不同种植地点超级杂交稻产量及氮磷钾吸收积累特点

2015-07-05 11:52夏冰赵杨魏颖娟黄敏敖和军邹应斌
关键词:钾素磷素吸收量

夏冰, 赵杨, 魏颖娟, 黄敏, 敖和军, 邹应斌

(湖南农业大学农学院,长沙 410128)

不同种植地点超级杂交稻产量及氮磷钾吸收积累特点

夏冰, 赵杨, 魏颖娟, 黄敏, 敖和军, 邹应斌*

(湖南农业大学农学院,长沙 410128)

为探明不同生态条件下超级杂交稻产量与氮、磷、钾养分的吸收积累特点及其基因型差异。以两优培九、中浙优1号等8个代表性的超级杂交稻品种为材料,普通杂交稻汕优63和超级常规稻胜泰1号为对照,于2007—2009年在湖南省桂东、长沙、南县进行了大田栽培试验。结果表明不同基因型超级杂交稻产量与氮磷钾养分吸收量的地点间、年度间、品种间差异显著。不同超级杂交稻品种产量3年3地点平均为9.32~10.25 t/hm2,比汕优63增产5.1%~15.6%,比胜泰1号增产8.9%~19.7%;氮、磷、钾养分需要量分别为18.48~19.85 kg,3.75~4.63 kg 和15.90~17.40 kg;氮、磷、钾养分吸收量分别为177.69~189.09 kg/hm2,36.94~39.80 kg/hm2和153.38~165.39 kg/hm2,其中稻谷中氮素、磷素分别为61.2%~65.3%和67.6%~74.4%,稻草中钾素为86.9%~89.6%;氮素吸收率在分蘖中期约为20%,穗分化期25%~30%,抽穗期30%~40%,成熟期约为20%;磷素分别约15%,20%~30%,40%~45%,10%~20%;钾素分别为15%~20%,25%~35%,30%~40%,15%~20%。可见,超级杂交稻具有显著的增产优势,养分需要量低于对照品种,说明超级杂交稻有利于实现高产与养分高效利用相协调。

超级稻; 产量; 氮磷钾养分; 地点

水稻的生长发育和产量与土壤氮、磷、钾等养分供应能力及施肥有关,尤其与氮肥用量及施用时间关系密切[1-20]。已有研究[1-10]表明不同基因型水稻氮素积累量和利用效率存在显著差异,不仅在籼亚种与粳亚种间、常规稻与杂交稻间差异显著,而且在相同亚种不同品种间也表现出显著差异,但其差异变化范围不完全一致,既与氮肥用量、土壤背景氮等栽培环境条件有关[7-10],也与生物产量、叶面积指数、株高、籽粒产量及其产量构成等农艺性状有关[9-11]。水稻成熟期氮素积累量大的品种,通常其单位面积穗数、库容量、叶面积系数、生物产量增加,但其每穗颖花数、经济系数、结实率和千粒质量却会降低[10-15]。水稻氮素利用效率的基因型差异显著,已引起水稻育种学家及栽培专家的共同关注,具有高氮素利用率及高吸收率的品种[11-16]以及反映水稻氮素高效利用的农艺性状指标也相应地被提出[15-17]。超级稻氮、磷、钾养分的吸收能力强且总吸收量大,同时超级粳稻比籼稻品种的氮素需要量高17.5%[21],但由于超级稻的收获指数和籽粒产量高,按单位籽粒产量的氮、磷、钾养分需要量却并不增加[18-20]。唐启源等[22]研究发现后期施氮能明显增加超级稻两优培九光合产物的积累量。胡泓等[23]研究表明钾肥可促进超级杂交水稻氮磷养分从茎叶部位向穗部输送,增加产量。Chen等[24]研究发现在不施氮肥或低氮肥条件下,超级稻与普通稻品种产量没有显著差异,但在高氮肥条件下,超级稻产量和氮肥农学利用率显著高于普通稻。陈露等[25]认为超级稻品种在高氮水平下具有更高的产量。但是,超级杂交稻高产是否与氮、磷、钾养分高效利用相协调还不明确。本研究试图在前人研究的基础上,研究不同超级杂交稻氮磷钾养分吸收积累规律及其产量表现的基因型差异、地点间和年度间差异,旨在为超级杂交稻的高产栽培,为筛选具有高氮素利用率和高吸收率的水稻品种提供理论依据。

