,64(10): 2805-2815.
[2]Mantyla E,Lang V,Palva E T.Role of abscisic acid in droughtinduced freezing tolerance,cold acclimation,and accumulation of LT178 and RAB18 proteins in Arabidopsis thaliana [J].Plant Physiology,1995,107(1): 141-148.
[3]Nash L J,Graves W R.Drought and flood stress effects on plant development and leaf water relations of five taxa of trees native to bottomland habitats [J].Journal of the American Society for Horticultural Science,1993,118(6): 845-850.
[4]Wahid A,Gelani S,Ashraf M,et al.Heat tolerance in plants:An overview [J].Environmental and Experimental Botany,2007,61(3): 199-223.
[5]Parida A K,Das A B.Salt tolerance and salinity effects on plants: a review [J].Ecotoxicology and environmental safety,2005,60(3): 324-349.
[6]Allakhverdiev S I,Sakamoto A,Nishiyama Y,et al.Ionic and osmotic effects of NaCl-induced inactivation of photosystems I and II in Synechococcus sp [J].Plant physiology,2000,123(3):1047-1056.
[7]鲁燕,徐兆师,张瑞越,.W6基因的过表达提高转基因烟草的耐盐性[J].作物学报,2008,34(6): 984-990.
[8]Fisher M,Pick U,Zamir A.A salt-induced 60-kilodaltion plasma-membrane protein plays a poteintial role in the extreme halotolerance of the alga dunaliella [J].Plant physiology,1994,106(4): 1359-1365.
[9]Gadallah M.Effects of proline and glycinebetaine on Vicia faba responses to salt stress [J].Biologia plantarum,1999,42(2): 249-257.
[10]Leopold A,Willing R.Evidence for toxicity effects of salt on membranes [J].1984.
[11]Jakab G,Ton J,Flors V,et al.Enhancing Arabidopsis salt and drought stress tolerance by chemical priming for its abscisic acid responses [J].Plant Physiol,2005,139(1): 267-274.
[12]Cao S,Jiang L,Yuan H,et al.β-Aminobutyric acid protects Arabidopsis against low potassium stress [J].Acta Physiologiae Plantarum,2007,30(3): 309-314.
[13]Hossain Z,Makino T,Komatsu S.Proteomic study of betaaminobutyric acid-mediated cadmium stress alleviation in soybean [J].Journal of proteomics,2012,75(13): 4151-4164.
[14]Du Y-L,Wang Z-Y,Fan J-W,et al.β-Aminobutyric acid increases abscisic acid accumulation and desiccation tolerance and decreases water use but fails to improve grain yield in two spring wheat cultivars under soil drying [J].Journal of Experimental Botany,2012,63(13): 4849-4860.
[15]Michael P I,Krishnaswamy M.The effect of zinc stress combined with high irradiance stress on membrane damage and antioxidative response in bean seedlings [J].Environmental and Experimental Botany,2011,74(171-177.
[16]Stewart R R,Bewley J D.Lipid peroxidation associated with accelerated aging of soybean axes [J].Plant Physiology,1980,65(2): 245-248.
[17]朱广廉,植物生理学.植物生理学实验[M].北京:北京大学出版社,1990.
[18]陈建勋,王晓峰.植物生理学实验指导[M].广州:华南理工大学出版社,2002.
[19]Nakano Y,Asada K.Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts [J].Plant and Cell Physiology,1981,22(5): 867-880.
[20]Kar M,Mishra D.Catalase,peroxidase and polyphenol oxidase activities during rice leaf senescence [J].Plant Physiol,1976,57(2): 315-319.
[21]Bewley J D.Physiological aspects of desiccation tolerance-a retrospect [J].International Journal of Plant Sciences,1995,393-403.
[22]Ashraf M A,Ashraf M,Ali Q.Response of two genetically diverse wheat cultivars to salt stress at different growth stages:leaf lipid peroxidation and phenolic contents [J].Pak J Bot,2010,42(1): 559-565.
[23]Noreen Z,Ashraf M,Akram N.Salt-Induced Regulation of Some Key Antioxidant Enzymes and Physio-Biochemical Phenomena in Five Diverse Cultivars of Turnip (Brassica rapa L.) [J].Journal of Agronomy and Crop Science,2010,196(4):273-285.
[24]Maslenkova L T,Zanev Y,Popova L P.Adaptation to salinity as monitored by PSII oxygen evolving reactions in barley thylakoids [J].Journal of plant physiology,1993,142(5): 629-634.
[25]Pardha Saradhi P,Mohanty P.Involvement of proline in protecting thylakoid membranes against free radical-induced photodamage [J].Journal of Photochemistry and Photobiology B: Biology,1997,38(2): 253-257.
