王梦龙 万 军
武汉大学人民医院心血管内科,湖北武汉 430060
越来越多的证据显示,活性氧(reactive oxygen species,ROS) 生成增多引起的氧化应激参与了多种心血管疾病的发生发展[1],而临床抗氧化应激试验(补充抗氧化剂维生素)的失败说明氧化应激与心血管疾病之间可能存在更为复杂的关系[2-3]。 正常情况下ROS通过激活不同的信号途径维持细胞的生理功能,如细胞增殖、分化和迁移等;而病理情况下,高水平的ROS导致细胞功能的紊乱和疾病的发生。现有的研究提示ROS 的作用高度依赖于ROS 的来源、存在的部位、局部浓度,甚至与ROS 种类相关[4]。心脏和血管组织ROS有以下几种来源:线粒体电子传递链、黄嘌呤氧化酶、解偶联的内皮一氧化氮合酶和NADPH 氧化酶(NADPH oxidase,Nox)[5]。Nox 是一类以生成ROS 为主要功能的蛋白质,明确Nox 在常见心血管疾病中的表达及其作用对临床抗氧化治疗的实施具有重要意义。
Nox2 是最早发现的Nox 亚型,能够将NADPH 的电子传递给分子氧,生成超氧阴离子(O2-)[6]。 Nox2 表达于细胞膜,由胞膜亚基Nox2(gp91phox)、p22phox和胞浆亚基p40phox、p47phox、p67phox、Rac1 组成, 生理状态下不具有活性,其活化需要胞浆亚基相互结合并转位到细胞膜。 与Nox2 不同,Nox4 主要表达于核膜周围,包括细胞核、线粒体、内质网等,处于持续激活状态,不具有胞浆亚基, 其活性的调节主要依赖Nox4 mRNA或蛋白水平的变化, 且Nox4 激活后主要产生过氧化氢(H2O2),而非O2-[6]。目前共发现7 种Nox 亚型:Nox1~5 和双氧合酶1、2, 心血管系统中主要表达Nox1、Nox2、Nox4 和Nox5,这些亚型在心肌细胞、成纤维细胞、内皮细胞、血管平滑肌细胞中均有表达,其中心肌细胞主要表达Nox2 和Nox4[7]。
研究证实Nox 活性增高是心衰患者心肌ROS 生成增多的主要原因[8-10]。进一步分析发现心衰时Nox4、Nox2 及Nox2 亚基mRNA 水平无明显变化,其活性的增加可能与Nox2 亚基p47phox由胞浆向胞膜转移增加引起[9-10]。 同时,研究还发现Nox 活性的增加与引起心衰的病因无关,在扩张型心肌病和缺血性心肌病患者心肌中,Nox 活性相似[11]。
心肌肥厚是心力衰竭过程中重要的病理生理改变。研究发现,Nox2 活性在血管紧张素Ⅱ(AngiotensinⅡ,AngⅡ) 引起的小鼠心肌肥厚模型中增高, 敲除Nox2 可以降低AngⅡ诱导的左室肥厚程度,同时心肌肥厚标志物如ANP、β-MHC 等水平下降[12]。 敲除Nox2的活性调节分子Rac1 得到类似的结果[13],提示Nox2在AngⅡ诱导的心肌肥厚中起重要作用。 Nox2 发挥作用的机制可能与ERK1/2、AKT、ASK1/NF-κB 活性的改变有关[13-15]。随着研究的深入,研究者发现在主动脉缩窄术诱导的心肌肥厚模型中, 敲除Nox2 的小鼠和野生型小鼠出现同等程度的心肌肥厚[16],提示Nox的功能可能具有亚型特异性,Nox2 仅在AngⅡ诱导的心肌肥厚中起作用,而并不参与压力负荷诱导的心肌肥厚。 在Nox2 敲除小鼠中,压力负荷可引起Nox4水平代偿性的增高[16],这可能是Nox2 在压力负荷模型中不起作用的原因之一。
Nox4 在压力负荷心肌肥厚模型中起何种作用,结论尚不统一。 有学者发现Nox4 敲除小鼠在压力负荷模型中出现更严重的左室肥厚和左室收缩功能障碍,伴有心室的扩张,而过表达Nox4 出现相反的心脏表型,说明Nox4 在心肌肥厚时起保护作用[17]。 缺氧诱导因子Hif1α 的上调可能参与了Nox4 对压力负荷模型的保护作用, 但Nox4 通过何种途径上调Hif1α 尚需进一步研究[17]。 而Sadoshima 实验室的研究却得出相反的结论, 即Nox4 在压力负荷诱导的心肌肥厚模型中起损害作用[8]。 两个研究得出不同结论的原因尚不清楚,推测与小鼠遗传背景、基因敲除或过表达技术的不同以及心肌肥厚严重程度相关。