1 材料与方法

1.1 试验材料

试验材料为农业部认定的超级杂交稻品种D优527(DY-527)、Ⅱ优084(EY-084)、Ⅱ优航1号(EYH-1)、两优培九(LYPJ)、内两优6号(NLY-6)、Y两优1号(YLY-1)、准两优527(ZLY-527),中浙优1号(ZZY-1)、对照超级常规稻品种胜泰1号(STai-1)和普通杂交稻品种汕优63(SY-63)。种子由中国水稻研究所、国家杂交水稻工程研究中心等育种单位提供。

1.2 试验设计

试验于2007—2009年在湖南省桂东县寨前乡水湾村(北纬 25°08′,东经113°55′,海拔724 m)、南县南洲镇北洋村(北纬29°20′,东经112°25′,海拔32 m)和湖南农业大学水稻试验基地(北纬28°12′,东经113°04′,海拔53 m)大田栽培条件下进行,各试验地点的品种和方法相同。田间采用随机区组排列,3次重复,小区面积25 m2,各试验地点肥料用量相同,即施尿素375 kg/hm2,过磷酸钙750 kg/hm2,氯化钾210 kg/hm2。其中:尿素分基肥(50%)、分蘖肥(20%)、穗肥(30%)3次施用;钾肥分基肥和穗肥2次施用;磷肥作基肥于插秧前1次施用。各试验地点稻田土壤肥力水平中等偏上(表1),排灌方便,田间栽培管理一致。桂东点于4月15至20日播种,长沙点和南县点于5月15至20日播种,湿润育秧,播种量15 g/m2,秧龄25 d。栽插密度23.33 cm×23.33 cm,每穴栽插2本苗,杂交稻和常规稻相同。在插秧后浅水灌溉,当多数品种达到够苗期时开始晒田,晒田15 d后保持浅水灌溉到抽穗期,抽穗后至收割前7 d,采用间歇灌溉;均按照高产栽培要求严格控制病害和虫害,不施用除草剂,采用人工中耕除草。

表1 不同试验地点稻田土壤有机质及养分含量

1.3 试验测定的内容与方法

于2007年成熟期,2008—2009年分蘖中期(移栽后20 d)、穗分化期、抽穗期、成熟期取样测定干物质量。成熟期沿小区对角线取植株10穴(不包括边3行),其他时期每小区取代表性植株6穴。取样时连根拔起,用自来水冲洗干净,剪除根系,计数每穴株数或穗数。分蘖中期和穗分化期样品分为茎、叶2部分;抽穗期样品分为茎、叶、穗3部分;成熟期样品手工脱粒后,稻谷用清水漂洗,分为实粒(下沉)和空秕粒(上浮),样品分为稻草、实粒和空秕粒3部分。将全部样品在105 ℃恒温条件下杀青20 min,然后在80 ℃恒温条件下,烘干至恒重,冷却后称量。

产量构成因子包括有效穗数、每穗粒数、结实率和千粒质量。在每个小区的边3行以内,调查每穴的有效穗数,连续调查30穴,按栽插密度计算有效穗数。每个小区从成熟期实粒样品中称取30 g样品3份计数,空秕粒全部计数,计算所取样品的每穗总粒数、结实率(%)和千粒质量(g,烘干质量)。在每个小区的边3行以内,连续收割125穴脱粒,晒干后称量,同时取样500 g,在80 ℃恒温条件下烘干至恒重,按照13.5%标准含水量计算稻谷质量,再按照栽插密度计算各处理的稻谷产量。

将全部样品粉碎消煮后测定氮磷钾含量。其中,氮含量采用法国Alliance全自动流动注射仪(型号:Fortuna)测定;磷含量测定采用钼蓝比色法;钾含量测定采用火焰光度计(型号:FP640)。氮磷钾养分吸收有关指标计算方法为

氮磷钾吸收量/(kg/hm2)=植株氮磷钾含量×单位面积植株干物质量;

氮磷钾收获指数=籽粒氮磷钾吸收量/植株氮磷钾吸收量;

氮磷钾需要量/(kg/1 000 kg)=单位面积植株氮磷钾吸收量/收割的稻谷产量.

