孙楷 尤彧瑞
广东省汕头市超声仪器研究所有限公司 广东汕头 515041
摘要:随着复合材料的广泛应用,特别是在航空航天领域的大量应用,开发便携式、应用于复合材料大面积快速扫查的检测技术就显得很有必要。超声检测作为一项比较成熟的检测技术,其衍生的各种检测新技术开始应用于复合材料的檢测,有效地解决了复合材料的一些检测难题。对于复合材料来说,超声检测主要应用于对服役构件的在役检测,以及对复合材料的性能无损表征。文章主要分析了复合材料构件的超声无损检测关键技术及其应用。
关键词:复合材料;超声;无损检测;关键技术
引言
复合材料(Composite materials)是由两种及两种以上不同性质的材料,通过物理或化学的方法,在宏观尺度上组成的具有新性能的材料。在复合材料的超声检测应用方面,相控阵超声检测技术可以有效检测出层压板分层及夹杂缺陷,碳纤维蒙皮铝蜂窝工件、带涂层以及不带涂层的碳纤维蒙皮纸蜂窝工件等蜂窝复合材料的内部脱粘缺陷,对复合材料的拐角(R区)等特殊部位也能很好地进行检测。复合材料的超声C扫描检测通常采用多轴联动超声C扫描检测系统,对复合材料进行喷水穿透法、喷水脉冲反射法、水浸穿透法以及水浸脉冲反射法检测,如采用喷水穿透法对层压板和蜂窝结构粘接缺陷进行检测可得到清晰的超声C扫描图像。多轴联动超声C扫描检测系统虽然可以对某些复合材料进行有效检测,但是受检测工件和检测场地的限制,不利于应用于在役飞机的快速扫查检测上,因此,笔者开发了适用于复合材料的大面积快速C扫描检测以及特殊位置的双轴定位C扫描检测系统。
1.复合材料构件的超声无损检测技术概述
复合材料之所以能得到广泛的应用,除了其自身优异的性能外,还得益于与复合材料密切相关的配套技术的同步研究和发展,而质量控制是设计要求得以满足,产品质量得以保证的关键,其中无损检测技术发挥了十分重要的推动作用。无损检测的目的和任务就是采用合理有效的方法、技术和检测手段,及时准确地发现和检测出材料内部的缺陷和损伤,从而为进一步评价材料、结构的可靠性奠定基础。研究结果表明,复合材料在正常使用情况下不会发生突然断裂,材料的失效通常都是由缺陷损伤积累引起的,因此迫切需要采用先进的无损检测技术对复合材料的制造和服役过程中的内部质量状况进行客观、准确和可靠的表征和评估,提高复合材料构件的安全可靠性。目前,针对复合材料常用的无损检测方法主要有目视法、超声波法、X射线法、光学法、微波法和声发射法等。
因此,要确保复合材料构件的安全可靠性,避免重大事故的发生,必须对其进行无损检测,而超声检测是最有效的方法之一,对于大型复杂曲面复合材料构件的无损检测,必须研制自动化检测系统,才能实现快速、高效、高精度的检测
2.复合材料构件的超声无损检测关键技术
2.1相控阵超声检测原理
(1)发射与接收。相控阵超声的基本原理来源于相控阵雷达技术,相控阵超声探头由多个晶片按一定的规律分布排列,通常是线阵列,通过软件可以单独控制每个晶片的激发时间,从而控制发射超声波束的形状和方向,实现超声波束的扫描、偏转和聚焦。
(2)电子扫描。相控阵超声具有独特的波束扫描和聚焦特点,因此使用一个多阵元的相控阵探头,在不移动探头的情况下就可以实现工件断面的扫描检测。
(3)相控阵C扫描方式。采用相控阵电子扫描不需要移动探头就可实现对工件一定宽度的断面扫查,因此,对比于单晶探头常规锯齿形的扫查方式,相控阵扫查只需单轴直线扫查便可获得工件的C扫描图像。
2.2相控阵C扫描检测系统