ROS 可以将低密度脂蛋白(low density lipoprotein,LDL)氧化成ox-LDL 并在内皮下沉积,促进粥样斑块的形成。 同时ROS 还可促进平滑肌细胞迁移、增殖和凋亡,进而引起冠状动脉内皮功能障碍[18]。 在人心脏冠脉血管, 非粥样斑块区域血管内膜、 中膜和外膜ROS 生成量基本一致,而在粥样斑块区域,因巨噬细胞聚集,ROS 生成明显增多。 进一步分析发现Nox2及其亚基p22phox主要定位于巨噬细胞, 而Nox4 主要在非巨噬细胞, 且Nox2、p22phoxmRNA 含量与粥样斑块严重程度相关[19]。 动物实验证实Nox 活性增加促进高脂饮食引起的动脉粥样硬化,运动训练或转变为正常饮食可以降低Nox 活性和ERK1/2、JNK 磷酸化水平,从而逆转动脉粥样硬化相关危险因素[20]。 不稳定斑块与急性冠脉综合征的发生密切相关,氧化应激水平的增加促进斑块成分的改变和斑块的进展,导致斑块不稳定。 近期研究发现斑块内Nox4 水平的增加可促进斑块内平滑肌细胞的表型转变,引起斑块不稳定和斑块破裂,从而导致心肌梗死的发生[21]。
通过免疫组化和Western Blot 技术,研究者发现急性心梗后, 梗死区和梗死周边区心肌细胞Nox2 表达明显增加, 而远离心梗部位心肌细胞Nox2 含量并无明显变化,提示Nox2 生成的ROS 可能参与心梗的发生[22]。动物实验也证实在心肌梗死后心肌细胞Nox2和Nox4 表达增高[23-24],抑制Nox2 或Nox4 不减少心肌梗死面积,但可以减轻心室扩张程度,同时改善收缩功能,大幅提高小鼠存活率[24-27],说明Nox 是干预心肌梗死后心肌重构的重要靶点。 但目前对于Nox2 和Nox4 在心肌缺血再灌注(ischemia-reperfusion,I/R)损伤时的亚型特异性作用了解甚少。 全身性敲除Nox2与Nox4 小鼠在I/R 损伤时出现相似的表型:I/R 损伤后,心肌ROS 水平和梗死面积基本一致[28],提示定位于细胞不同部位的Nox2 和Nox4 产生的ROS 在I/R损伤时的作用相似。 尽管Nox2 生成的主要是O2-,但在超氧歧化酶作用下,O2-很快歧化生成H2O2,而H2O2具有很高的膜通透性,这可能是Nox2 与Nox4 在I/R损伤时作用相似的原因。 另外,心脏特异性敲除Nox4小鼠在I/R 刺激时出现与全身性Nox4 敲除小鼠同等程度的心肌损伤,说明心肌细胞中的Nox4,而非其他细胞来源(如巨噬细胞)的Nox4,参与了I/R 损伤时心肌细胞功能的改变[28]。一定水平的ROS 对心肌细胞正常生理功能的维持和心肌损伤时的适应性反应是必需的。心肌特异性过表达负向调控Nox 小鼠可以抑制所有Nox 亚型, 该小鼠与双敲除Nox2 和Nox4 的小鼠在受到I/R 损伤时, 尽管ROS 水平比单独敲除Nox2 或Nox4 小鼠更低,心肌梗死面积反而更大[28]。
心房颤动(atrial fibrillation,AF)是临床上常见的一种心律失常,心房结构重构与电重构在AF 的诱发和维持中起重要作用。现有证据表明心房氧化应激途径在AF 病理生理过程中起重要作用[29-30]。 AF 患者心耳组织Nox 活性增加,ROS 生成增多, 通过调节肺静脉和心房细胞的电活动, 引起异位起搏点活性增加,导致AF 发生[31]。 Nox 活性在阵发性房颤和永久性房颤患者心耳组织中并无明显不同,Real-time PCR 结果也证实Nox2 mRNA 水平在两种患者心耳组织中表达量相似[32]。 