1.4 数据统计分析

全部数据结果用Excel软件和美国统计分析软件Statistix 8.0分析处理。

2 结果与分析

2.1 产量及其构成

不同基因型超级杂交稻品种稻谷产量、产量构成、干物质量均存在显著的地点间差异和年度间差异(表2)。年度间稻谷产量以2009年最高,3地点平均达到10.1 t/hm2,其原因是干物质量大、有效穗数多和颖花数多(有效穗数×每穗粒数)。地点间以桂东点产量最高,其原因是干物质量大、有效穗数多、颖花数多、结实率高。表2还表明不同超杂交稻品种间产量差异显著,其中以两优培九产量最高,准两优527产量次之。其高产的原因前者是单位面积颖花数多,后者是千粒质量大、结实率高。超级杂交稻品种平均产量达到9.71 t/hm2,比普通杂交稻品种汕优63增产9.5%,增幅为5.1%~15.6%,比常规稻品种胜泰1号增产13.5%,增幅为8.9%~19.7%。

2.2 氮、磷、钾养分吸收量及其在稻草和稻谷中的分配

不同基因型超级杂交稻地上部全株氮素吸收量差异显著(表3),其中以准两优527最高,其次为中浙优1号,两优培九和内两优1号,显著高于其余4个超级杂交稻品种及对照品种汕优63和胜泰1号。不同基因型超级杂交稻稻草氮素积累量差异不大,然而实粒氮素积累量存在显著差异。表3还表明稻草、实粒、空秕粒、全株的氮素积累量均存在明显的地点间和年度间差异,其中地点间以桂东点植株氮素积累量最高,3年平均为214.9 kg/hm2,年度间以2009年最高,3地点平均为206.30 kg/hm2。从氮素在器官中的分配来看,实粒平均占62.56%(61.2%~65.3%),稻草平均占32.8%(31.8%~33.6%),空秕粒平均占4.6%(2.8%~5.5%)。

表4是超级杂交稻地上部植株磷素吸收量及其在稻草和实粒中的分配。从表4可看出,不同基因型超级杂交稻地上部全株磷素吸收量差异显著,Ⅱ优航1号全株磷吸收显著高于对照品种汕优63和胜泰1号;其次为两优培九、D优527,显著高于胜泰1号,但与其他超级杂交稻品种差异不显著。表4还表明,不同超级杂交稻稻草、实粒磷素积累量均存在显著的基因型差异,地点间以桂东点植株磷素积累量最高,3年平均为44.56 kg/hm2,年度间以2008年最高,3地点平均为43.91 kg/hm2。从磷素在器官中的分配来看,实粒平均占71.0%(67.6%~74.4%),稻草平均占24.3%(21.7%~27.4%),空秕粒平均占4.7%(2.8%~5.5%)。

表2 不同超级稻品种产量及其构成的地点间差异和年度间差异

同列数列后不同小写字母表示同一项目不同处理间在P<0.05水平下差异有统计学意义.

Values within a column followed by different lowercase letters indicate the significant difference of the same item among different treatment groups at the 0.05 probability level.

表3 超级杂交稻地上部植株氮素吸收量及其分配

同列数列后不同小写字母表示同一项目不同处理间在P<0.05水平下差异有统计学意义.

Values within a column followed by different lowercase letters indicate the significant difference of the same item among different treatment groups at the 0.05 probability level.

表4 超级杂交稻地上部植株磷素吸收量及其分配

同列数列后不同小写字母表示同一项目不同处理间在P<0.05水平下差异有统计学意义.

Values within a column followed by different lowercase letters indicate the significant difference of the same item among different treatment groups at the 0.05 probability level.

表5是超级杂交稻地上部植株钾素吸收量及其在稻草和实粒中的分配。从表5可看出,不同超级杂交稻地上部全株钾素吸收量存在显著的基因型差异,准两优527最高, 其次为两优培九、D优527,汕优63和Ⅱ优航1号,显著高于胜泰1号。不同基因型超级杂交稻的稻草、实粒钾素积累量也均存在显著的基因型差异,其中实粒钾素积累量以中浙优1号最高,以汕优63和胜泰1号最低。表5还表明超级杂交稻的稻草、实粒、全株钾素积累量均存在显著的地点间和年度间差异,其中地点间以桂东点植株钾素积累量最高,年度间以2009年最高。从钾素在器官中的分配来看,稻草平均占87.2%(85.8%~88.6%),实粒平均占11.6%(10.4%~13.1%),空秕粒平均占1.2%(0.7%~1.5%)。

表5 超级杂交稻地上部植株钾素吸收量及其分配

同列数列后不同小写字母表示同一项目不同处理间在P<0.05水平下差异有统计学意义.

Values within a column followed by different lowercase letters indicate the significant difference of the same item among different treatment groups at the 0.05 probability level.