[26]Hamilton E W,Heckathorn S A.Mitochondrial adaptations to NaCl.Complex I is protected by anti-oxidants and small heat shock proteins,whereas complex II is protected by proline and betaine [J].Plant physiology,2001,126(3): 1266-1274.
[27]Binzel M L,Hasegawa P M,Rhodes D,et al.Solute accumulation in tobacco cells adapted to NaCl [J].Plant physiology,1987,84(4): 1408-1415.
[28]Ramakrishna B,Rao S S R.24-Epibrassinolide maintains elevated redox state of AsA and GSH in radish (Raphanus sativus L.) seedlings under zinc stress [J].Acta Physiologiae Plantarum,2013,35(4): 1291-1302.
[29]Zhang J H,Huang W D,Liu Y P,et al.Effects of Temperature Acclimation Pretreatment on the Ultrastructure of Mesophyll Cells in Young Grape Plants (Vitis vinifera L.cv.Jingxiu)Under Cross-Temperature Stresses [J].Journal of Integrative Plant Biology,2005,47(8): 959-970.
[30]Chen Q,Zhang W-H,Liu Y-L.Effect of NaCl,glutathione and ascorbic acid on function of tonoplast vesicles isolated from barley leaves [J].Journal of plant physiology,1999,155(6):685-690.
[31]Bowler C,Fluhr R.The role of calcium and activated oxygens as signals for controlling cross-tolerance [J].Trends in plant science,2000,5(6): 241-246.
[32]Neill S,Desikan R,Hancock J.Hydrogen peroxide signalling[J].Current opinion in plant biology,2002,5(5): 388-395.
[33]McAinsh M R,Webb A A,Taylor J E,et al.Stimulus-induced oscillations in guard cell cytosolic free calcium [J].The Plant Cell Online,1995,7(8): 1207-1219.
[34]Hong C-Y,Chao Y-Y,Yang M-Y,et al.NaCl-induced expression of glutathione reductase in roots of rice (Oryza sativa L.) seedlings is mediated through hydrogen peroxide but not abscisic acid [J].Plant and soil,2009,320(1-2): 103-115.
[35]Munns R,James R A,Läuchli A.Approaches to increasing the salt tolerance of wheat and other cereals [J].Journal of Experimental Botany,2006,57(5): 1025-1043.
[36]Hernandez J,Olmos E,Corpas F,et al.Salt-induced oxidative stress in chloroplasts of pea plants [J].Plant Science,1995,105(2): 151-167.
[37]Asada K.The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons [J].Annual review of plant biology,1999,50(1): 601-639.
[38]Nor’aini M F,Finch R P,Burdon R H.Salinity,oxidative stress and antioxidant responses in shoot cultures of rice [J].Journal of Experimental Botany,1997,48(2): 325-331.
[39]del Río L A,Sandalio L M,Palma J,et al.Metabolism of oxygen radicals in peroxisomes and cellular implications [J].Free Radical Biology and Medicine,1992,13(5): 557-580.
[40]Jiang M,Zhang J.Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the act ivities of antioxidant enzymes in maize leaves [J].Journal of Experimental Botany,2002,53(379): 2401-2410.
[41]Bowler C,Van Camp W,Van Montagu M,et al.Superoxide dismutase in plants [J].Critical Reviews in Plant Sciences,1994,13(3): 199-218.
[42]Sudha G,Ravishankar G.Involvement and interaction of var ious signaling compounds on the plant metabolic events during defense response,resistance to stress factors,formation of secondary metabolites and their molecular aspects [J].Plant Cell,Tissue and Organ Culture,2002,71(3): 181-212.
[43]Tsukamoto S,Morita S,Hirano E,et al.A novel cis-element that is responsive to oxidative stress regulates thr ee antioxidant defense genes in rice [J].Plant physiology,2005,137(1): 317-327.
[44]张朝,刘美英,陈学平.转TaW基因提高烟草的耐盐性[J].中国烟草学报,2011,17(3): 78-81.
[45]刘文奇,陈旭君.ERF 类转录因子 OPBP1 基因的超表达提 高烟草的耐盐能力[J].植物生理与分子生物学学报,2002,28(6): 473-478.
[46]Kasuga M,Miura S,Shinozaki K,et al.A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought-and low-temperature stress tolerance in tobacco by gene transfer [J].Plant and Cell Physiology,2004,45(3): 346-350.
[47]Zhang H,Huang Z,Xie B,et al.The ethylene-,jasmonate-,abscisic acid-and NaCl-responsive to mato transcription factor JERF1 modulates expression of GCC box-containing genes and salt tolerance in tobacco [J].Planta,2004,220(2): 262-270.
