胡永斌 刘吉强 胡敬仁 丁兴 孙卫东 刘焰 凌明星**
1.中国科学院广州地球化学研究所,矿物学与成矿学重点实验室,广州 510640
2.中国科学院大学,北京 100049
3.国家海洋局第二海洋研究所,国家海洋局海底科学实验室,杭州 310012
4.西藏地质调查研究院,拉萨 850000
5.中国科学院广州地球化学研究所,同位素地球化学国家重点实验室,广州 510640
6.中国科学院青藏高原地球科学卓越创新中心,北京 100101
7.中国地质科学院地质研究所,北京 100037
青藏高原目前已成为我国重要的矿产资源产地,其中冈底斯中新世斑岩成矿带是青藏高原最显著的成矿区域。该成矿带位于冈底斯带南部,呈东西向展布于雅江缝合带北缘(高永丰等,2003;侯增谦等,2001;芮宗瑶等,2003)。在该成矿带上,自西向东分布着朱诺、白荣、冲江、厅宫、南木、拉抗俄、驱龙、甲玛、吹败子和邦铺等众多中新世斑岩-矽卡岩型矿床。许多学者对其进行了大量的地球化学、年代学、岩石学和矿物学等方面的研究,积累了大量的资料,取得了丰富的成果(Gao et al.,2007,2010;Guo et al.,2007;高永丰等,2003;侯增谦等,2004;李金祥等,2007;林武等,2004;曲晓明等,2001;唐菊兴等,2012;王亮亮等,2006;张绮玲等,2003;郑有业等,2004)。这些中新世矿床主要是斑岩铜(钼)矿床,而邦铺矿床是近年来新发现的以钼为主要成矿元素的大型斑岩型钼铜矿床,其Mo 和Cu 金属量分别为45.4 万吨和91.7 万吨(西藏自治区地勘局地热地质大队,2009①西藏自治区地勘局地热地质大队.2009.西藏自治区墨竹工卡县邦铺矿区钼(铜)多金属矿详查报告),其Cu/Mo (金属量比值)值为2。与其南部同处冈底斯带、同时代的驱龙超大型斑岩铜钼矿床(Cu 和Mo 金属量分别为1036 万吨和50 万吨,Cu/Mo 值为21)相比,Mo 相对于Cu 具有更高程度的富集。前人对该矿床的矿物学(王立强等,2014)、岩石地球化学(Wang et al.,2012;周雄等,2010a)、成岩成矿时代(Hou et al.,2009;Wang et al.,2012;冷秋锋等,2012;孟祥金等,2003;王立强等,2011;赵晓燕等,2013;周雄等,2010c,d)、流体包裹体(罗茂澄等,2012;周雄等,2010b)和成矿物质来源(王立强等,2012)等方面进行了卓有成效的研究,但对含矿岩浆的源区及成矿机制问题的探讨并不充分和深入,依然存在争议。一种观点认为矿区含矿二长花岗岩斑岩是由断裂的俯冲洋壳残体在下沉过程中不断地被软流圈熔融所形成,并在岩浆上升过程中受到古老地壳物质的混染(罗茂澄等,2011)。另一种观点认为成矿的物质来源主要为上地壳,地幔物质的贡献较小(Wang et al.,2012)。因此对这一问题的重新认识有益于加深对邦铺斑岩钼铜矿床成因的理解。由于锆石是中酸性岩浆岩中普遍存在的副矿物,化学性质非常稳定,抗风化和蚀变能力强,封闭温度高,即使经历了高级变质作用和部分熔融作用,依然可以保存其形成环境温度、岩浆组成等性质,这使得通过锆石的Hf-O 同位素和微量元素组成等信息识别岩浆源区的性质成为可能,已成为讨论岩浆演化以及壳幔相互作用的重要工具(Chen et al.,2015;Kemp et al.,2007;Lee et al.,1997;Li et al.,2009,2010;Zheng et al.,2012)。本文选取含矿的石英二长斑岩作为研究对象,对其进行了主微量元素分析、锆石U-Pb 定年和Hf-O 同位素分析,并通过与驱龙斑岩铜矿进行对比,对含矿斑岩的源区及成矿机制进行了探讨。
冈底斯带位于班公湖-怒江缝合带(BNSZ)和雅江缝合带(YZSZ)之间,以狮泉河-纳木错蛇绿岩带(SNMZ)和洛巴堆-米拉山断裂(LMF)界,自北向南分为北冈底斯带、中冈底斯带和南冈底斯带三部分(图1a)(Zhu et al.,2013;潘桂棠等,2006)。其中南冈底斯火山-岩浆岩带长约2000km,宽约100km (王全海等,2002),是青藏高原地区岩浆活动规模最大、期次最多和岩浆类型最复杂的构造-岩浆岩带。区域内岩浆岩成东西向展布,与构造线的方向一致(李廷栋,2002)。该区域上中新生代岩浆活动可能主要与以下几种地球动力学机制有关:新特提斯洋壳的北向俯冲及随后的碰撞,班公湖-怒江特提斯洋壳的南向俯冲及随后的拼接(朱弟成等,2006)和二者的双向俯冲(潘桂棠等,2006)。
邦铺矿床位于青藏高原南冈底斯带东段北缘(图1b),靠近北边的洛巴堆-米拉山断裂,是发育于冈底斯成矿带东段的大型斑岩型钼铜矿床,其中钼金属量为45.4 万吨,品位0.08%,铜金属量91.7 万吨,平均品位0.28%。矿区主要出露地层有下二叠统洛巴堆组(P1l)灰岩和古近纪典中组(E1d)火山岩,洛巴堆组和典中组地层之间为断层接触。矿区发育大量的侵入岩体,主要呈大规模产出,少量呈小型岩枝和岩脉产出。侵入岩主要包括:二长花岗斑岩、黑云母二长花岗岩、闪长玢岩、辉绿岩、花岗闪长斑岩和石英二长斑岩等(图1b)。此外在矿区东北部见有少量的安山岩。详细的野外地质表明该矿床具有典型斑岩矿床的蚀变分带特征,从中心向外围依次为:黑云母化带、硅化带、绢云母化带和青磐岩化带,粘土化多呈补丁状分布于硅化带及青磐岩化带中(周雄,2012;赵晓燕等,2013)。含矿斑岩主要为二长花岗斑岩及闪长玢岩,矿体长宽近似相等,控制矿体面积0.67km2,最大厚度达950m。矿石主要呈浸染状、脉状和网脉状结构。矿石矿物以辉钼矿、黄铁矿和黄铜矿为主,以及少量的斑铜矿、辉铜矿和磁铁矿等。脉石矿物主要为石英、钾长石、黑云母、绢云母和角闪石,以及少量的萤石、方解石、绿泥石、绿帘石和硬石膏(Wang et al.,2014)。
图1 冈底斯带构造纲要图(a)和邦铺斑岩钼铜矿床地质简图(b)Fig.1 Tectonic outline of the Lhasa Terrane (a)and geological sketch map of the Bangpu porphyry Mo (Cu)deposit (b)
本次研究的样品采自邦铺矿区中部,具体位置如图1b所示。样品岩性为石英二长斑岩,其中用作定年的样品BP17 和BP18 分别采自钻孔ZK6007 的107.5m 和ZK5201 的307m 处。样品新鲜,表面呈灰白色,斑状结构,块状构造,斑晶主要为斜长石、钾长石和少量石英等。选取新鲜无污染样品,机械粉碎至粒径约1cm,用去离子水清洗后烘干,然后将样品置于无污染自动玛瑙研磨器中研磨至200 目。玛瑙研磨器每次使用之前均用高压气枪吹洗,然后用酒精棉球擦拭后烘干,防止样品间的交叉污染。岩石样品经全程无污染破碎至40~60 目并分选出锆石后,在双目镜下挑选出晶形完好的锆石颗粒,将其粘在双面胶上并通过灌注环氧树脂将其固化,做成直径2.54cm (一英寸)、厚度约0.6cm 的靶,再将锆石靶进行打磨并抛光至最大面,使其内部结构充分暴露。对进行Hf-O 同位素分析的锆石还需要将锆石样品和TEMORA 固定在同一环氧树脂靶上,并在真空状态下镀一层500nm 厚的高纯度金。然后对样品靶进行显微照相(透射光、反射光和阴极发光)。前处理工作完成后进行锆石U-Pb定年和Hf-O 同位素分析。
全岩主量和微量元素测试在中国科学院广州地球化学研究所同位素地球化学国家重点实验室完成。主量元素采用熔片法XRF 进行分析,首先将200 目的粉末样品经920℃烧失后称量0.5200 ±0.0001g 与助熔剂四硼酸锂按1∶8 的比例混合均匀倒入铂金坩埚,并使用中国Analymate 公司生产的V8C 自动熔样系统在1250℃条件下制成均一的玻璃片。制备好的玻璃片采用日本理学Rigaku 100e 型XRF 测定样品的主量元素,分析精度优于1%。微量元素采用溶液法ICP-MS 进行分析,绝大多数分析精度好于5%,个别含量低的元素分析误差约为10% (刘颖等,1996)。
锆石U-Pb 同位素定年使用中国科学院广州地球化学研究所同位素国家重点实验室的激光剥蚀电感耦合等离子质谱(LA-ICP-MS)完成。采用的仪器参数如下:激光能量80mJ,剥蚀频率8Hz,激光斑束直径31μm,剥蚀时间50s。采用双室样品室和Squid 激光剥蚀脉冲平滑装置提高分析精度(涂湘林等,2011)。NIST SRM 610 和TEMORA 做外标,29Si做内标(Li et al.,2012b;涂湘林等,2011)。采用实测204Pb校正锆石中普通Pb,一般认为,通过普通Pb 的校正,年龄大于1000 Ma 的锆石采用207Pb/206Pb 年龄更为合适(Griffin et al.,2004),而对小于1000Ma 的锆石采用206Pb/238U年龄最为可靠(Compston et al.,1992),因此本文采用206Pb/238U 年龄作为最终结果。采用ICPMSDataCal 8.3 处理原始测试数据获得同位素比值和微量元素含量(Liu et al.,2010a,b)。采 用Isoplot 3.23 (Ludwig,2000)计算锆石U-Pb 年龄,其单点年龄误差为1σ,加权平均年龄误差为2σ。
锆石O 同位素分析在中国地质科学院北京离子探针中心用SHRIMP II 完成。采用的Cs+离子束为3.0nA,剥蚀斑束直径约20μm,产生的二次16O-离子计数为109cps。每分析3 个样品点就分析1 次TEMORA 以确保仪器状态稳定,δ18O 的分析结果以VSMOW 为标准进行报道(‰)。详细分析流程和分析条件可参考Ickert et al.(2008)。在以上的分析条件下,对TEMORA 多次测量获得δ18O 加权平均值为8.19 ±0.13‰,这与TEMORA 的推荐值非常一致(8.2‰;Black et al.,2004),表明样品分析结果是可靠的。
锆石原位Lu-Hf 同位素分析在中国科学院广州地球化学研究所同位素地球化学国家重点实验室的激光剥蚀-多接收电感耦合等离子质谱(LA-MC-ICP-MS)完成。Lu-Hf 同位素分析点位与氧同位素分析点相同或者在相同的环带上。激光能量15~20J/cm2,剥蚀频率8 Hz,剥蚀斑束直径40μm,剥蚀时间60s。详细的分析流程见Wu and Yang (2006),采用指数法则对176Hf/177Hf 分析结果进行质量偏移校正,校正参考值179Hf/177Hf = 0.7325 (Wu and Yang,2006)。分析中,176Lu/175Lu 值为0.02655,176Yb/172Yb 值为0.5887 (Chu et al.,2002)。采用176Lu/177Hf 的测量值和176Lu 的衰变常数1.867 × 10-1yr-1计算176Lu/177Hf 的初始值。球粒陨石的76Lu/177Hf=0.0336 和176Hf/177Hf=0.282785 (Bouvier et al.,2008)被用来计算εHf(t)值。亏损地幔模式年龄(tDM2)的计算采用176Lu/177Hf 的测量值进行计算,计算方法基于亏损地幔储库具有线性同位素增长方式,4.55Ga 时176Hf/177Hf 值为0.279718,当 前 值 为0.283250,176Lu/177Hf 值 为0.0384(Griffin et al.,2000)。