2.3 氮、磷、钾养分需要量

表6表明超级杂交稻氮素需要量为18.48~19.85 kg,不同基因型品种间差异显著,但都显著低于汕优63(20.52 kg)和胜泰1号(20.68 kg)。超级杂交稻磷素需要量为3.75~4.63 kg/hm2,品种间差异显著,除Ⅱ优航1号外,其他品种与对照品种汕优63 (4.43 kg)和胜泰1号(4.36 kg)没有显著差异。超级杂交稻钾素需要量为15.90~17.40 kg/hm2,品种间差异显著,均显著低于汕优63(18.08 kg),与对照胜泰1号17.09 kg差异不显著。表6还表明超级稻氮素、磷、钾的需要量存在地点间和年度间差异,其中地点间均以长沙点最高,这可能与长沙点的收割产量低和收获指数不高有关,因为氮、磷、钾养分的吸收量包括实粒和稻草2部分的积累量,收获指数低于50%,说明稻草积累的养分质量分数大,养分需要量高。

表6 超级稻每生产1 000 kg稻谷植株的氮、磷、钾养分需要量

同列数列后不同小写字母表示同一项目不同处理间在P<0.05水平下差异有统计学意义.

Values within a column followed by different lowercase letters indicate the significant difference of the same item among different treatment groups at the 0.05 probability level.

2.4 氮、磷、钾养分吸收积累过程

从表7可以看出,超级杂交稻不同生育时期氮素吸收量在地点间和年度间差异显著,但品种间除抽穗前以ZLY-527显著高于EY-084和EYH-1外,其他各时期品种间差异不显著。从表7还可以看出,从移栽期到分蘖中期,氮素吸收率2008年和2009年分别为25.4%和16.0%,差异显著;不同地点以桂东最高(23.7%),显著高于长沙点(18.6%)和南县点(19.8%);品种间为20.1%~21.4%,差异不显著。从分蘖中期到幼穗分化期,氮素吸收率2年分别为19.3%和34.4%,差异显著;地点间为25.5%~27.7%,差异不显著;品种间为23.7%~32.2%,差异显著。从穗分化期到抽穗期,氮素吸收率2年分别为30.8%和35.9%,差异显著;地点间为31.7%~36.1%,差异不显著;品种间为29.6%~37.7%,差异不显著。从抽穗期到成熟期,氮素吸收率2年分别为26.3%和14.2%,差异显著;地点间为17.8%~22.9%,差异显著;品种间为17.4%~22.8%,差异不显著。另外,除了成熟期ZLY-527氮素吸收量显著高于常规稻胜泰1号外,超级杂交稻品种不同生育时期氮素吸收量及吸收率与对照品种的差异不显著。

表8是不同生育时期的磷素吸收量及占总吸收量的百分率。超级杂交稻不同生育时期的磷素吸收积累量和吸收率年度间差异显著,但地点间吸收率在生育中期差异不显著。表8还表明,超级杂交稻不同生育时期磷素吸收率的品种间差异不一致,从移栽期到幼穗分化期、从抽穗期到成熟期品种间差异显著;但从穗分化期到抽穗期差异不显著。另外,与汕优63和胜泰1号比较,超级杂交稻品种不同生育时期磷素吸收量及吸收率的差异不显著。

表9表明超级杂交稻不同生育时期钾素吸收量和吸收率年度间差异显著,地点间除分蘖中期的钾素吸收量和分蘖中期至穗分化期的钾素吸收率差异不显著外,其他各生育时期的钾素吸收量和吸收率差异均显著。不同超级杂交稻品种生长前期,即从移栽期到分蘖中期,或者从分蘖中期到幼穗分化期,钾素吸收率品种间差异均显著;在生长中、后期,即从穗分化期到抽穗期,或从抽穗期到成熟期,钾素吸收率品种间差异不显著。另外,与汕优63和胜泰1号比较,超级杂交稻品种不同生育时期的钾素吸收量和吸收率的差异不显著。

表7 不同生育时期超级稻氮素吸收量及其占总吸收量的百分率

MT:分蘖中期(移栽后20 d);PI:幼穗分化始期;HD:抽穗期;MA:成熟期;YT:移栽期。同列数列后不同小写字母表示同一项目不同处理间在P<0.05水平下差异有统计学意义.

MT: Middle tillering stage (20 d after transplanting); PI: Young panicle differentiation stage; HD: Heading stage; MA: Maturity stage; YT: Transplanting stage. Values within a column followed by different lowercase letters indicate the significant difference of the same item among different treatment groups at the 0.05 probability level.

表8 不同生育时期超级稻磷素吸收量及其占总吸收量的百分率

MT:分蘖中期(移栽后20 d);PI:幼穗分化始期;HD:抽穗期;MA:成熟期;YT:移栽期.同列数列后不同小写字母表示同一项目不同处理间在P<0.05水平下差异有统计学意义.