(1)滚轮探头检测系统。根据相控阵检测原理,为实现复合材料的快速C扫描检测,开发了适合检测用途的滚轮探头。滚轮探头的结构为:相控阵探头放置在一个密闭的套筒里,套筒两端安装有可旋转的滑轮,套筒里面充满水,相控阵探头发出的超声波经过水层后到达橡胶套,橡胶套采用与水声阻抗接近的材料以使超声波传播时可透射更多的能量。滚轮探头加装一个高精度的位置编码器进行定位和同步数据采集。系统检测时一般采用水作为耦合剂,轻轻滚动探头,C扫图像即刻呈现,特别适合大面积复合材料的C扫描检测。
(2)双轴拉线编码器检测系统。拉线编码器的底座根据材料不同可选择真空、夹持或磁铁吸附的安装方式。检测时将编码器吸附在工件表面上,固定拆卸灵活方便,而且对工件表面无任何损伤,两个拉线编码器拉出的线汇聚于扫查探头并固定于扫查夹具上。拉线编码器的最高扫查精度为0.1mm/步,拉线最大长度为1.5m。以前的手动双轴扫查器定位方式比较死板,探头的移动不好操作,而这种定位方式很方便,探头移动也比较灵活,在进行特定区域的C扫描检测上具有较大的优势,可对缺陷进行完整的扫查、测量和评定。
3.复合材料构件的超声无损检测技术的应用
3.1 缺陷检测
金属零件内的缺陷超声检测方法同样的适用于复合材料中缺陷评价,对于其内部的孔状缺陷来说目前主要是利用超声C扫描、相控阵超声检测、超声导波检测技术等。超声C扫描是超声检测的一种显示方式,它是在A信号的基础上对信号进行处理,得到的一种垂直于缺陷的显示结果,它具有显示直观,操作简便,可以对缺陷进行定量分析等优点,而且对孔状缺陷的显示比较清晰。国内有江苏大学的魏勤利用超声C扫描对SiC 颗粒增强铝基复合材料试件进行研究,研究表明利用该方法能够清晰的检测到材料中的孔状缺陷,并且能够对材料中的团聚现象有一定的显示。
然而超声C检测对于一些缺陷检测精度要求更精确的复合材料来说还是显得有一定的困难,而实际中对于一个工件的完全检测也并不是一种超声检测方法能够胜任的,通常对于一个工件的检测常常应用几种超声检测方法,有时也会应用其他的无损检测手段,比如红外热成像检测方法。相控阵超声检测是超声检测中比较先进的一种检测手段,近年来,以其偏转、聚焦的优势而广泛的应用在常规超声检测不能够完成的复杂构件中,而且针对超声相控阵检测还设计了专用的仿真检测软件,能够在优化实验方案方面节省很大的费用,并且能够更加的清楚声波的传播以及与缺陷的相互作用,使检测更加的直观。
3.2 性能评价
超声波能够对金属零件的硬度、弹性模量、衰减性等进行评价,利用相同的方法超声波可以对复合材料的这些性能进行评价,并且能够对其孔隙率进行测量。对于复合材料来说孔隙率是其重要的一个性能参数,孔隙率过大会导致材料内部疏松,直接导致材料的力学性能下降。因此对孔隙率的检测显得十分重要。对于复合材料来说常用的孔隙率测定方法主要有超声声速法、超声衰减法、微波法等,然而每一种方法并不是直接的给出孔隙率的大小,而是间接的获得对应的相互关系。
在上述的三种方法中应用最多的是超声衰减法,它主要是利用频率的变化曲线斜率与超声孔隙百分率之间的关系建立数学模型进而评价复合材料的孔隙率,除此之外也可以根据超声波透过复合材料后的衰减量的大小,计算孔隙率与声束面积之比。
4.结语
随着航空航天事业的发展,对复合材料的质量要求将越来越高,如何快速的对其进行质量检测是值得大家思考的一个问题,因此未来超声检测将面向快速检测、自动化检测的方向发展,同时超声探伤将会从对材料的质量检测像对材料的质量评价的方向发展。
参考文献:
[1]刘松平,傅天航,刘菲菲,史俊伟,刘勋丰.复合材料冲击损伤超声回波特性及其成像检测[J].航空制造技术.2011(15).
[2]原可义,韩赞东,王柄方,陈以方,黄志刚.复合材料喷水耦合超声C扫查检测系统的研制[J].航空制造技术.2009(15).
[3]周正干,向上,魏东,高翌飞.复合材料的超声检测技术[J].航空制造技术.2009(08).