主微量元素分析结果见表1。含矿斑岩体具有富硅富碱特征,SiO2含量介于64.2%~73.4%之间;Na2O+K2O 含量为4.6%~7.7%,K2O 含量为3.2%~5.4%;K2O/Na2O 较高,除1 个样品为0.8 外,均大于1;全岩锆饱和温度为655~900℃;铝饱和指数A/CNK 为1.02~2.73,属过铝质岩石;里特曼指数σ 介于1.0~2.4 之间,属典型的钙碱性系列(图2)。
含矿斑岩样品的稀土元素球粒陨石标准化配分模式呈右倾形态(图3),除BP16 外,其形态基本一致,具体表现为轻稀土富集,重稀土相对亏损,(La/Yb)N= 27.6~49.3。REE 总量变化不大,介于115.1 ×10-6~278.9 ×10-6之间。具有弱的Eu 负异常甚至无异常,δEu 为0.71~1.02。Ho 到Lu 较平坦,(Ho/Lu)N=1.8~2.8。微量元素配分形式表现为右倾的峰谷相间形态(图3),总体上富集大离子亲石元素Cs、Rb、Pb 和轻稀土元素,亏损高场强元素Nb、Ta、Ti 和重稀土元素。而样品BP16 轻重稀土分异相对较弱,(La/Yb)N=4.7,REE 总量较低(87.3 ×10-6),δEu 为0.62,具有中等的Eu 负异常,其Nb 和Ta 也具有更强的负异常,造成这种差别的原因是由于该样品经历了较强的热液蚀变和矿化作用。Rb/Sr 比值较高(0.7~5.8),Sr、Y 含量较低,分别为50.1 ×10-6~387.0 ×10-6和6.3 ×10-6~12.1 ×10-6。
图2 邦铺矿床斑岩TAS 图解(a)和K2O-SiO2 图解(b)文献数据来自周雄等(2010a),图3 同Fig.2 TAS diagram (a)and plot of K2O vs.SiO2(b)of porphyries from Bangpu depositThe literature data are from Zhou et al.(2010a),also in the Fig.3
图3 邦铺矿床斑岩微量元素蛛网图(a)和稀土元素配分图(b)Fig.3 Primitive mantle-normalized trace element diagrams (a)and chondrite-normalized rare earth element diagrams (b)for the Bangpu porphyries
图4 邦铺矿床斑岩锆石谐和年龄图解Fig.4 Zircon concordia diagrams for the Bangpu porphyries
表1 邦铺含矿斑岩主量元素(wt%)和微量元素(×10 -6)分析结果Table 1 Representative major (wt%)and trace element(×10 -6)results of the Bangpu porphyries
锆石大部分为无色和浅灰色,少量呈浅棕色,自形,柱面和锥面完好,长柱状-短柱状,粒径较小,多为80~300μm,长宽比为1∶1~3∶1,个别粒度较大。阴极发光(CL)图像(图4)显示出明显的密集韵律环带。对2 个样品的锆石进行了U-Pb 同位素分析(表2),在剔除掉含有包裹体和有效积分信号时间小于25s 的样品后,通过校正分别获得17 和25 个有效数据。标准锆石TEMORA 的206Pb/238U 年龄加权平均值为416.8 ±7.5Ma,这与其推荐值416.75 ±0.24Ma 非常一致(Black et al.,2003),表明测试结果是可靠的。所有分析点的普通铅含量非常低,其Th =397 ×10-6~3359 ×10-6,U =422 ×10-6~4102 ×10-6,Th/U=0.3~3,具有岩浆锆石的典型特征(Wu and Zheng,2004)。锆石的206Pb/238U 加权平均年龄分别为13.9 ±0.3Ma 和14.0 ±0.2Ma (2σ),代表了岩体的形成年龄(图4)。
结果显示中新世锆石氧同位素组成比较均一,且变化范围较小,δ18O 值为4.72‰~7.22‰ (n =35,均值5.99‰)(表3)。从其累积频数直方图可见中新世锆石氧同位素具有单峰分布特征,其峰值为6.0‰ (图5a)。锆石(176Hf/177Hf)s为0.282711~0.282934 (表3),εHf(t)值为-2.3~+5.6 (n=35,均值为2.1),相对应的二阶段模式年龄为574~980Ma (图5b),εHf(t)值的频数分布图呈明显单峰分布特征(图5b)。
冈底斯带的中新世斑岩侵入体在很短时间内形成(25~8Ma),其侵位高峰期在16Ma 左右(Chung et al.,2009;Hou et al.,2013;Hu et al.,2015;侯增谦等,2006)。岩石类型以中酸性花岗闪长岩、二长花岗岩和花岗斑岩为主,最为引人瞩目的是其伴随爆发式的(14~21Ma)Cu、Mo 等金属的成矿作用(Hou et al.,2012,2013;Hu et al.,2015;侯增谦等,2006)。有关这些斑岩(主要为埃达克质斑岩)侵入体的岩浆源区及其形成的地球动力学背景是学术界长期关注和争论的问题,目前主要有以下几种观点:(1)俯冲的新特提斯洋壳的部分熔融,并与上覆地幔楔相互作用(Qu et al.,2004;高永丰等,2003;侯增谦等,2003;曲晓明等,2004);(2)加厚并拆沉的拉萨地体下地壳的部分熔融(Chung et al.,2003);(3)新生下地壳的部分熔融(Hou et al.,2004;Li et al.,2011;侯增谦等,2004);(4)被板片来源熔体所交代的上地幔的部分熔融(Gao et al.,2007);(5)俯冲的印度大陆地壳的部分熔融(Xu et al.,2010)。但上述模式主要是针对冈底斯南缘靠近雅鲁藏布江缝合带的埃达克质斑岩所提出的,而邦铺斑岩钼铜矿床靠近中冈底斯带,其地壳厚度更大,因此不能简单地直接使用以上观点解释邦铺含矿斑岩的岩浆源区,有必要对这一问题进行深入探讨以进一步丰富和加深对冈底斯带斑岩成矿的认识。
表2 邦铺含矿斑岩锆石LA-ICPMS U-Pb 同位素组成Table 2 LA-ICPMS zircon U-Pb isotope data of the Bangpu porphyries
本文进行成岩年龄分析的2 个二长花岗斑岩样品采自主要的含矿岩体,其形成年龄分别为13.9 ±0.3Ma 和14.0 ±0.2Ma。这与前人获得的含矿二长花岗斑岩和花岗斑岩的锆石U-Pb 年龄一致(13.9 ±0.3Ma 和14.2 ±0.2Ma)(温泉等,2011;周雄等,2010c)。此外,矿区还产出与中新世含矿岩体有接触关系但并未发现矿化的黑云母二长花岗岩,其锆石U-Pb 年龄为62.1 ±1.9Ma,为古新世的侵位岩体(罗茂澄等,2011)。
矿区含矿斑岩的主量元素以中高硅(SiO2>64%)、高碱(K2O+Na2O >4.6%)和富钾(大多数>3%)为特征(图2)。样品在硅碱图上主要落在花岗闪长岩区域,少数硅较高的样品为花岗岩,主要为亚碱性系列。在SiO2-K2O 图上,样品主
要为高钾钙碱性系列甚至钾玄岩系列。这些特征与驱龙斑岩铜矿的含矿斑岩非常相似。含矿斑岩样品属高钾钙碱性至钾玄岩系列,为过铝质岩石;富集大离子亲石元素和轻稀土元素,亏损高场强元素和重稀土元素;总体来看其REE 总量变化较大(22.0 ×10-6~278.9 ×10-6)(周雄等,2010a),呈现出Cs,Rb、Pb 正异常和Nb、Ta、Ti 负异常的特征,Eu 负异常微弱至无异常(图3),指示源区具有俯冲洋壳参与的特点且存在陆壳物质的加入。Y 含量很低(6.3 ×10-6~12.1×10-6),表明源区可能存在石榴石、角闪石或辉石的残留;但其Sr 含量较埃达克岩低很多,为50.1 ×10-6~387.0 ×10-6,低于典型埃达克岩的Sr 含量;Sr/Y =4~60,个别落入埃达克区,但是大多数较埃达克岩偏低,说明源区可能存在斜长石的残留或在演化过程中发生了斜长石的分离结晶,也可能是同化混染壳源物质造成原来埃达克岩特征的丧失。这一特征明显不同于驱龙斑岩铜矿含矿斑岩所具有的典型埃达克质的性质(Hu et al.,2015)。
表3 邦铺含矿斑岩锆石原位Hf-O 同位素组成Table 3 In situ zircon Hf-O isotopic composition for the Bangpu porphyries
图5 邦铺矿床斑岩原位锆石δ18O 值(a)和εHf(t)值(b)频数统计图Fig.5 The cumulative probability histogram of in situ zircon δ18O (a)and εHf(t)(b)for the Bangpu porphyries
邦铺矿床含矿二长花岗斑岩中锆石δ18O 值为4.72‰~7.22‰ (均值5.99‰),接近MORB 的值5.3 ±0.3‰ (Valley et al.,1998;Valley et al.,2005),且处于太古宙岩浆锆石δ18O 值的范围6.5‰~7.5‰之内(Valley et al.,2005),表明其岩浆具有幔源(MORB)的岩浆组分特征。εHf(t)平均值为2.1,介于陆壳和亏损地幔两种端元组分之间。在εHf(t)-δ18O 二端元图解中(图6),很明显锆石Hf-O 同位素组成介于亏损地幔组分(如俯冲洋壳)和陆壳组分(如S 型花岗岩)之间。根据模拟计算结果,陆壳组分贡献了大约10%~40%的锆石Hf 和O 同位素组成,暗示了含矿岩浆主要来自地幔组分,但在岩浆演化过程中存在大量陆壳物质的参与。与其南部不远的驱龙斑岩铜矿相比,其锆石δ18O 略低,而εHf(t)明显偏低,说明邦铺含矿斑岩的成矿岩浆具有更多的陆壳物质的贡献,这可能是使其失去埃达克质特征的重要原因,但依然需要对整个矿区与矿化有关的岩体进行更加系统和深入的研究。
与驱龙斑岩铜矿相比,二者的大地构造背景、成岩时代、矿化时间和蚀变特征非常相似或一致,但驱龙矿床以斑岩铜矿化为主,并伴随一定量的钼,其Cu/Mo 值为21;而邦铺矿床以钼为主要开采金属,其Cu/Mo 值为2,Mo 相对更加富集。造成上述差别的机制是什么呢?
研究表明,在花岗质熔体的结晶过程中,Mo 是一种中度不相容的亲硫元素(Robb,2005),其不相容性略高于Cu(Sun et al.,2003a,2004a,b,2013)。同时Mo 又是一种稀有元素,其在陆壳、地幔和MORB 中的丰度很低,分别为0.8×10-6(Rudnick and Gao,2003)、0.06 ×10-6和0.3 ×10-6(Sun and McDonough,1989),而铜在地壳、地幔和MORB 中的丰度分别为27 ×10-6(Rudnick and Gao,2003)、30 ×10-6和~100 × 10-6(McDonough and Sun,1995;Sun et al.,2003b)。尽管如此,钼在自然界却能以独立矿物辉钼矿的形式存在并形成了大量的Mo 矿床,这说明必定存在某种独特的富集机制和成矿过程(Zhang et al.,2014;张红等,2011)。