MT: Middle tillering stage (20 d after transplanting); PI: Young panicle differentiation stage; HD: Heading stage; MA: Maturity stage; YT: Transplanting stage. Values within a column followed by different lowercase letters indicate the significant difference of the same item among different treatment groups at the 0.05 probability level.

表9 不同生育时期超级稻钾素吸收量及其占总吸收量的百分率

MT:分蘖中期(移栽后20 d);PI:幼穗分化始期;HD:抽穗期;MA:成熟期;YT:移栽期。同列数列后不同小写字母表示同一项目不同处理间在P<0.05水平下差异有统计学意义.

MT: Middle tillering stage (20 d after transplanting); PI: Young panicle differentiation stage; HD: Heading stage; MA: Maturity stage; YT: Transplanting stage. Values within a column followed by different lowercase letters indicate the significant difference of the same item among different treatment groups at the 0.05 probability level.

3 讨论

超级杂交稻生物产量和稻谷产量高,氮、磷、钾养分吸收量高于普通杂交稻和常规稻[17-22]。本研究表明超级杂交稻地上部全株成熟期氮素、磷素、钾素的吸收量品种间差异显著,不同品种3年3 地点平均,品种间氮素变化幅度为177.69~189.09 kg/hm2,磷素为36.94~39.80 kg/hm2,钾素为153.38~165.39 kg/hm2,这与前人研究结果一致[1-20]。本研究还发现,氮素和磷素主要集中在稻谷中,分别为61.2%~65.3%和67.6%~74.4%;而钾素主要集中在稻草中,达到86.9%~89.6%。可见,在稻草还田条件下,水稻所吸收的钾素约85%以上可归还给土壤,有利于水稻生产的可持续发展。

超级杂交稻高产与氮、磷、钾养分高效利用协调。与普通杂交稻及常规稻比较,超级杂交稻的产量增加,但氮、磷、钾养分需要量没有增加[18-20]。本研究证明不同基因型超级杂交稻氮、磷、钾养分需要量品种间差异显著,其中氮素为18.48~19.85 kg,磷素为3.75~4.63 kg,钾素为15.90~17.40 kg。与对照品种比较,超级杂交稻比汕优63增产5.1%~15.6%,比胜泰1号增产8.9%~19.7%,氮素需要量显著低于胜泰1号(20.68 kg/hm2),钾素需要量显著低于汕优63(18.26 kg/hm2),这与前人有关籼型超级稻品种的研究结果一致[18-20],但与前人以粳稻品种为材料的研究结果不同[26]。由于本研究没有设置不施氮肥、磷肥、钾肥的处理,有关超级杂交稻氮、磷、钾养分利用率的品种间差异还有待进一步研究。

不同生育时期的氮、磷、钾养分吸收率,即氮、磷、钾养分吸收量占成熟期吸收量的比例协调与否,与超级杂交稻产量形成关系密切[21-23]。本研究证明不同超级杂交稻品种氮素吸收率在分蘖中期约20%,穗分化期25%~30%,抽穗期30%~40%,成熟期约20%;磷素分别约15%,20%~30%,40%~45%,10%~20%;钾素分别为15%~20%,25%~35%,30%~40%,15%~20%。可见,超级杂交稻抽穗后仍具有较强的氮、磷、钾等养分吸收能力[17-22]。值得注意的是不同超级杂交稻品种与对照品种汕优63和胜泰1号的差异因品种而异,即有的品种与对照差异显著,有的品种与对照差异不显著。

4 结论

超级杂交稻单位面积有效穗数和每穗粒数等产量构成因子间协调,3年3地点平均产量显著高于对照品种(汕优63和胜泰1号),不同生育时期氮、磷、钾养分吸收量与对照品种差异不显著,但养分需要量低于对照品种,说明超级杂交稻有利于实现高产与养分高效利用相协调。

[1] Inthapanya P, Sihavong P, Sihathep V,etal. Genotype differences in nutrient uptake and utilization for grain yield production of rainfed lowland rice under fertilized and non-fertilized conditions.FieldCropsResearch, 2000,65(1):57-68.