但目前尚无统一结论说明何种Nox 亚型在AF 患者Nox 活性调节中起主要作用。 Zhang 等[31]的研究提示AF 患者左心耳Nox4 mRNA 水平增加,与心耳组织H2O2水平正相关。 而Kim 等[33]并未在AF患者右心耳组织中检测到Nox4 的表达。 在对Nox 参与AF 的机制探讨中, 研究者发现Nox2 可以激活蛋白激酶A(proteinkinase A,PKA)和钙离子/钙调蛋白依赖性蛋白激酶Ⅱ(Ca2+/calmodulin-dependent kinaseⅡ,CaMKⅡ), 活化的PKA 可以导致钠电流和钙电流的紊乱;同时活化的CaMKⅡ增加肌浆网Ca2+外漏,通过这两种不同的途径参与了AngⅡ诱导心肌细胞早期后除极[34-35]。
研究发现Nox 同样是血管系统ROS 的主要来源。 病理因素刺激时,Nox 被激活,产生大量的ROS,导致血管内皮功能的紊乱和疾病的发生。 Nox 生成的O2-很快歧化生成具有高度膜通透性的H2O2, 而H2O2是重要的血管舒张因子, 因此过表达Nox4 可以增加内皮依赖性血管舒张作用[36]。 此外,H2O2还可以增加内皮一氧化氮合酶的表达与活性,从而促进血管舒张因子一氧化氮的合成[37]。
高血压病是一种复杂的、具有多种调控因素的疾病,高血压病患者血管Nox 表达水平尚不清楚,动物实验发现自发性高血压大鼠主动脉Nox4 表达下降[38]。另有学者发现,与血压正常大鼠相比,自发性高血压大鼠基底动脉Nox4 mRNA 水平升高4.1 倍[39],这些结果提示Nox 在高血压病血管中的表达可能与血管部位相关。 Nox 在高血压病中的作用在AngⅡ诱导的高血压模型中得到充分证实。Nox1 或Nox2 缺失小鼠在AngⅡ刺激时不会出现血压升高[40-41],而平滑肌特异性过表达Nox1 或内皮特异性过表达Nox2 小鼠在AngⅡ刺激时血压升高更为显著[42-44]。然而,内皮特异性过表达Nox4 却可以导致小鼠基础血压的下降, 可能与过表达Nox4 导致H2O2含量大幅升高、内皮依赖性血管舒张作用增强有关[36]。 不同Nox 在高血压病中作用不同可能与其生成的ROS 类型不同有关[45],Nox1 或Nox2 主要生成O2-,而Nox4 主要生产H2O2。 另外,有证据表明大脑的Nox 参与了AngⅡ诱导的血压反应。下调大脑Nox 水平可以降低全身性或大脑局部AngⅡ处理引起的血压升高[46-47]。 尽管关于Nox 在高血压病中作用的研究大部分是在AngⅡ模型中完成,有少量研究表明Nox 参与了肾性高血压的形成。在Nox 缺失的小鼠中,醋酸脱氧皮质酮高盐不能诱导小鼠出现高血压模型[48-49]。进一步分析其原因发现,肾小球致密斑表达Nox 蛋白,可能参与了球-管反馈,进而参与高血压的形成。
利用NADPH 的电子生成ROS 是Nox 的唯一作用,而Nox 复杂的激活和活性调节过程以及下游不同的信号途径提供了多种干预病理生理过程的靶点。通过探讨Nox 在常见心血管疾病中的表达与作用可以发现,Nox 在病理生理过程中的作用很大程度上取决于活化的Nox 亚型及其表达水平。目前对于Nox 的亚型特异性作用研究尚不充分,同时尚未开发出针对不同Nox 亚型的特异性抑制剂[50]。ROS 在病理生理过程中的“双刃剑”作用增加了临床抗氧化治疗的难度,因此需要更多的研究明确不同Nox 亚型的作用,并开发出Nox 亚型特异性抑制剂,从而更好地开展临床抗氧化治疗。
[1] Burgoyne JR,Mongue-Din H,Eaton P,et al. Redox signaling in cardiac physiology and pathology[J].Circ Res,2012,111(8):1091-1106.