图6 邦铺矿床斑岩原位锆石δ18O-εHf(t)图解驱龙Hf-O 同位素数据引自Hu et al.(2015).混合线根据不同HfMORB/Hfsediments(1∶10~10∶1)和HfMORB/Hfgranites(1∶20~2∶1)值做出Fig.6 In situ zircon δ18 O vs.εHf(t)isotopes plot of the Bangpu porphyriesThe Hf-O isotope data are from Hu et al.(2015).The mixing curves were constructed using different HfMORB/Hfsediments and HfMORB/Hfgranites elemental ratios from 1∶10 to 10∶1 and 1∶20 to 2∶1 respectively
邦铺矿床钼平均品位为0.08%,铜平均品位为0.28%,如果其Mo 来自大陆地壳,则需要富集1000 倍;若来自地幔,则需要富集13000 倍;若来自洋壳,则需要富集2700 倍。Mustard et al.(2006)通过对澳大利亚Timbarra 金矿区花岗岩杂岩体石英中熔体包裹体的研究发现,在岩浆分离结晶过程中,Au 可以富集40 倍,Mo 可以富集5~20 倍,而Cu 可以富集1~3 倍。很显然,简单的岩浆分离结晶过程无法满足形成Mo (Cu)矿床的要求(Li et al.,2012a)。研究表明,现代还原性海洋沉积物中Mo 的丰度可达250 ×10-6(Algeo and Lyons,2006),显生宙以来的大洋黑色页岩中Mo 的丰度为~150 ×10-6(最高可达297 ×10-6;Rimmer,2004;Scott et al.,2008)。因此如果成矿的岩浆来源中若有大量的大洋沉积物的话,只需要富集6 倍即可达到邦铺矿床Mo 的平均品位,这通过岩浆过程即可实现。可见,这一Mo 的预富集过程在整个成矿过程中极为关键。研究表明,表生高氧化条件下Mo 主要呈Mo6+存在,形成易溶于水的钼酸或钼酸盐(MoO42-)在水体中搬运,并主要随地表径流进入海水且在还原条件下形成富钼的沉积物(刘英俊等,1984)。因此,化学风化作用强烈的热带-亚热带地区以及陆缘海盆环境是Mo 预富集的最佳场所(Li et al.,2012a)。
已有证据表明在冈底斯带中存在古特提斯洋体系(许志琴等,2013)。在南冈底斯岩浆带北缘发现有近东西向延伸约100 km 的松多-墨竹工卡榴辉岩带(杨经绥等,2006,2007),且该带伴随展布方向一致、年代为305Ma 的松多蛇绿岩(Chen et al.,2009;陈松永,2010)和石炭-二叠纪的岛弧火山岩(李奋其等,2012;潘桂棠等,2006)。榴辉岩的原岩为一套典型的MORB 型大洋玄武岩,其锆石SHRIMP 年龄为261.7Ma (徐向珍等,2007),代表了榴辉岩相的变质年龄和洋壳的深俯冲时限,而其原岩的形成时代至少要到早二叠世至石炭世(徐向珍等,2007)。上述证据表明在南冈底斯北缘曾经存在石炭-二叠纪至晚三叠世的古特提斯洋盆(Yang et al.,2009;杨经绥等,2007 称其为“北冈底斯古特提斯洋盆”)。
由于“北冈底斯古特提斯洋盆”两侧为冈瓦纳古陆块的残留或微陆块,而拉萨地体自离开冈瓦纳大陆以来直至晚白垩世一直处于赤道附近的低纬度地区(Ali and Aitchison,2008;Sun et al.,2010;Yi et al.,2011;冯岩等,2013;孙知明等,2008;唐祥德等,2013;朱弟成等,2012),气候湿热,化学风化强烈,有利于Mo 的大量释放,这些Mo 随地表径流进入不断消减的“北冈底斯古特提斯洋盆”并最终固定在海底沉积物中,钼的含量不断增加,最高可达数百10-6g/g(McManus et al.,2006;Rimmer,2004;Scott et al.,2008),为地壳丰度的数百倍。随着该洋盆于晚三叠世开始闭合消亡(李奋其等,2012)以及随后的碰撞造山和地壳增厚作用,这些富Mo 沉积物被逐渐深埋并发生高级变质作用。
越来越多的证据表明,中新世含矿斑岩岩浆具有大量俯冲板片参与成岩成矿的地球化学信息(Hu et al.,2015;Qu et al.,2004b)。最新的地球物理资料显示(孙新蕾等,未刊资料),进入中新世以来,雅鲁藏布江新特提斯洋壳在南部拉萨地体之下依然在俯冲,这一俯冲的洋壳及其携带的富水流体,不断对岩石圈地幔进行交代,在岩石圈地幔部分熔融后又发生底侵作用,导致陆壳物质及深埋于陆壳的富Mo 沉积物熔融并混入幔源岩浆(Li et al.,2012a)。之后岩浆继续上升并逐渐演化,最终在地壳浅部侵位形成斑岩体同时进入岩浆期后热液阶段,经过一系列的物理化学过程(Zhang et al.,2014;张红等,2011),最终形成相对富钼贫铜的斑岩型Mo(Cu)矿床。
与驱龙斑岩铜矿相比,邦铺斑岩型钼铜矿的大地构造位置更加远离新特提斯俯冲带,地壳厚度更大,氧逸度也更低(Robb,2005),板片及岩石圈地幔熔融产生的岩浆在上升过程中会有更多的陆壳物质加入,相应的来自俯冲洋壳的成矿物质Cu 也相对较少,因此形成的含矿岩浆具有更低的Cu/Mo 值,所以形成的是相对富钼贫铜的斑岩型Mo (Cu)矿床,而非像驱龙一样形成斑岩型Cu (Mo)矿床(Hu et al.,2015)。
锆石原位Hf-O 同位素组成表明岩浆源区主要来自亏损地幔组分,但在岩浆演化过程中遭受了较多的陆壳物质混入。与驱龙斑岩铜矿相比,邦铺矿床的含矿岩浆具有更多富Mo 的陆壳物质加入,最终形成了具有更低Cu/Mo 值的斑岩型Mo (Cu)矿床。
致谢 感谢马秀峰同学对野外工作的大力协助;感谢北京离子探针中心刘敦一研究员、刘瑜老师和李宁老师在锆石O同位素测试方面的指导;感谢中国科学院广州地球化学研究所张乐老师在锆石Hf 同位素分析方面的帮助;感谢两位审稿人中肯、有建设性的意见和建议,对提高本文质量有着很大的帮助。
Algeo TJ and Lyons TW.2006.Mo-total organic carbon covariation in modern anoxic marine environments:Implications for analysis of paleoredox and paleohydrographic conditions.Paleoceanography,21(1):1-23
Ali JR and Aitchison JC.2008.Gondwana to Asia:Plate tectonics,paleogeography and the biological connectivity of the Indian subcontinent from the Middle Jurassic through latest Eocene (166~35Ma).Earth-Science Reviews,88(3-4):145-166
Black LP,Kamo SL,Allen CM,Aleinikoff JN,Davis DW,Korsch RJ and Foudoulis C.2003.TEMORA 1:A new zircon standard for Phanerozoic U-Pb geochronology.Chemical Geology,200(1-2):155-170
Black LP,Kamo SL,Allen CM,Davis DW,Aleinikoff JN,Valley JW,Mundil R,Campbell IH,Korsch RJ,Williams IS and Foudoulis C.2004.Improved206Pb/238U microprobe geochronology by the monitoring of a trace-element-related matrix effect:SHRIMP,IDTIMS,ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards.Chemical Geology,205(1-2):115-140
Bouvier A,Vervoort JD and Patchett PJ.2008.The Lu-Hf and Sm-Nd isotopic composition of CHUR:Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets.Earth and Planetary Science Letters,273(1-2):48-57
Chen SY,Yang JS,Li Y and Xu XZ.2009.Ultramafic blocks in Sumdo region,Lhasa Block,eastern Tibet plateau:An ophiolite unit.Journal of Earth Science,20(2):332-347
Chen SY.2010.The development of Sumdo suture in the Lhasa Block,Tibet.Ph.D.Dissertation.Beijing:Chinese Academy of Geological Science,1-187 (in Chinese)
Chen XC,Hu RZ,Bi XW,Zhong H,Lan JB,Zhao CH and Zhu JJ.2015.Petrogenesis of metaluminous A-type granitoids in the Tengchong-Lianghe tin belt of southwestern China:Evidences from zircon U-Pb ages and Hf-O isotopes,and whole-rock Sr-Nd isotopes.Lithos,212-215:93-110
Chu NC,Taylor RN,Chavagnac V,Nesbitt RW,Boella RM,Milton JA,German CR,Bayon G and Burton K.2002.Hf isotope ratio analysis using multi-collector inductively coupled plasma mass spectrometry:An evaluation of isobaric interference corrections.Journal of Analytical Atomic Spectrometry,17(12):1567-1574
Chung SL,Liu DY,Ji JQ,Chu MF,Lee HY,Wen DJ,Lo CH,Lee TY,Qian Q and Zhang Q.2003.Adakites from continental collision zones:Melting of thickened lower crust beneath southern Tibet.Geology,31(11):1021-1024
