The Strong Approximation of Functions by Fourier-Vilenkin Series in Uniform and H¨older Metrics

2015-11-15 07:27:59IofinaandVolosivets
Analysis in Theory and Applications 2015年1期

T.V.Iofina and S.S.Volosivets

Saratov State University,Faculty ofM athematics and M echanics,Astrakhanskaya str.,83,410012,Saratov,Russia

The Strong Approximation of Functions by Fourier-Vilenkin Series in Uniform and H¨older Metrics

T.V.Iofina and S.S.Volosivets∗

Saratov State University,Faculty ofM athematics and M echanics,Astrakhanskaya str.,83,410012,Saratov,Russia

Received 15M ay 2012;A ccep ted(in revised version)15 January 2015

.We will study the strong approximation by Fou rier-Vilenkin series using m atrices with Some generalm onotone condition.The strong Vallee-Poussin,which Meansof Fourier-Vilenkin seriesare also investigated.

Vilenkin system s,strong approximation,generalized m onotonicity.

AM SSub ject Classifications:40F05,42C10,43A 55,43A 75

1 In troduction

For x=k/ml,0<k<ml,k,l∈N,we take the expansion with a finite num ber of xn/= 0.Let G(P)be the Abel group of sequences x=(x1,x2,···),xn∈Z(pn),with add ition x⊕y=z=(z1,z2,···),where zn∈Z(pn)and zn=xn+yn(m od pn),n∈N.We define m aps g:[0,1)→G(P)andλ:G(P)→[0,1)by form u las g(x)=(x1,x2,···),where x is in the form(1.1)andwhere x∈G(P).Then for x,y∈[0,1),we can in troduce x⊕y:=λ(g(x)⊕g(y)),if z=g(x)⊕g(y)does not satisfy equality zi=pi-1 for all i≥i0.In a sim ilar w ay,we introduce x⊖y and for all x,y∈[0,1)generalized d istanceρ(x,y)=λ(g(x)⊖g(y)).Every k∈Z+={0,1,2,···}can be exp ressed uniquely in the form of

For a given x∈[0,1)with expansion(1.1)and k∈Z+with expansion(1.2),we setThe systemis called am u ltip licative or Vilenkin system.It isorthonorm aland com p lete in L[0,1)and we have

for a.e.y,w henever x∈[0,1)is fixed(see[8,Section 1.5]).

The Fou rier-Vilenkin coefficientsand partial Fou rier-Vilenkin sum s for f∈L1[0,1)are defined by

Let us introduce a Modu lus of continuityω∗(f,δ)p=sup0<h<δ‖f(x⊖h)-f(x)‖pin Lp[0,1),1≤p<∞.If Pn={f∈L1[0,1):ˆf(k)=0,k≥n},then En(f)p=inf{‖f-tn‖p,tn∈Pn},1≤p≤∞.Letω(δ)be a function ofModu lus of con tinuity type(ω(δ)∈Ω),i.e.,ω(δ) is continuous and increasing on[0,1)andω(0)=0.Then the spaceconsists of f∈Lp[0,1)(1≤p<∞)or f∈C∗[0,1)(p=∞)such thatω∗(f,δ)p≤Cω(δ),where C depends only on f.Denote bythe subspace ofconsioting of all functions f such that limh→0ω∗(f,h)p/ω(h)=0.The spaces[0,1)and,1≤p≤∞,with the norm)are Banach ones.Inwe can consider

Using matrix A, we can define a summation method by formula

In the case of trigonom etric system and m onotoneby k sequence{ank}∞n,k=0,the estim ates of‖f-Tn(f)‖∞wereobtained by P.Chand ra[4]in term sofModu lusof continuity.Later L.Leind ler[10]generalized these Results to the cases

and

Here C doesn't depend on m,n.For Vilenkin systemthe estim ates of‖f-are obtained in[9].Fu rtherwe shall consider

The estim ates of‖Rn(f,r)‖∞form onotone by k sequence

with add itional restrictions on their oscillations were proved by T.Xie and X.Sun in[19].For m atrices satisfying(1.4)and(1.5),sim ilar Results are established by B.Szal[16].In[17],Some estim ates close to onesof P.Chand ra[3]and L.Leind ler[8]are obtained.