[2] 单玉华,王余龙,山本由德,等.不同类型水稻在氮素吸收及利用上的差异.扬州大学学报:自然科学版,2001,4(3):42-45,50. Shan Y H, Wang Y L, Yamamoto Y,etal. Study on the differences of nitrogen uptake and use efficiency in different types of rice.JournalofYangzhouUniversity:NaturalScienceEdition, 2001,4(3):42-45, 50. (in Chinese with English abstract)

[3] 江立庚,戴廷波,韦善清,等.南方水稻氮素吸收与利用效率的基因型差异及评价.植物生态学报,2003,27(4):464-471. Jiang L G, Dai T B, Wei S Q,etal. Genotypic differences and valuation in nitrogen uptake and utilization efficiency in rice.ActaPhytoecologicaSinica, 2003,27(4):464-471. (in Chinese with English abstract)

[4] 张岳芳,王余龙,张传胜,等.籼稻品种间氮素吸收利用的差异及其对产量的影响.江苏农业学报,2006,22(4):318-324. Zhang Y F, Wang Y L, Zhang C S,etal. Differences of nitrogen absorption and utilization and their influences on grain yield of conventionalindicarice cultivars.JiangsuJournalofAgriculturalSciences, 2006,22(4):318-324. (in Chinese with English abstract)

[5] Walker T W, Bond J A, Ottis B V,etal. Hybrid rice response to nitrogen fertilization for mid-southern United States rice production.AgronomyJournal, 2008,100(2):381-386.

[6] Tala G, Heiko B. Genetic variation in nitrogen efficiency among cultivars of irrigated rice in Senegal.JournalofAgriculturalBiotechnologyandSustainableDevelopment, 2013,3(3):35-43.

[7] Norman R, Roberts T, Slaton N,etal. Nitrogen uptake efficiency of a hybrid compared with a conventional, Pure-line rice cultivar.SoilScienceSocietyofAmericaJournal, 2013,77:1235-1240.

[8] Harrell D L, Blanche S B. Tillage, seeding, and nitrogen rate effects on rice density yield, and yield components of two rice cultivars.AgronomyJournal, 2010,102(2):592-597.

[9] Kumar D R, Pramanik K, Saha1 T,etal. Growth. Growth, yield components and yield of hybrid rice as influenced by nitrogen levels and time of homo-brassinolide application.InternationalJournalofAgriculture,EnvironmentandBiotechnology, 2014,7(4):817-824.

[10] 董桂春, 王余龙, 张岳芳,等.不同氮素籽粒生产效率类型籼稻品种产量及其构成的基本特点.作物学报,2006,32(10):1511-1518. Dong G C, Wang Y L, Zhang Y F,etal. Characteristics of yield and yield components in conventionalindicarice cultivars with different nitrogen use efficiency for grain output.ActaAgronomicSinica, 2006,32(10):1511-1518. (in Chinese with English abstract)

[11] 冯跃华,潘剑,何腾兵,等.不同施氮水平对超级稻源库特性的影响.中国农学通报,2010,26(15):252-256. Feng Y H, Pan J, He T B,etal. Effect of different fertilizer-N application rate on source-sink characteristics of super hybrid rice.ChineseAgriculturalScienceBulletin, 2010,26(15):252-256. (in Chinese with English abstract)

[12] Singh U, Ladha J K, Castillo E G,etal. Genotypic variation in nitrogen use efficiency in medium- and long-duration rice.FieldCropsResearch, 1998,58(1):35-53.

[13] Ohnishi M, Horie T, Homma K,etal. Nitrogen management and cultivar effects on rice yield and nitrogen use efficiency in Northeast Thailand.FieldCropsResearch, 1999,64(1/2):109-120.

[14] 董明辉,张洪程,戴其根,等.不同粳稻品种氮素吸收利用特点的研究.扬州大学学报:农业与生命科学版,2002,23(4):43-46,65. Dong M H, Zhang H C, Dai Q G,etal. Research on the nitrogen absorption and utilization of different rice varieties.JournalofYangzhouUniversity:AgriculturalandLifeSciencesEdition, 2002,23(4):43-46,65. (in Chinese with English abstract)

[15] Bond J A, Walker T W, Ottis B V,etal. Rice seeding and nitrogen rate effects on yield and yield components of two rice cultivars.AgronomyJournal, 2008,100(2):393-397.

[16] Ghaley B B, Høgh-Jensen H, Christiansen J L. Recovery of nitrogen fertilizer by traditional and improved rice cultivars in the Bhutan highlands.PlantandSoil, 2010,332(1):233-246.