[2] Cook NR,Albert CM,Gaziano JM,et al.A randomized factorial trial of vitamins C and E and beta carotene in the secondary prevention of cardiovascular events in women:results from the Women's antioxidant cardiovascular study[J].Arch Intern Med,2007,167(15):1610-1618.
[3] Sesso HD,Buring JE,Christen WG,et al. Vitamins E and C in the prevention of cardiovascular disease in men: the Physicians'Health Study Ⅱrandomized controlled trial[J].JAMA,2008,300(18):2123-2133.
[4] Finkel T.Oxidant signals and oxidative stress[J].Curr Opin Cell Biol,2003,15(2):247-254.
[5] Giordano FJ. Oxygen,oxidative stress,hypoxia,and heart failure [J]. J Clin Invest,2005,115(3):500-508.
[6] Zhang M,Perino A,Ghigo A,et al. NADPH oxidases in heart failure:poachers or gamekeepers?[J]. Antioxid Redox Signal,2013,18(9):1024-1041.
[7] Akki A,Zhang M,Murdoch C,et al. NADPH oxidase signaling and cardiac myocyte function [J]. J Mol Cell Cardiol,2009,47(1):15-22.
[8] Kuroda J,Ago T,Matsushima S,et al. NADPH oxidase 4(Nox4)is a major source of oxidative stress in the failing heart [J]. Proc Natl Acad Sci USA,2010,107(35):15565-15570.
[9] Heymes C,Bendall JK,Ratajczak P,et al.Increased myocardial NADPH oxidase activity in human heart failure[J].J Am Coll Cardiol,2003,41(12):2164-2171.
[10] Maack C,Kartes T,Kilter H,et al. Oxygen free radical release in human failing myocardium is associated with increased activity of rac1-GTPase and represents a target for statin treatment [J]. Circulation,2003,108(13):1567-1574.
[11] Borchi E,Bargelli V,Stillitano F,et al. Enhanced ROS production by NADPH oxidase is correlated to changes in antioxidant enzyme activity in human heart failure [J].Biochim Biophys Acta,2010,1802(3):331-338.
[12] Bendall JK,Cave AC,Heymes C,et al.Pivotal role of a gp91(phox)-containing NADPH oxidase in angiotensin Ⅱ-induced cardiac hypertrophy in mice[J].Circulation,2002,105(3):293-296.
[13] Satoh M,Ogita H,Takeshita K,et al. Requirement of Rac1 in the development of cardiac hypertrophy [J]. Proc Natl Acad Sci USA,2006,103(19):7432-7437.
[14] Hirotani S,Otsu K,Nishida K,et al. Involvement of nuclear factor-kappa B and apoptosis signal-regulating kinase 1 in G-protein-coupled receptor agonist-induced cardiomyocyte hypertrophy[J].Circulation,2002,105(4):509-515.
[15] Hingtgen SD,Tian X,Yang J,et al.Nox2-containing NADPH oxidase and Akt activation play a key role in angiotensinⅡ-induced cardiomyocyte hypertrophy [J]. Physiol Genomics,2006,26(3):180-191.
[16] Byrne JA,Grieve DJ,Bendall JK,et al. Contrasting roles of NADPH oxidase isoforms in pressure-overload versus angiotensin Ⅱ-induced cardiac hypertrophy[J].Circ Res,2003,93(9):802-805.
[17] Zhang M,Brewer A C,Schroder K,et al. NADPH oxidase-4 mediates protection against chronic load-induced stress in mouse hearts by enhancing angiogenesis [J].Proc Natl Acad Sci USA,2010,107(42):18121-18126.