Chung SL,Chu MF,Ji J,O’Reilly SY,Pearson NJ,Liu D,Lee TY and Lo CH.2009.The nature and timing of crustal thickening in southern Tibet:Geochemical and zircon Hf isotopic constraints from postcollisional adakites.Tectonophysics,477(1-2):36-48
Compston W,Williams IS,Kirschvink JL,Zichao Z and Guogan MA.1992.Zircon U-Pb ages for the Early Cambrian Time-Scale.Journal of the Geological Society,149(2):171-184
Feng Y,Wen ZH,Hou FH,Gao ZQ and Qi JH.2013.Tectonic evolution and paleocontinent reconstrucyion of Qinghai-Tibet Plateau and its adjacent since the Late Paleozoic.Marine Geology &Quaternary Geology,33(1):33- 44 (in Chinese with English abstract)
Gao YF,Hou ZQ and Wei RH.2003.Neogene porphyries from Gangdese:Petrological,geochemical characteristics and geodynamic significances.Acta Petrologica Sinica,19 (3):418- 428 (in Chinese with English abstract)
Gao YF,Hou ZQ,Kamber BS,Wei RH,Meng XJ and Zhao RS.2007.Adakite-like porphyries from the southern Tibetan continental collision zones:Evidence for slab melt metasomatism.Contributions to Mineralogy and Petrology,153(1):105-120
Gao YF,Yang ZS,Santosh M,Hou ZQ,Wei RH and Tian SH.2010.Adakitic rocks from slab melt-modified mantle sources in the continental collision zone of southern Tibet.Lithos,119(3-4):651-663
Griffin WL,Pearson NJ,Belousova E,Jackson SE,van Achterbergh E,O’Reilly SY and Shee SR.2000.The Hf isotope composition of cratonic mantle:LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites.Geochimica et Cosmochimica Acta,64(1):133-147
Griffin WL,Belousova EA,Shee SR,Pearson NJ and O’Reilly SY.2004.Archean crustal evolution in the northern Yilgarn Craton:UPb and Hf-isotope evidence from detrital zircons.Precambrian Research,131(3-4):231-282
Guo ZF,Wilson M and Liu JQ.2007.Post-collisional adakites in South Tibet:Products of partial melting of subduction-modified lower crust.Lithos,96(1-2):205-224
Hou ZQ,Qu XM,Huang W and Gao YF.2001.Gangdise porphyry copper metallogenic belt:The possible second“Yulong”copper belt.Geology in China,28(10):27-29 (in Chinese with English abstract)
Hou ZQ,Mo XX,Gao YF,Qu XM and Meng XJ.2003.Adakite,a possible host rock for porphyry copper deposits:Case studies of porphyry copper belts in Tibetan Plateau and in Northern Chile.Mineral Deposits,22 (1):1- 12 (in Chinese with English abstract)
Hou ZQ,Gao YF,Qu XM,Rui ZY and Mo XX.2004.Origin of adakitic intrusives generated during Mid-Miocene east-west extension in southern Tibet.Earth and Planetary Science Letters,220(1-2):139-155
Hou ZQ,Gao YF,Meng XJ,Qu XM and Huang W.2004.Genesis of adakitic porphyry and tectonic controls on the Gangdese Miocene porphyry copper belt in the Tibetan orogen.Acta Petrologica Sinica,20(2):239-248 (in Chinese with English abstract)
Hou ZQ,Mo XX,Yang ZM,Wang AJ,Pan GT,Qu XM and Nie FJ.2006.Metallogeneses in the collisional orogen of the Qinghai-Tibet Plateau:Tectonic setting,tempo-spatial distribution and ore deposit types.Geology in China,33(2):340- 351 (in Chinese with English abstract)
Hou ZQ,Yang ZM,Qu XM,Meng XJ,Li ZQ,Beaudoin G,Rui ZY,Gao YF and Zaw K.2009.The Miocene Gangdese porphyry copper belt generated during post-collisional extension in the Tibetan Orogen.Ore Geology Reviews,36(1-3):25-51
Hou ZQ,Zheng YC,Zeng LS,Gao LE,Huang KX,Li W,Li QY,Fu Q,Liang W and Sun QZ.2012.Eocene-Oligocene granitoids in southern Tibet:Constraints on crustal anatexis and tectonic evolution of the Himalayan orogen.Earth and Planetary Science Letters,349-350:38-52
Hou ZQ,Zheng YC,Yang ZM,Rui ZY,Zhao ZD,Jiang SH,Qu XM and Sun QZ.2013.Contribution of mantle components within juvenile lower-crust to collisional zone porphyry Cu systems in Tibet.Mineralium Deposita,48(2):173-192
Hu YB,Liu JQ,Ling,MX,Ding W,Liu Y,Robert EZ,Ma XF,Liu DY,Zhang CC,Sun SJ,Zhang LP,Wu K and Sun WD.2015.The formation of Qulong adakites and their relationship with porphyry copper deposit:Geochemical constraints.Lithos,220- 223:60-80
Ickert RB,Hiess J,Williams IS,Holden P,Ireland TR,Lanc P,Schram N,Foster JJ and Clement SW.2008.Determining high precision,in situ,oxygen isotope ratios with a SHRIMP II:Analyses of MPI-DING silicate-glass reference materials and zircon from contrasting granites.Chemical Geology,257(1-2):114-128
Kemp AI,Hawkesworth CJ,Foster GL,Paterson BA,Woodhead JD,Hergt JM,Gray CM and Whitehouse MJ.2007.Magmatic and crustal differentiation history of granitic rocks from Hf-O isotopes in zircon.Science,315(5814):980-983
Lee JKW,Williams IS and Ellis DJ.1997.Pb,U and Th diffusion in natural zircon.Nature,390(6656):159-162