In the present paper,we study the rate of‖Rn(f,r)‖p,1<p≤∞,where am atrix A satisfiesone of the follow ing cond itions:

or

In both cases K does not depend on n,m.The class GM of real non-negative sequencessatisfying inequalitym∈N,was introduced by S.Tikhonov[18].In particu lar,in[18]it isestablished that GM con tains the classof quasi m onotone sequences QM(with p roperty ann-τ↓0 for Someτ≥0 and n∈N).Further,we assum e thatω(t)∈ΩsatisfiesΔ2-cond ition,i.e.,ω(t)≤Cω(t/2),t∈[0,1).

Some Resultsare devoted to the strong Fejer and de la Valle-PoussinMeans(Lemmas 2.7,2.8,Theorem 3.5,Corollaries 3.1,3.2).

2 Auxiliary propositions

Lemma 2.1.For f∈Lp[0,1),1<p<∞,wehave‖Sn(f)‖p≤C‖f‖p,n∈N,where C does not depend on fand n.Asa corollary,weobtain inequality

Let g=(g1,g2,···,gj,···),where gjarem easu rable on[0,1)functions.Letus define

The p roof of Lemma 2.2 is sim ilar to the case r=2,stud ied by S.Frid li[5].

holds.Forq=∞,wealso have

In an im p licit form,inequality(2.1)is proved in[3]for bounded sequencesM.Avd ispahic and M.Pep ic[2]obtained itsanalog in am ore generalcase.

The follow ing Lemma is due to A.V.Efim ov(see[8,Section 10.5]).

Lemma 2.4.Let f∈Lp[0,1),1≤p<∞,or f∈C∗[0,1).Then

Lemma 2.5.Ifω(t)∈Ωsatisfies theΔ2-condition,then fromit follows that En(f)p≤ Cω(1/n),n∈N.

Thus,Lemma 2.5 is proved.

Lemma 2.6.(i)Let amatrix A satisfies conditions(1.3)and(1.6).Then an,i≤(K+1)an,mfor m≤i≤2m≤n,where K is the constant from(1.6).

(ii)Letamatrix A satisfies conditions(1.3)and(1.7).Then an,i≤(K+1)an,mfor[m/2]≤i≤m,where K is the constant from(1.7).

Proof.Part(i)m ay be found in[18].In order to establish(ii),we find for[m/2]≤i<m that

w hence(K+1)an,m≥an,i.In the case i=m,the statem ent(ii)is eviden t.Thus,Lemma 2.6 is proved.

The trigonom etric coun terpartof Lemma 2.7 is due to L.Leind ler[11].

Lemma 2.7.Let f∈C∗[0,1),1≤r<∞.Then

whereM doesnotdepend on n∈N and f.

Proof.Letus consider i∈N such that n∈[mi-1,mi).Then

We have

Using(2.1)and(2.3),we find that

So,Lemma 2.7 is proved.The inequality(2.5)of Lemma 2.8 in the case m=[n/2]is stated withou t p roof by S. Frid li and F.Schipp[6]for Some general system s.In[6]also one can find the idea of app lication of(2.1)to problem sof strong approximation(see also[7]).

and

where M(ν)doesnot depend on n,m∈N and f.

Proof.By(2.2)we have w hence(2.4)follows in virtue of inequalityνn≤m.

The inequality(2.5)is derived from(2.4)by substitu tion f-tn-minstead of f,where tn-m∈Pn-mand‖f-tn-m‖∞=En-m(f)∞.Herewe use the equality Sk(tn-m)=tn-mfor k≥n-m and M inkow skiinequality in lras follows:

So,Lemma 2.8 is proved.

Rem ark 2.1.The counterpartsof(2.4)and(2.5)for‖·‖pand p≥r are easily follows from Lemma 2.1 and Lemma 2.2(see the p roof of Theorem 3.2).

The follow ing Lemma is an analog of Leind ler-M eir-Totik theorem[12].

Lemma 2.9.Letω,µ∈Ωbe such thatλ(t)=ω(t)/µ(t)is increasing on(0,1).Then for an operator An(f)=Kn∗f,Kn∈L1[0,1),andthe inequality

holds.

The p roof of Lemma 2.9 is sim ilar to one of Theorem 8 in[9].

Lemma 2.10.Letω,µ∈Ωbe such thatλ(t)=ω(t)/µ(t)is increasing on(0,1).Ifωsatisfies Δ2-condition and,n∈N.

Thus,E2n(f)p,µ≤2C4λ(n-1).Using m onotonicity of best approximations andΔ2-cond ition,we get the inequality of Lemma.