[48]Wang H,Huang Z,Chen Q,et al.Ectopic overexpression of tomato JERF3 in tobacco activates downstream gene expression and enhances salt tolerance [J].Plant molecular biology,2004,55(2): 183-192.
[49]Dobra J,Vankova R,Havlova M,et al.Tobacco leaves and roots differ in the expression of proline metabolism-related genes in the course of drou ght stress and subsequent recovery[J].J Plant Physiol,2011,168(13): 1588-1597.
[50]Dure L.A repeating 11-mer amino acid motif and plant desiccation [J].The Plant Journal,1993,3(3): 363-369.
[51]Xing Y, Jia W,Zhang J.AtMKK1 mediates ABA-induced CAT1 expression and H2O2production via AtMPK6-coupled signaling in Arabidopsis [J].The Plant journal : for cell and molecular biology,2008,54(3): 440-451.
[52]Renault H,El Amrani A,Berger A,et al.gamma-Aminob utyric acid transaminase deficiency impairs central carbon metabolism and leads to cell wall defects during salt stress in Arabidopsis roots [J].Plant,cell &environment,2013,36(5):1009-1018.
[53]Verslues P,Zhu J.Before and beyond ABA: ups tream sensing and internal signals that determine ABA accumulation and response under abiotic stress [J].Biochemical Society Transactions,2005,33(Pt 2): 375-379.
[54]Lång V,Palva E T.The expression of a rab-related gene,rab18,is induced by abscisic acid during the cold acclimation process of Arabidopsis thaliana (L.) Heynh [J].Plant molecular biology,1992,20(5): 951-962.
[55]Li C,Chang P P,Ghebremariam K M,et al.Overe xpression of tomato SpMPK3 gene in Arabidopsis enhances the osmotic tolerance [J].Biochemical and biophysical resea rch communications,2014,443(2): 357-362.
[56]Iuchi S,Kobayashi M,Taji T,et al.Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase,a key enzyme in abscisic acid biosynthes is in Arabidopsis [J].The Plant Journal,2001,27(4): 325-333.
[57]Zhu J-K.Salt and drought stress signal transduction in plants [J].Annual review of plant biology,2002,53(1): 247-273.
A preliminary study on BABA-induced resistance to high salt stress in tobacco
ZHANG Qingli1,LIU Zaiqiang2,ZHONG Yude2,WANG Wenjie3,LIU Song1,XIAO Xianyi2,HE Kuanxin2,CHEN Xueping1
1 Tobacco and Health Research Center,University of Science and Technology of China,Hefei 230051,China;
2 Jiangxi Provincial Tobacco Company,Nanchang 330025,China;
3 Anhui Chizhou Municipal Tobacco Company,Chizhou 247100,China
This paper introduced the function of BABA in protecting tobacco from high salt stress and attempted to explore the mechanism through measuring antioxidative molecular content,antioxidative enzyme activities,and related gene expression.Results showed that 0.2 mmol/L BABA and 0.5 mmol/L BABA both could increase root length and fresh weight of tobacco under high salt stress significantly via increasing the contents of GSH,proline,chlorophyll, H2O2and the activities of SOD,APX,POD and CAT.BABA alleviated the damage of cell membrane integrity via decreasing the contents of MDA and relative electrical conductivity.The involved ABA-response genes NtRAB18,NtERD10B,NtERD10D were higher expressed than the salt stress group.The above evidence suggested that 0.2 mmol/L BABA and 0.5 mmol/L BABA were bene ficial in relieving high salt stress on tobacco by stimulating antioxidant system and over expression genes of ABA-response.
β-aminobutyric acid;tobacco;high salt stress
张清莉,刘再强,钟玉德,等.BABA 诱导烟草抵御高盐胁迫的初步研究[J].中国烟草学报,2015,21(3)
江西省烟草公司“提高烟草抗逆性新型调节物质研制及应用”(赣烟2011.01.001号)和池州市烟草公司“生物绿肥在生产中应用研究”(池烟2011.11.18)
张清莉(1989—),硕士,主要研究方向:植物抗逆性和烤烟成分分析,Email:zqingli@ mail.ustc.edu.cn
陈学平(1956—),博士,教授,主要研究方向为植物生物技术及遗传改良,Email: chenxp08@ ustc.edu.cn
2014-06-05
: ZHANG Qingli,LIU Zaiqiang,ZHONG Yude,et al.A preliminary study on BABA-induced resistance to high salt stress in tobacco [J]Acta Tabacaria Sinica,2015,21(3)