[18] Griendling KK,Sorescu D,Ushio-Fukai M. NAD(P)H oxidase: role in cardiovascular biology and disease [J].Circ Res,2000,86(5):494-501.
[19] Sorescu D,Weiss D,Lassegue B,et al. Superoxide production and expression of nox family proteins in human atherosclerosis[J].Circulation,2002,105(12):1429-1435.
[20] Touati S,Montezano ACI,Meziri F,et al. Exercise training protects against atherosclerotic risk factors through vascular NADPH oxidase,ERK1/2 and SAPK/JNK down-regulation in obese rats [J]. Clinical and Experimental Pharmacology and Physiology,2015,42(2):179-185.
[21] Xu S,Chamseddine AH,Carrell S,et al. Nox4 NADPH oxidase contributes to smooth muscle cell phenotypes associated with unstable atherosclerotic plaques [J]. Redox Biology,2014,(2):642-650.
[22] Krijnen PA,Meischl C,Hack CE,et al. Increased Nox2 expression in human cardiomyocytes after acute myocardial infarction [J]. J Clin Pathol,2003,56(3):194-199.
[23] Fukui T,Yoshiyama M,Hanatani A,et al. Expression of p22-phox and gp91-phox,essential components of NADPH oxidase,increases after myocardial infarction [J]. Biochem Biophys Res Commun,2001,281(5):1200-1206.
[24] Infanger DW,Cao X,Butler SD,et al. Silencing nox4 in the paraventricular nucleus improves myocardial infarction-induced cardiac dysfunction by attenuating sympathoexcitation and periinfarct apoptosis [J]. Circ Res,2010,106(11):1763-1774.
[25] Bauersachs J,Galuppo P,Fraccarollo D,et al. Improvement of left ventricular remodeling and function by hydroxymethylglutaryl coenzyme a reductase inhibition with cerivastatin in rats with heart failure after myocardial infarction [J]. Circulation,2001,104(9):982-985.
[26] Qin F,Simeone M,Patel R. Inhibition of NADPH oxidase reduces myocardial oxidative stress and apoptosis and improves cardiac function in heart failure after myocardial infarction[J].Free Radic Biol Med,2007,43(2):271-281.
[27] Doerries C,Grote K,Hilfiker-Kleiner D,et al. Critical role of the NAD (P)H oxidase subunit p47phox for left ventricular remodeling/dysfunction and survival after myocardial infarction [J]. Circ Res,2007,100(6):894-903.
[28] Matsushima S,Kuroda J,Ago T,et al. Broad suppression of NADPH oxidase activity exacerbates ischemia/reperfusion injury through inadvertent downregulation of hypoxia-inducible factor-1alpha and upregulation of peroxisome proliferator-activated receptor-alpha [J]. Circ Res,2013,112(8):1135-1149.
[29] Carnes CA,Chung MK,Nakayama T,et al. Ascorbate attenuates atrial pacing-induced peroxynitrite formation and electrical remodeling and decreases the incidence of postoperative atrial fibrillation [J]. Circ Res,2001,89(6):E32-E38.
[30] Mihm MJ,Yu F,Carnes CA,et al. Impaired myofibrillar energetics and oxidative injury during human atrial fibrillation [J]. Circulation,2001,104(2):174-180.
[31] Zhang J,Youn JY,Kim AY,et al. NOX4-Dependent Hydrogen Peroxide Overproduction in Human Atrial Fibrillation and HL-1 Atrial Cells: Relationship to Hypertension [J]. Front Physiol,2012,3:140.
[32] Chang JP,Chen MC,Liu WH,et al. Atrial myocardial nox2 containing NADPH oxidase activity contribution to oxidative stress in mitral regurgitation: potential mechanism for atrial remodeling [J]. Cardiovasc Pathol,2011,20(2):99-106.
[33] Kim YM,Guzik TJ,Zhang YH,et al. A myocardial Nox2 containing NAD (P)H oxidase contributes to oxidative stress in human atrial fibrillation [J]. Circ Res,2005,97(7):629-636.