Leng QF,Wang LQ,Ying LJ,Zheng WB,Luo MC,Chen W,Lin B and Wang YY.2012.LA-ICP-MS Zircon U-Pb dating of allgovite in the Bangpu molybdenum (copper)deposit in Tibet and its geological significance.Acta Geoscientia Sinica,33 (4):559- 568 (in Chinese with English abstract)
Li CY,Wang FY,Hao XL,Ding X,Zhang H,Ling MX,Zhou JB,Li YL,Fan WM and Sun WD.2012a.Formation of the world’s largest molybdenum metallogenic belt:A plate-tectonic perspective on the Qinling molybdenum deposits.International Geology Review,56(9):1093-1112
Li FQ,Liu W,Wang BD and Zhang SZ.2012.The continuation of the subduction of Paleo-Tethys Ocean within Lhasa block in Early-Middle Triassic:Evidence from volcanic rocks and HP metamorphic rocks.Acta Petrologica et Mineralogica,31(2):119- 132 (in Chinese with English abstract)
Li H,Ling MX,Li CY,Zhang H,Ding X,Yang XY,Fan WM,Li YL and Sun WD.2012b.A-type granite belts of two chemical subgroups in central eastern China:Indication of ridge subduction.Lithos,150:26-36
Li XH,Li WX,Wang XC,Li QL,Liu Y and Tang GQ.2009.Role of mantle-derived magma in genesis of Early Yanshanian granites in the Nanling Range, South China: In situ zircon Hf-O isotopic constraints.Science in China (Series D),52(9):1262-1278
Li XH,Li WX,Li QL,Wang XC,Liu Y and Yang YH.2010.Petrogenesis and tectonic significance of the~850Ma Gangbian alkaline complex in South China:Evidence from in situ zircon U-Pb dating,Hf-O isotopes and whole-rock geochemistry.Lithos,114(1-2):1-15
Li JX,Qin KZ,Li GM and Yang LK.2007.K-Ar and40Ar/39Ar age dating of Nimu porphyry copper orefield in Central Gangdese:Constrains on magmatic-hydrothermal evolution and metallogenetic tectonic setting.Acta Petrologica Sinica,23(5):953- 966 (in Chinese with English abstract)
Li JX,Qin KZ,Li GM,Xiao B,Chen L and Zhao JX.2011.Postcollisional ore-bearing adakitic porphyries from Gangdese porphyry copper belt,southern Tibet:Melting of thickened juvenile arc lower crust.Lithos,126(3-4):265-277
Li TD.2002.New progress in the geoscience study of the Qinghai-Tibet plateau.Geological Bulletin of China,21(7):370- 376 (in Chinese with English abstract)
Lin W,Liang HY,Zhang YQ and Xie YW.2004.Petrochemistry and SHRIMP U-Pb zircon age of the Chongjiang ore-bearing porphyry in the Gangdese porphyry copper belt.Geochimica,33(6):585-592(in Chinese with English abstract)
Liu Y, Liu HC and Li XH.1996.Simultaneous and precise determination of 40 trace elements in rock samples using ICP-MS.Geochimica,25(6):552-558 (in Chinese with English abstract)
Liu YJ,Cao LM,Li ZL,Wang HN,Chu TQ and Zhang JR.1984.Element Geochemistry.Beijing:Science Press,1- 548 (in Chinese)
Liu YS,Gao S,Hu ZC,Gao CG,Zong KQ and Wang DB.2010a.Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen:U-Pb dating,Hf isotopes and trace elements in zircons from mantle xenoliths.Journal of Petrology,51(1-2):537-571
Liu YS,Hu ZC,Zong KQ,Gao CG,Gao S,Xu JA and Chen HH.2010b.Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS.Chinese Science Bulletin,55(15):1535-1546
Ludwig KR.2000.User’s manual for isoplot 3.00:A geochronological toolkit for Microsoft excel.Berkeley Geochronology Center Special Publication
Luo MC,Wang LQ,Leng QF and Chen W.2011.Zircon Hf isotope and Ce4+/Ce3+ratio of the monzogranite porphyry and biotite monzonitic granite in Bangpu Mo(Cu)deposit,Tibet.Mineral Deposits,30(2):266-278 (in Chinese with English abstract)
Luo MC,Mao JW,Wang LW,Leng QF and Chen W.2012.Fluid inclusion evidence for magmatic-hydrothermal evolution in the Bangpu porphyry molybdenum-copper deposit, Tibet.Acta Geoscientia Sinica,33(4):471- 484 (in Chinese with English abstract)
Mcdonough WF and Sun SS.1995.The composition of the Earth.Chemical Geology,120(3-4):223-253
McManus J,Berelson WM,Severmann S,Poulson RL,Hammond DE,Klinkhammer GP and Holm C.2006.Molybdenum and uranium geochemistry in continental margin sediments:Paleoproxy potential.Geochimica et Cosmochimica Acta,70(18):4643-4662
Meng XJ,Hou ZQ,Gao YF,Huang W,Qu XM and Qu WJ.2003.Development of porphyry copper-molybdenum-lead-zinc ore forming system in East Gangdese belt,Tibet:Evidence from Re-Os age of molybdenite in Bangpu copper polymetallic deposit.Mineral Deposits,22(3):246-252 (in Chinese with English abstract)
Mustard R,Ulrich T,Kamenetsky VS and Mernagh T.2006.Gold and metal enrichment in natural granitic melts during fractional crystallization.Geology,34(2):85-88
Pan GT,Mo XX,Hou ZQ,Zhu DC,Wang LQ,Li GM,Zhao ZD,Geng QR and Liao ZL.2006.Spatial-temporal framework of the Gangdese Orogenic Belt and its evolution.Acta Petrologica Sinica,22(3):521-533 (in Chinese with English abstract)
Qu XM,Hou ZQ and Huang W.2001.Is Gangdese porphyry copper belt the second“Yulong”copper belt?Mineral Deposits,20(4):355-366 (in Chinese with English abstract)
Qu XM,Hou ZQ and Li YG.2004.Melt components derived from a subducted slab in late orogenic ore-bearing porphyries in the Gangdese copper belt,southern Tibetan Plateau.Lithos,74(3-4):131-148