[17] 周江明,俞乒乒,吴新明,等.不同水平氮磷钾对超级稻养分吸收和转运的影响.浙江农业学报,2009,21(1):39-44. Zhou J M, Yu B P, Wu X M,etal. Effect of different NPK supply levels in nutrient absorption and transport of super rice.ActaAgriculturaeZhejiangensis, 2009,21(1):39-44. (in Chinese with English abstract)

[18] 朱德峰,林贤青,陈苇,等.超级稻协优9308营养特性与施肥技术.中国稻米,2002(2):18-19. Zhu D F, Lin X Q, Chen W,etal. Nutritional characteristics and fertilizing technologies for super rice Xieyou 9308.ChinaRice, 2002(2):18-19. (in Chinese)

[19] 杜永,刘辉,杨成,等.超高产栽培迟熟中粳稻养分吸收特点的研究.作物学报,2007,33(2):208-215. Du Y, Liu H, Yang C,etal. Characteristics of nutrient absorption in super-high-yielding mid-season and late-maturityjaponicarice.ActaAgronomicaSinica, 2007,33(2):208-215. (in Chinese with English abstract)

[20] 敖和军,王淑红,邹应斌,等.不同施肥水平下超级杂交稻对氮、磷、钾的吸收累积规律.中国农业科学,2008,41(10):3123-3132. Ao H J, Wang S H, Zou Y B,etal. Characteristics of nutrient uptake and utilization of super hybrid rice under different fertilizer application rates.ScientiaAgriculturaSinica, 2008,41(10):3123-3132. (in Chinese with English abstract)

[21] 龚金龙,邢志鹏,胡雅杰,等.籼、粳超级稻氮素吸收利用与转运差异研究.植物营养与肥料学报,2014,20(4):796-810. Gong J L, Xing Z P, Hu Y J,etal. Differences of nitrogen uptake, utilization and translocation betweenindicaandjaponicasuper rice.JournalofPlantNutritionandFertilizer, 2014,20(4):796-810. (in Chinese with English abstract)

[22] 唐启源,邹应斌,米湘成,等.不同施氮条件下超级杂交稻的产量形成特点与氮肥利用.杂交水稻,2003,18(1):44-48. Tang Q Y, Zou Y B, Mi X C,etal. Grain yield construction and N fertilizer efficiency of super hybrid rice under different N applications.HybridRice, 2003,8(1):44-48. (in Chinese with English abstract)

[23] 胡泓,王光火.施钾条件下杂交水稻氮磷养分吸收利用特点.土壤通报,2003,34(3):2002-2004. Hu H, Wang G H. Nature of nitrogen and phosphorus uptake by a hybrid rice under the potassium fertilizer treatment.ChineseJournalofSoilScience, 2003,34(3):2002-2004. (in Chinese with English abstract)

[24] Chen S, Wang D, Xu C,etal. Responses of super rice (OryzasativaL.) to different planting methods for grain yield and nitrogen-use efficiency in the single cropping season.PLoSONE, 2014,9(8):e104950.

[25] 陈露,张伟杨,王志琴,等.施氮量对江苏不同年代中粳稻品种产量与群体质量的影响.作物学报,2014,40(8):1412-1423. Chen L, Zhang W Y, Wang Z Q,etal. Effects of nitrogen application rate on grain yield and population quality of mid-seasonjaponicarice cultivars at different decades in Jiangsu Province.ActaAgronomicaSinica, 2014,40(8):1412-1423. (in Chinese with English abstract)

[26] 凌启鸿,张洪程,戴其根,等.水稻精确定量施氮研究.中国农业科学,2005,38(12):2457-2467. Ling Q H, Zhang H C, Dai Q G,etal. Study on precise and Quantitative N application in rice.ScientiaAgriculturaSinica, 2005,38(12):2457-2467. (in Chinese with English abstract)

Characteristics of grain yield and nitrogen, phosphorus, potassium uptake and accumulation of super hybrid rice grown in different locations.

Journal of Zhejiang University (Agric. & Life Sci.), 2015,41(5):547-557

Xia Bing, Zhao Yang, Wei Yingjuan, Huang Min, Ao Hejun, Zou Yingbin*

(AgronomyCollegeofHunanAgriculturalUniversity,Changsha410128,China)

Rice is one of the most important staple food crop in China and other Asian countries. Breeding high yielding varieties and improving resource-use efficiency are eternal themes in the areas of both rice research and rice production. In recent years, many super hybrid rice varieties with high yield potential have been widely grown by rice farmers in China, but the rule of nutrient uptake and accumulation is not fully clear.