[34] Wagner S,Dantz C,Flebbe H,et al. NADPH oxidase 2 mediates angiotensin II-dependent cellular arrhythmias via PKA and CaMKⅡ[J]. Journal of Molecular and Cellular Cardiology,2014,75:206-215.
[35] Zhao Z,Fefelova N,Shanmugam M,et al. Angiotensin II induces afterdepolarizations via reactive oxygen species and calmodulin kinase Ⅱsignaling [J]. J Mol Cell Cardiol,2011,50(1):128-136.
[36] RayR,MurdochCE,WangM,etal.EndothelialNox4NADPH oxidase enhances vasodilatation and reduces blood pressure in vivo [J]. Arterioscler Thromb Vasc Biol,2011,31(6):1368-1376.
[37] Thomas S R,Chen K,Keaney JJ. Hydrogen peroxide activates endothelial nitric-oxide synthase through coordinated phosphorylation and dephosphorylation via a phosphoinositide 3-kinase-dependent signaling pathway [J]. J Biol Chem,2002,277(8):6017-6024.
[38] Wind S,Beuerlein K,Armitage ME,et al. Oxidative stress and endothelial dysfunction in aortas of aged spontaneously hypertensive rats by NOX1/2 is reversed by NADPH oxidase inhibition [J]. Hypertension,2010,56(3):490-497.
[39] Paravicini TM,Chrissobolis S,Drummond GR,et al. Increased NADPH-oxidase activity and Nox4 expression during chronic hypertension is associated with enhanced cerebral vasodilatation to NADPH in vivo [J]. Stroke,2004,35(2):584-589.
[40] Matsuno K,Yamada H,Iwata K,et al. Nox1 is involved in angiotensin II-mediated hypertension:a study in Nox1-deficient mice[J].Circulation,2005,112(17):2677-2685.
[41] Jung O,Schreiber JG,Geiger H,et al. Gp91phox-containing NADPH oxidase mediates endothelial dysfunction in renovascular hypertension [J]. Circulation,2004,109(14):1795-1801.
[42] Dikalova A,Clempus R,Lassegue B,et al. Nox1 overexpression potentiates angiotensin Ⅱ-induced hypertension and vascular smooth muscle hypertrophy in transgenic mice [J]. Circulation,2005,112(17):2668-2676.
[43] Bendall JK,Rinze R,Adlam D,et al. Endothelial Nox2 overexpression potentiates vascular oxidative stress and hemodynamic response to angiotensin Ⅱ:studies in endothelial-targeted Nox2 transgenic mice [J]. Circ Res,2007,100(7):1016-1025.
[44] Murdoch CE,Alom-Ruiz SP,Wang M,et al. Role of endothelial Nox2 NADPH oxidase in angiotensin Ⅱ-induced hypertension and vasomotor dysfunction [J]. Basic Res Cardiol,2011,106(4):527-538.
[45] Brandes RP,Takac I,Schroder K. No superoxide——no stress?:Nox4,the good NADPH oxidase! [J]. Arterioscler Thromb Vasc Biol,2011,31(6):1255-1257.
[46] Peterson JR,Sharma RV,Davisson RL. Reactive oxygen species in the neuropathogenesis of hypertension [J].Curr Hypertens Rep,2006,8(3):232-241.
[47] Capone C,Faraco G,Park L,et al. The cerebrovascular dysfunction induced by slow pressor doses of angiotensinⅡprecedes the development of hypertension [J]. Am J Physiol Heart Circ Physiol,2011,300(1):H397-H407.
[48] Fujii A,Nakano D,Katsuragi M,et al. Role of gp91phoxcontaining NADPH oxidase in the deoxycorticosterone acetate-salt-induced hypertension [J]. Eur J Pharmacol,2006,552(1-3):131-134.
[49] Zhang A,Jia Z,Wang N,et al. Relative contributions of mitochondria and NADPH oxidase to deoxycorticosterone acetate-salt hypertension in mice[J].Kidney Int,2011,80(1):51-60.
[50] Altenhofer S,Kleikers PW,Radermacher KA,et al.The NOX toolbox: validating the role of NADPH oxidases in physiology and disease [J]. Cell Mol Life Sci,2012,69(14):2327-2343.