Qu XM,Hou ZQ,Guo LJ and Xu WY.2004.Source compositions and crustal contaminations of adakitic ore-bearing porphyries in the Gangdese copper belt:Nd,Sr,Pb and O isotope constraints.Acta Geologica Sinica,78(6):813- 821 (in Chinese with English abstract)
Rimmer SM.2004.Geochemical paleoredox indicators in Devonian-Mississippian black shales,central Appalachian basin (USA).Chemical Geology,206(3-4):373-391
Robb L.2005.Introduction to Ore-forming Processes.Oxford,UK:Blackwell Publication,1-373
Rudnick RL and Gao S.2003.Composition of the continental crust.In:Heinrich DH and Turekian KKE (eds.).Treatise on Geochemistry.Oxford:Elsevier-Pergamon,1-64
Rui ZY,Hou ZQ,Qu XM,Zhang LS,Wang LS and Liu YL.2003.Metallogenetic epoch of Gangdese porphyry copper belt and uplift of Qinghai-Tibet Plateau.Mineral Deposits,22(3):217- 225 (in Chinese with English abstract)
Scott C,Lyons TW,Bekker A,Shen Y,Poulton SW,Chu X and Anbar AD.2008.Tracing the stepwise oxygenation of the Proterozoic ocean.Nature,452(7186):456-459
Sun SS and McDonough WF.1989.Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes.In:Saunders AD and Norry MJ (eds.).Magmatism in Oceanic Basins.Geological Society,London,Special Publications,42(1):313-345
Sun WD,Arculus RJ,Bennett VC,Eggins SM and Binns RA.2003a.Evidence for rhenium enrichment in the mantle wedge from submarine arc-like volcanic glasses (Papua New Guinea).Geology,31(10):845-848
Sun WD,Bennett VC,Eggins SM,Arculus RJ and Perfit MR.2003b.Rhenium systematics in submarine MORB and back-arc basin glasses:Laser ablation ICP-MS results.Chemical Geology,196(1-4):259-281
Sun WD,Arculus RJ,Kamenetsky VS and Binns RA.2004a.Release of gold-bearing fluids in convergent margin magmas prompted by magnetite crystallization.Nature,431(7011):975-978
Sun WD,Bennett VC and Kamenetsky VS.2004b.The mechanism of Re enrichment in arc magmas:Evidence from Lau Basin basaltic glasses and primitive melt inclusions.Earth and Planetary Science Letters,222(1):101-114
Sun WD,Liang HY,Ling MX,Zhan MZ,Ding X,Zhang H,Yang XY,Li YL,Ireland TR,Wei QR and Fan WM.2013.The link between reduced porphyry copper deposits and oxidized magmas.Geochimica et Cosmochimica Acta,103:263-275
Sun ZM,Jiang W,Pei JL and Li HB.2008.New Early Cretaceous paleomagnetic data from volcanic of the eastern Lhasa Block and its tectonic implications.Acta Petrologica Sinica,24(7):1621-1626(in Chinese with English abstract)
Sun ZM,Jiang W,Li HB,Pei JL and Zhu ZM.2010.New paleomagnetic results of Paleocene volcanic rocks from the Lhasa block:Tectonic implications for the collision of India and Asia.Tectonophysics,490(3-4):257-266
Tang JX,Dor J,Liu HF,Lang XH,Zhang JS,Zheng WB and Ying LJ.2012.Minerogenetic series of ore deposits in the east part of the Gangdise metallogenic belt.Acta Geoscientia Sinica,33(4):393-410 (in Chinese with English abstract)
Tang XD,Huang BC,Yang LK,Yi ZY,Qiao QQ and Chen LW.2013.Paleomagnetism and Ar-Ar geochronology of Cretaceous volcanic rocks in the middle Lhasa terrane,China and tectonic implications.Chinese Journal of Geophysics,56(1):136-149 (in Chinese with English abstract)
Tu XL,Zhang H,Deng WF,Ling MX,Liang HY,Liu Y and Sun WD.2011.Application of RESOlution in-situ laser ablation ICP-MS in trace element analyses.Geochimica,40(1):83-98 (in Chinese with English abstract)
Valley JW,Kinny PD,Schulze DJ and Spicuzza MJ.1998.Zircon megacrysts from kimberlite:Oxygen isotope variability among mantle melts.Contributions to Mineralogy and Petrology,133(1-2):1-11
Valley JW,Lackey JS,Cavosie AJ,Clechenko CC,Spicuzza MJ,Basei MAS,Bindeman IN,Ferreira VP,Sial AN,King EM,Peck WH,Sinha AK and Wei CS.2005.4.4 billion years of crustal maturation:Oxygen isotope ratios of magmatic zircon.Contributions to Mineralogy and Petrology,150(6):561-580
Wang LL,Mo XX,Li B,Dong GC and Zhao ZD.2006.Geochronology and geochemistry of the ore-bearing porphyry in Qulong Cu(Mo)ore deposit,Tibet.Acta Petrologica Sinica,22(4):1001-1008 (in Chinese with English abstract)
Wang LQ,Tang JX,Chen YC,Luo MC,Leng QF,Chen W and Wang H.2011.LA-ICP-MS zircon U-Pb dating of ore-bearing monzogranite porphyry in Bangpu molybdenum (copper)deposit,Tibet and its significance.Mineral Deposits,30(2):349-360 (in Chinese with English abstract)
Wang LQ,Luo MC,Yuan ZJ,Chen W,Leng QF and Zhang XQ.2012.Sulfur,Lead,Carbon and Oxygen isotope composition and source of ore-forming materials of the Bangpu Pb-Zn ore deposit in Tibet.Acta Geoscientia Sinica,33(4):435- 443 (in Chinese with English abstract)
Wang LQ,Tang JX,Cheng WB,Chen W,Zhang Z,Lin X,Luo MC and Yang C.2014.Origin of the ore-forming fluids and metals of the Bangpu porphyry Mo-Cu deposit of Tibet,China:Constraints from He-Ar,H-O,S and Pb isotopes.Journal of Asian Earth Sciences,103:276-287