This paper attempted to ascertain the characteristics and genetic differences of grain yield performance and nitrogen (N), phosphorus (P), potassium (K) uptake and accumulation of super hybrid rice under different ecological conditions. The field experiments with 8 representative super hybrid rice varieties (i.e., Liangyoupeijiu, Zhongzheyou 1, Zhunliangyou 527, Y-liangyou 1, Ⅱ-you 084, Ⅱ-youhang 1, Neiliangyou 6 and D-you 527) were conducted in Guidong County, Changsha City and Nanxian County of Hunan Province in China from 2007 to 2009, of which a common hybrid rice variety Shanyou 63 and a super inbred rice variety Shengtai 1 were taken as the control. The varieties were arranged in a randomized block design with 3 replications. Germinated seeds were sown at the rate of 15 g/m2on 15-20th May in Guiding and on 15-20th April in Changsha and Nanxian. Twenty five-days old seedling were transplanted with 2 seedlings per hill and a hill spacing is 23.33 cm×23.33 cm. Crop management followed high yielding cultivation practices.

The results showed that there were significantly genetic and regional differences in grain yield and nitrogen, phosphorus, potassium (NPK) uptake and accumulation. Averaged across 3 locations and 2 years, grain yields of super hybrid rice varieties were 9.32-10.25 t/hm2, which were 5.1%-15.6% and 8.9%-19.7% higher than those of Shanyou 63 and Shengtai 1, respectively. Guidong had the highest average grain yield of 11.45 t/hm2, which was 38.1% and 30.0% higher than that in Changsha and Nanxian, respectively. The high grain yield in Guiding was attributed to high panicle number and filled grain percentage. In addition, there was significant difference in grain yield among years. The highest average grain yield of 10.01 t/hm2was obtained in 2009 and the lowest one of 8.29 t/hm2was recorded in 2007, of which the former was resulted from high panicle number and the latter was cased by small panicle size. Nutrient requirement for producing 1 000 kg grains of super hybrid rice appeared as N 18.48-19.85 kg, P 3.75-4.63 kg and K 15.90-17.40 kg. There were no significant differences in the NPK requirements between super hybrid rice and the control except for that Shengtai 1 showed significantly less N requirement. Nutrient uptake rate of super hybrid rice appeared as N 177.69-189.09 kg/hm2, P 36.94-39.80 kg/hm2and K 153.38-165.39 kg/hm2, of which 61.2%-65.3% of N and 67.6%-74.4% of P accumulated in rice grains and 86.9%-89.6% of K accumulated in rice straw. Compared with super hybrid and common hybrid rice, inbred rice Shengtai 1 showed significantly less NK uptake rates but similar P uptake rate. Percentage of N uptake rate to the total was about 20% until to mid-tillering stage (20 d after transplanting), 25%-30% from mid-tillering stage to panicle initiation stage, 30%-40% from panicle initiation stage to heading stage and about 20% after heading, and the percentage of P was 15%,20%-30%,40%-45% and 10%-20%, respectively, and the percentage of K was 15%-20%, 25%-35%, 30%-40% and 15%-20%, respectively. There were no significant differences in NPK accumulation rates at each growth stage between hybrid rice and inbred rice.

As above,super hybrid rice displayed significantly higher yield potential but lower nutrient requirements for NPK than those of common hybrid rice and inbred rice. It is concluded that high grain yield can be achieved with high nutrient-use efficiency in super hybrid rice.

super rice; grain yield; nitrogen, phosphorus and potassium nutrients; location

国家水稻产业技术体系岗位专家项目(CARS-01);湖南省科技计划一般项目(2012FJ6118)。

联系方式:夏冰(http://orcid.org/0000-0001-8122-9103),E-mail:fifaice@163.com

2015-05-18;接受日期(Accepted):2015-06-08;网络出版日期(Published online):2015-09-18

S 511

A

*通信作者(Corresponding author):邹应斌(http://orcid.org/0000-0003-1638-1488),E-mail:ybzou123@126.com

URL:http://www.cnki.net/kcms/detail/33.1247.s.20150918.1756.012.html

猜你喜欢
钾素磷素吸收量
保护地土壤中磷的吸附与解吸特性研究
施石灰和秸秆还田对双季稻田土壤钾素表观平衡的互作效应
土壤磷素活化剂在夏玉米上的田间试验效应分析报告
氮肥用量对不同氮高效玉米品种产量和磷素吸收利用的影响
水肥一体化条件下生菜养分吸收特性研究
磷素添加对土壤水分一维垂直入渗特性的影响
不同灌溉方式下水肥一体化对玉米养分吸收规律的影响
不同基因型马铃薯钾素吸收与利用效率的差异
春玉米需肥规律及施肥技术
测土配方施肥对玉米养分吸收量的影响