Rem ark 2.2.The cond ition of increasing ofω(t)/µ(t)in troduced by J.Prestin and S. Pr¨ossdorf[13]is suitable for Someapp lications,for example,the theory ofm u ltip licators o f Lipschitz classes(see[1]).

3 M ain Results

Theorem 3.1.Letamatrix A satisfies conditions(1.3)and(1.7),f∈C∗[0,1),r≥1.Then Proof.Let n∈N and j=j(n)∈Z+be defined by inequality 2j≤n<2j+1,i.e.,j=[log2n]. Then we have

Using Abel's transform(summ ation by parts),(1.7)and Lemma 2.6,we obtain

Accord ing to(2.5),

It is clear that(1.7)impliesSince[(n+1)/2]≤(n+1)/2≤ 2j,using of Abel's transform and(2.5)gives

From(3.1)and(3.2),the statem entof theorem follows.

Theorem 3.2.Letamatrix A satisfiesconditions(1.3)and(1.7),f∈Lp[0,1),1<p<∞,p≥r≥1. Then

Proof.App lying Lemma 2.2,we have

Theorem 3.3.Letamatrix A satisfies conditions(1.3)and(1.6),f∈C∗[0,1),r≥1.Then

Proof.We shall use again j=j(n)with p roperty 2j≤n<2j+1,i.e.,j=[log2n].App lying Abel's transform,we obtain

By(1.6),Lemma 2.6 and(2.5),we have

Since

by Lemma 2.6,we find that

whence the inequality of theorem follows.

Sim ilarly to Theorem 3.2,one can prove

Theorem 3.4.Ifamatrix A satisfies conditions(1.3)and(1.6),f∈Lp[0,1),1<p<∞,p≥r≥1,then(3.3)holds.

Theorem s3.3 and 3.4 im p ly

Corollary 3.1.Let f∈Lp[0,1),1<p<∞,1≤r≤p,or f∈C∗[0,1)(p=∞),1≤r<∞.Then

In particu lar,for r=1 and f∈Lip∗(α,p)(i.e.,ω∗(f,h)p=O(hα))we obtain

Rem ark 3.1.It is well know n that for,the equality limn→∞‖f-σn(f)‖p,ω=0 holds(see[9]forω(h)=hα).In particu lar,forwe have limn→∞En(f)p,ω=0.

Theorem 3.5 givesan analog of the estim ate(2.5)for H¨olderm etric.

Proof.By M inkow ski inequality and commu tativity of translation and convolu tion,we have

Hence,in virtue of(2.4)and Rem ark 2.1,it follows that

where in the case p=∞,the constant C1isequal to M(ν)from Lemma2.8.Let tn-m∈Pn-mbe such that‖f-tn-m‖p,ω=En-m(f)p,ω.Using equality Sk(tn-m)=tn-mfor k≥n-m,we obtain sim ilarly to(2.6)

On the other hand,by(3.4)and(3.5)(we use notationΔhf=f(·⊖h)-f(·))

Com bining estim ates(3.5)and(3.6),we finish the p roofof theorem.

Corollary 3.2.Let 1<p≤∞,ω,µ∈Ω,whereω(t)satisfiesΔ2-cond ition,whileλ(t)= ω(t)/µ(t)is increasing on(0,1)and limt→0λ(t)=0.If,and num bers n,m∈N are such thatνn≤m≤n,ν∈(0,1),then‖Vn,m(f,r)‖p,µ≤Cλ((n-m)-1),(n-m)∈N. Proof.In virtue of Theorem 3.5,‖Vn,m(f,r)‖p,µ≤C1(ν)En-m(f)p,µ,while by Lemma 2.10,we have En-m(f)p,µ≤C2λ(1/(n-m)).Substituting the second inequality into first one,we prove the theorem.

Follow ing the idea of Szal[16],we assum e in tw o last theorem s that there existsα∈(0,1),such thatωα(t)/µ(t)is increasing on(0,1).We also require thatω,µ∈Ωandω satisfiesΔ2-cond ition.