Wang LQ,Tang JX,Chen W,Luo MC,Kang HR and Leng QF.2014.Mineralogical characteristics of skarn in the Bangpu Mo polymetallic deposit,Tibet,and their geological significance.Geology in China,41(2):562-576(in Chinese with English abstract)
Wang QH,Wang BS,Li JG,Yao P,Li Z,Zhou ZY,Cheng LJ and Liu HF.2002.Basic features and ore prospect evaluation of the Gangdise island arc,Tibet and its copper polymetallic ore belt.Geological Bulletin of China,21(1):35- 40 (in Chinese with English abstract)
Wang ZH,Liu YL,Liu HF,Guo LS,Zhang JS and Xu KF.2012.Geochronology and geochemistry of the Bangpu Mo-Cu porphyry ore deposit,Tibet.Ore Geology Reviews,46:95-105
Wen Q,Duo J,Wen CQ,Zhang XQ,Zhou X,Hou Y and Fei CG.2011.Dating of monzonitic granite porphyry in the Bangpu Mo-Cu deposit,Tibet.Journal of Mineralogy and Petrology,31(2):48-53 (in Chinese with English abstract)
Wu FY and Yang JH.2006.Zircon U-Pb and Hf isotopic constraints on the multiple components in granites.Geochimica et Cosmochimica Acta,70(18):A709
Wu YB and Zheng YF.2004.Genesis of zircon and its constraints on interpretation of U-Pb age.Chinese Science Bulletin,49(15):1554-1569
Xu WC,Zhang HF,Guo L and Yuan HL.2010.Miocene high Sr/Y magmatism,south Tibet:Product of partial melting of subducted Indian continental crust and its tectonic implication.Lithos,114(3-4):293-306
Xu XZ,Yang JS,Li TF,Chen SY,Ren YF,Li ZL and Shi YR.2007.SHRIMP U-Pb ages and inclusions of zircons from the Sumdo eclogite in the Lhasa block,Tibet,China.Geological Bulletin of China,26(10):1340-1355 (in Chinese with English abstract)
Xu ZQ,Yang JS,Li WC,Li HQ,Cai ZH,Yan Z and Ma CQ.2013.Paleo-Tethys system and accretionary orogen in the Tibet Plateau.Acta Petrologica Sinica,29(6):1847- 1860 (in Chinese with English abstract)
Yang JS,Xu ZQ,Geng QR,Li ZL,Xu XZ,Li TF,Ren YF,Li HQ,Cai ZH,Liang FH and Chen SY.2006.A possible new HP/UHP(?)metamorphic belt in China:Discovery of eclogite in the Lahsa Terrane,Tibet.Acta Geologica Sinica,80(12):1787-1792 (in Chinese with English abstract)
Yang JS,Xu ZQ,Li TF,Li HQ,Li ZL,Ren YF,Xu XZ and Chen SY.2007.Oceanic subduction-type eclogite in the Lhasa block,Tibet,China:Remains of the Paleo-Tethys ocean basin?Geological Bulletin of China,26(10):1277-1287 (in Chinese with English abstract)
Yang JS,Xu ZQ,Li ZL,Xua XZ,Li TF,Ren YF,Li HQ,Chen SY and Robinson PT.2009.Discovery of an eclogite belt in the Lhasa block,Tibet:A new border for Paleo-Tethys?Journal of Asian Earth Sciences,34(1):76-89
Yi ZY,Huang BC,Chen JS,Chen LW and Wang HL.2011.Paleomagnetism of Early Paleogene marine sediments in southern Tibet,China:Implications to onset of the India-Asia collision and size of Greater India.Earth and Planetary Science Letters,309(1-2):153-165
Zhang H,Sun WD,Yang XY,Liang HY,Wang BH,Wang RL and Wang YX.2011.Geochronology and metallogenesis of the Shapinggou giant porphyry molybdenum deposit in the Dabie orogenic belt.Acta Geologica Sinica,85(12):2039-2059(in Chinese with English abstract)
Zhang H,Li CY,Yang XY,Sun YL,Deng JH,Liang HY,Wang RL,Wang BH,Wang YX and Sun WD.2014.Shapinggou:The largest Climax-type porphyry Mo deposit in China.International Geology Review,56(3):313-331
Zhang QL,Qu XM,Xu WY,Hou ZQ and Chen WS.2003.Study of the fluid inclusions from Nanmu porphyry Cu-Mo deposit in Tibet.Acta Petrologica Sinica,19(2):251- 259 (in Chinese with English abstract)
Zhao XY,Yang ZS,Hou ZQ,Zheng YC,Liu YC,Tian SH,Fu Q and Fei F.2013.Petrogenesis of diabase porphyrite in Bangpu deposit of Tibet and its instructions to the regional tectonic and magmatic evolution.Acta Petrologica Sinica,29 (11):3767- 3778 (in Chinese with English abstract)
Zheng YC,Hou ZQ,Li QY,Sun QZ,Liang W,Fu Q,Li W and Huang KX.2012.Origin of Late Oligocene adakitic intrusives in the southeastern Lhasa terrane:Evidence from in situ zircon U-Pb dating,Hf-O isotopes,and whole-rock geochemistry.Lithos,148:296-311
Zheng YY,Xue YX,Cheng LJ,Fan ZH and Gao SB.2004.Finding,characteristics and significances of Qulong superlarge porphyry copper (molybdenum)deposit,Tibet.Earth Science,29(1):103-108(in Chinese with English abstract)
Zhou X,Wen CQ,Fei CG,Cao SY,Wu PY and Huo Y.2010a.Geochemical characteristics of monzonite granite porphyry in Bangpu porphyry Mo deposit,Tibet,and its tectonic significance.Journal of Mineralogy and Petrology,30(4):48-54 (in Chinese with English abstract)
Zhou X,Wen CQ,Huo Y,Fei GC and Wu PY.2010b.Characteristics of ore-forming fluid of Bangpu molybdenum-copper polymetallic deposit,Maizhokunggar area,Tibet,China.Geological Bulletin of China,29(7):1039-1048 (in Chinese with English abstract)
Zhou X,Wen CQ,Wen Q,Wu PY,Cao SY,Fei CG,Huo Y and Zhou Y.2010c.Zircon U-Pb SHRIMP dating of the monzonite graniteporphyry from the Bangpu large porphyry molybdenum-copper deposits,Tibet, and its geological significance.Bulletin of Mineralogy,Petrology and Geochemistry,29(4):373- 379 (in Chinese with English abstract)
Zhou X,Wen CQ,Zhang XQ,Cao SY,Wu PY,Zhou Y and Fei GC.2010d.Rb-Sr isochron age dating of the Bangpu large-scale Mo-Cu polymetallic deposit,Tibet and its geological significance.Geological Journal of China Universities,16(4):448-456(in Chinese with English abstract)
Zhou X.2012.Genisis study of Mo-Cu polymetallic deposit from the Bangpu,Tibet.Ph.D.Dissertation.Chengdu:Chengdu University of Technology (in Chinese with English summary)
Zhu DC,Pan GT,Mo XX,Wang LQ,Liao ZL,Zhao ZD,Dong GC and Zhou CY.2006.Late Jurassic-Early Cretaceous geodynamic setting in middle-northern Gangdese;New insights from volcanic rocks.Acta Petrologica Sinica,22 (3):534- 546 (in Chinese with English abstract)
Zhu DC,Zhao ZD,Niu YL,Wang Q,Dilek Y,Dong GC and Mo XX.2012.Origin and Paleozoic tectonic evolution of the Lhasa Terrane.Geological Journal of China Universities,18(1):1-15 (in Chinese with English abstract)
Zhu DC,Zhao ZD,Niu YL,Dilek Y,Hou ZQ and Mo XX.2013.The origin and pre-Cenozoic evolution of the Tibetan Plateau.Gondwana Research,23(4):1429-1454
附中文参考文献
陈松永.2010.西藏拉萨地块中古特提斯缝合带的厘定.博士学位论文.北京:中国地质科学院,1-187
冯岩,温珍河,侯方辉,高志清,祁江豪.2013.青藏高原及其邻区晚古生代以来构造演化与古大陆再造.海洋地质与第四纪地质,33(1):33-44
高永丰,侯增谦,魏瑞华.2003.冈底斯晚第三纪斑岩的岩石学、地球化学及其地球动力学意义.岩石学报,19(3):418-428
侯增谦,曲晓明,黄卫,高永丰.2001.冈底斯斑岩铜矿成矿带有望成为西藏第二条“玉龙”铜矿带.中国地质,28(10):27-29
侯增谦,莫宣学,高永丰,曲晓明,孟祥金.2003.埃达克岩:斑岩铜矿的一种可能的重要含矿母岩(以西藏和智利斑岩铜矿为例).矿床地质,22(1):1-12
侯增谦,高永丰,孟祥金,曲晓明,黄卫.2004.西藏冈底斯中新世斑岩铜矿带:埃达克质斑岩成因与构造控制.岩石学报,20(2):239-248
侯增谦,莫宣学,杨志明,王安建,潘桂棠,曲晓明,聂凤军.2006.青藏高原碰撞造山带成矿作用:构造背景、时空分布和主要类型.中国地质,33(2):340-351
冷秋锋,王立强,应立娟,郑文宝,罗茂澄,陈伟,林彬,王艺云.2012.西藏邦铺钼(铜)矿床辉绿玢岩脉体LA-ICP-MS 锆石UPb 定年及其地质意义.地球学报,33(4):559-568
李奋其,刘伟,王保弟,张士贞.2012.拉萨地块内部古特提斯洋早中三叠世仍在俯冲——来自火山岩和高压变质岩的证据.岩石矿物学杂志,31(2):119-132
李金祥,秦克章,李光明,杨列坤.2007.冈底斯中段尼木斑岩铜矿田的K-Ar、40Ar/39Ar 年龄:对岩浆-热液系统演化和成矿构造背景的制约.岩石学报,23(5):953-966
李廷栋.2002.青藏高原地质科学研究的新进展.地质通报,21(7):370-376
林武,梁华英,张玉泉,谢玉玲.2004.冈底斯铜矿带冲江含矿斑岩的岩石化学及锆石SHRIMP 年龄特征.地球化学,33(6):585-592
刘颖,刘海臣,李献华.1996.用ICP-MS 准确测定岩石样品中的40余种微量元素.地球化学,25(6):552-558
刘英俊,曹励明,李兆麟,王鹤年,储同庆,张景荣.1984.元素地球化学.北京:科学出版社,1-548
罗茂澄,王立强,冷秋锋,陈伟.2011.邦铺钼(铜)矿床二长花岗斑岩、黑云二长花岗岩锆石Hf 同位素和Ce4+/Ce3+比值.矿床地质,30(2):266-278
罗茂澄,毛景文,王立强,冷秋锋,陈伟.2012.西藏邦铺斑岩钼铜矿床岩浆-热液流体演化:流体包裹体研究.地球学报,33(4):471-484
孟祥金,侯增谦,高永丰,黄卫,曲晓明,屈文俊.2003.西藏冈底斯带东段斑岩铜钼铅锌成矿系统的发育时限:帮浦铜多金属矿床辉钼矿Re-Os 年龄证据.矿床地质,22(3):246-252
潘桂棠,莫宣学,侯增谦,朱弟成,王立全,李光明,赵志丹,耿全如,廖忠礼.2006.冈底斯造山带的时空结构及演化.岩石学报,22(3):521-533
曲晓明,侯增谦,黄卫.2001.冈底斯斑岩铜矿成矿带:西藏第二条玉龙铜矿带?矿床地质,20(4):355-366
曲晓明,侯增谦,国连杰,徐文艺.2004.冈底斯铜矿带埃达克质含矿斑岩的源区组成与地壳混染:Nd、Sr、Pb、O 同位素约束.地质学报,78(6):813-821
芮宗瑶,侯增谦,曲晓明,张立生,王龙生,刘玉琳.2003.冈底斯斑岩铜矿成矿时代及青藏高原隆升.矿床地质,22(3):217-225
孙知明,江万,裴军令,李海兵.2008.青藏高原拉萨地块早白垩纪火山岩古地磁结果及其构造意义.岩石学报,24(7):1621-1626
唐菊兴,多吉,刘鸿飞,郎兴海,张金树,郑文宝,应立娟.2012.冈底斯成矿带东段矿床成矿系列及找矿突破的关键问题研究.地球学报,33(4):393-410
唐祥德,黄宝春,杨列坤,易治宇,乔庆庆,陈力为.2013.拉萨地块中部晚白垩世火山岩Ar-Ar 年代学和古地磁研究结果及其构造意义.地球物理学报,56(1):136-149
涂湘林,张红,邓文峰,凌明星,梁华英,刘颖,孙卫东.2011.RESOlution 激光剥蚀系统在微量元素原位微区分析中的应用.地球化学,40(1):83-98
王亮亮,莫宣学,李冰,董国臣,赵志丹.2006.西藏驱龙斑岩铜矿含矿斑岩的年代学与地球化学.岩石学报,22(4):1001-1008
王立强,唐菊兴,陈毓川,罗茂澄,冷秋锋,陈伟,王焕.2011.西藏邦铺钼(铜)矿床含矿二长花岗斑岩LA-ICP-MS 锆石U-Pb 定年及地质意义.矿床地质,30(2):349-360
王立强,罗茂澄,袁志洁,陈伟,冷秋锋,张学全.2012.西藏邦铺铅锌矿床S、Pb、C、O 同位素组成及成矿物质来源研究.地球学报,33(4):435-443
王立强,唐菊兴,陈伟,罗茂澄,康浩然,冷秋锋.2014.西藏邦铺钼多金属矿床矽卡岩矿物学特征及其地质意义.中国地质,41(2):562-576
王全海,王保生,李金高,姚鹏,李志,周祖翼,程力军,刘鸿飞.2002.西藏冈底斯岛弧及其铜多金属矿带的基本特征与远景评估.地质通报,21(1):35-40
温泉,多吉,温春齐,张学全,周雄,霍艳,费光春.2011.西藏邦铺钼铜矿区花岗斑岩成岩年龄研究.矿物岩石,31(2):48-53
徐向珍,杨经绥,李天福,陈松永,任玉峰,李兆丽,石玉若.2007.青藏高原拉萨地块松多榴辉岩的锆石SHRIMP U-Pb 年龄及锆石中的包裹体.地质通报,26(10):1340-1355
许志琴,杨经绥,李文昌,李化启,蔡志慧,闫臻,马昌前.2013.青藏高原中的古特提斯体制与增生造山作用.岩石学报,29(6):1847-1860
杨经绥,许志琴,耿全如,李兆丽,徐向珍,李天福,任玉峰,李化启,蔡志慧,梁凤华,陈松永.2006.中国境内可能存在一条新的高压/超高压(?)变质带——青藏高原拉萨地体中发现榴辉岩带.地质学报,80(12):1787-1792
杨经绥,许志琴,李天福,李化启,李兆丽,任玉峰,徐向珍,陈松永.2007.青藏高原拉萨地块中的大洋俯冲型榴辉岩:古特提斯洋盆的残留?地质通报,26(10):1277-1287
张红,孙卫东,杨晓勇,梁华英,王波华,王瑞龙,王玉贤.2011.大别造山带沙坪沟特大型斑岩钼矿床年代学及成矿机理研究.地质学报,85(12):2039-2059
张绮玲,曲晓明,徐文艺,侯增谦,陈伟十.2003.西藏南木斑岩铜钼矿床的流体包裹体研究.岩石学报,19(2):251-259
赵晓燕,杨竹森,侯增谦,郑远川,刘英超,田世洪,付强,费凡.2013.西藏邦铺矿区辉绿玢岩成因及对区域构造岩浆演化的指示.岩石学报,29(11):3767-3778
郑有业,薛迎喜,程力军,樊子珲,高顺宝.2004.西藏驱龙超大型斑岩铜(钼)矿床:发现、特征及意义.地球科学,29(1):103-108
周雄,温春齐,费光春,曹盛远,吴鹏宇,霍艳.2010a.西藏邦铺斑岩型钼矿床二长花岗斑岩地球化学特征及构造意义.矿物岩石,30(4):48-54
周雄,温春齐,霍艳,费光春,吴鹏宇.2010b.西藏墨竹工卡地区邦铺钼铜多金属矿床成矿流体的特征.地质通报,29(7):1039-1048
周雄,温春齐,温泉,吴鹏宇,曹盛远,费光春,霍艳,周玉.2010c.西藏邦铺大型斑岩钼-铜矿床二长花岗斑岩锆石SHRIMP 定年及其地质意义.矿物岩石地球化学通报,29(4):373-379
周雄,温春齐,张学全,曹盛远,吴鹏宇,周玉,费光春.2010d.西藏邦铺大型钼铜多金属矿床Rb-Sr 等时线年龄及地质意义.高校地质学报,16(4):448-456
周雄.2012.西藏邦铺钼铜多金属矿床成因研究.博士学位论文.成都:成都理工大学
朱弟成,潘桂棠,莫宣学,王立全,廖忠礼,赵志丹,董国臣,周长勇.2006.冈底斯中北部晚侏罗世-早白垩世地球动力学环境:火山岩约束.岩石学报,22(3):534-546
朱弟成,赵志丹,牛耀龄,王青,Yildirim D,董国臣,莫宣学.2012.拉萨地体的起源和古生代构造演化.高校地质学报,18(1):1-15