Theorem 3.6.Letamatrix A satisfies conditions(1.3)and(1.7)Then

Proof.In virtue of Theorem 3.1 and M inkow skiinequality

By Lemmas 2.4 and 2.5,the estim ates

hold.On theother hand,Ek(Δhf)∞≤‖Δhf‖∞≤ω(h),k∈N,and as Corollary,

Theorem 3.7.Let amatrix A satisfies conditions(1.3)and(1.6),f∈Lp[0,1),1<p<∞,or f∈C∗[0,1)(for p=∞),p≥r≥1.If f,then

The p roofof Theorem 3.7 is similar to the one of Theorem 3.6,and uses Theorem s 3.3 and 3.4 instead of Theorem 3.1.

Rem ark 3.2.The con terparts of Theorem s 3.1 and 3.7,proved in[16],con tain the term ln2nan,ninstead of nan,nin the present paper(by authors op inion,it ism ore correctly to w rite 1+ln+nan,n).Such estim atesm ay have a better order of decreasing(for example,ifan,n=1,an,k=0,1≤k<n).Itwillbe interesting to refine Theorem s3.1 and 3.7 in a sim ilar m anner and to study‖Rn(f,r)‖pin the case of p=1.

[1]N.Yu.Agafonova,Λ-summ ability and multip licators of H¨older classes of Fou rier series with respect to character system s,Izvestiya of Saratov State Univ.Ser.M at.M ech.In form.,11(2)(2011),3-8.

[2]M.Avd ispahic and M.Pep ic,Summ ability and integrability of vilenkin series,Collect. M ath.,51(3)(2000),237-354.

[3]W.Bloom and J.J.F.Fournier,Sm oothness cond itionsand integrability theorem son bounded vilenkin groups,J.Austral.M ath.Soc.(Ser.A),45(1)(1988),46-61.

[4]P.Chand ra,On the degree of approximation of classof functions byMeansof Fou rier series,Acta M ath.Hungar.,52(1-2)(1988),199-205.

[5]S.Frid li,On the rate of convergence of Cesaro Means of Walsh-Fourier series,J.App rox. Theory,76(1)(1994),31-53.

[6]S.Frid liand F.Schipp,Strong ap roxim ation via Sidon type inequalities,J.App rox.Theory,94(3)(1998),263-284.

[7]S.Frid li and F.Schipp,Strong summ ability and sidon type inequalities,Acta Sci.M ath.(Szeged),60(1-2)(1995),277-289.

[8]B.I.Golubov,A.V.Efim ov and V.A.Skvortsov,Walsh Series and Transform s,Dord recht,1991.

[9]T.V.Iofina and S.S.Volosivets,On the degree of approximation by Means of Fou rier-Vilenkin series in H¨older and Lpnorm,East J.App rox.,15(2)(2009),143-158.

[10]L.Leind ler,On the degree of approximation of continuous functions,Acta M ath.Hungar.,104(2004),105-113.

[11]L.Leind ler,On summ ability of Fourier series,Acta Sci.M ath.(Szeged),29(1-2)(1968),147-162.

[12]L.Leind ler,A.M eir and V.Totik,On approximation of continuous functions in Lipschitz norm s,Acta M ath.Hungar.,45(3-4)(1985),441-443.

[13]J.Prestin and S.Pr¨ossdorf,Error estim ates in generalized H¨older-Zygm und norm s,Zeit. Anal.Anwend.,9(4)(1990),343-349.

[14]F.Schipp,On Lp-norm convergence of serieswith respect to p roduct system s,Anal.M ath.,2(1)(1976),49-64.

[15]P.Sim on,Verallgem einerteWalsh-Fou rierreihen II,A cta M ath.Hungar.,27(3-4)(1976),329-341.

[16]B.Szal,On the strong approximation by m atrix Means in the generalized H¨olderm etric,Rend.Circ.M at.Palerm o Ser.,56(3)(2007),287-304.

[17]B.Szal,On the rateofstrong summ ability bym atrixMeans in the generalized H¨olderm etric,J.Ineq.Pu re App l.M ath.,9(1)(2008),N 28.

[18]S.Tikhonov,Trigonom etric serieswith generalm onotone coefficients,J.M ath.Anal.App l.,326(2)(2007),721-735.

[19]T.Xie and X.Sun,On the problem of approximation by linearMeans,J.M ath.Res.Exposition,5(1985),93-96.

[20]Wo-Sang Young,Mean convergence ofgeneralized Walsh-Fou rier series,Trans.Am er.M ath. Soc.,218(1976),311-320.

∗Correspond ing author.Emailaddresses:Iof inaT@mai l.ru(T.V.Iofina),VolosivetsSS@mai l.ru(S.S.Volosivets)