徐新朋, 周 卫*, 梁国庆, 孙静文, 王秀斌,何 萍, 徐芳森, 余喜初
(1中国农业科学院农业资源与农业区划研究所, 北京 100081; 2 华中农业大学资源与环境学院,湖北武汉 430070; 3 江西省红壤研究所, 江西进贤 331717)
氮肥用量和密度对双季稻产量及氮肥利用率的影响
徐新朋1, 周 卫1*, 梁国庆1, 孙静文1, 王秀斌1,何 萍1, 徐芳森2, 余喜初3
(1中国农业科学院农业资源与农业区划研究所, 北京 100081; 2 华中农业大学资源与环境学院,湖北武汉 430070; 3 江西省红壤研究所, 江西进贤 331717)
【目的】高量化肥投入不仅不能使作物产量进一步增加,相反还会造成肥料资源的浪费并威胁到生态环境安全,同时导致肥料吸收利用率、农学效率等不断降低。为了明确氮肥用量和移栽密度的相互作用,在田间试验条件下研究了不同氮肥用量和移栽密度组合对江西双季稻产量、产量构成要素及氮肥利用率的影响,以期为双季稻的高产高效栽培技术提供理论基础。【方法】采用裂区试验设计,以氮肥施用量为主区,密度为副区,设4个施氮水平(N 0、135、180和225 kg/hm2,以N0、N135、N180和N225表示)和4种移栽密度(21×104、27×104、33×104、39×104hole/hm2,以D21、D27、D33和D39表示)组合,在水稻成熟期对产量以及产量构成要素进行测定,并分析其吸氮量和氮肥利用率、氮收获指数等指标。【结果】施氮水平和移栽密度对水稻产量具有显著影响;增加移栽密度有助于提高单位面积水稻的有效穗数、稻谷产量和地上部吸氮量;在高施氮量下,水稻氮素积累总量增加,而氮素吸收利用率(REN)、氮素偏生产力(PFPN)、氮素生理利用率(PEN)、氮素内在养分效率(IEN)和氮素收获指数(NHI)降低;氮素农学效率(AEN)则是先升高后降低,而产量并未增加。与其它处理组合相比,施氮量为180 kg/hm2和39×104hole/hm2密度的组合产量最高,早稻和晚稻分别为9823.0和11354.7 kg/hm2,此时早稻和晚稻的氮素吸收率分别为42.4%和47.5%。当施氮量超过180 kg/hm2时产量则不再增加,但产量随着移栽密度的增加而显著增加。【结论】合理氮肥用量和移栽密度可以显著增加水稻单位面积的有效穗数和氮累积量,进而增加水稻产量和氮肥利用率,建议在江西双季稻栽培中采用施氮量为N 180 kg/hm2,栽培密度39×104hole/hm2的组合。
水稻; 氮肥用量; 移栽密度; 产量; 氮肥利用率
水稻作为我国主要粮食作物之一,对我国粮食安全起着至关重要的作用。在“高投入、高回报”的传统耕作理念的驱使下,化肥的施用量不断增加,导致过量施肥和不合理施肥的严重问题。然而,高量的化肥投入不仅不能带来作物产量的进一步增加,相反还会威胁到生态环境的安全[1-5],造成地表水或地下水体硝酸盐含量超标,同时导致肥料利用率以及农学效率等不断降低。因此在水稻栽培的生产实践中提高肥料利用率和产量已成为重要的目标之一。要同时兼顾产量、经济、环境及农学效益,则需要重点对氮肥施用量和移栽密度进行重点研究。随着水稻品种的不断更新和生产基础条件的不断改进,合理的氮肥施用量及管理方式不仅能促进作物生长、提高产量,而且能够提高氮肥利用率[6-8]。科学的移栽密度能够保证水稻个体及群体有效的发挥潜能,从而获得高产。研究表明,合理的氮肥用量、施用时期和密度对水稻分蘖及产量有显著影响[9],同时可以增强水稻的抗倒伏性能[10],最终达到提高产量和氮肥利用率的效果[11],施氮量和移栽密度也影响着水稻的氮素吸收、转运及利用。在施氮量和栽培密度方面以往的研究多集中在单季水稻上,对双季稻的研究还比较少,为此,本试验在综合前人研究的基础上,系统研究了施氮量和移栽密度对双季稻产量、经济性状、氮肥吸收转运及氮素利用率的影响,以期为双季稻的高产高效栽培技术提供理论依据。
1.1 试验设计
试验于2013年在江西省南昌市进贤县张公镇江西省红壤研究所试验基地的红壤性水稻田块上进行(东经116°20′24″,北纬28°15′30″)。供试土壤为水稻土,耕层土壤(0—20 cm)有机质含量22.82 g/kg、全氮1.50 g/kg、全磷0.63 g/kg、全钾16.80 g/kg、有效磷 15.96 mg/kg、速效钾 167.73 mg/kg、pH 5.15。供试的早稻品种为赣早籼54号,晚稻品种为正成456,试验采用裂区设计,以施氮量为主区(面积120 m2),密度为副区(面积为30 m2),早稻和晚稻施氮量和密度设置相同,施氮量设N0、135、180和225 kg/hm24个水平,以N0、N135、N180和N225表示。移栽密度设每公项21×104穴(20 cm × 23.8 cm)、27×104穴(20 cm × 18.5 cm)、33×104穴(20 cm × 15.2 cm)和39×104穴(20 cm × 12.8 cm)4种,以D21、D27、D33和D39表示。每处理3次重复,随机区组排列。
早稻于3月28日播种,4月25日移栽,7月16日收获;晚稻6月25日播种, 7月26日移栽, 10月27日收获。 氮肥用尿素(含N 46%),分基肥、分蘖肥、穗肥3次施用,基肥 ∶分蘖肥 ∶穗肥为4 ∶3 ∶3。磷肥用钙镁磷肥(含P2O512.5%),全部作基肥;钾肥用氯化钾(含K2O 60%),基肥 ∶穗肥为5 ∶5。各处理磷肥施用量为450 kg/hm2,钾肥用量225 kg/hm2。试验小区间作埂隔离,并用塑料膜覆盖埂体,以保证各小区单独排灌并防止水肥渗出。
图1 不同处理对产量的影响Fig.1 Effects of different treatments on grain yields of rice[注(Note): N—氮肥 N fertilizer;D—种植密度 Planting density;柱上不同字母表示处理间差异达5%显著水平 Different letters above the bars for different treatments are significantly different at the 5% probability level.]
1.2 测定项目及方法
水稻成熟后,每个小区单独收割测定子粒产量,采集有代表性的植株5兜,对水稻产量构成要素进行考察,包括株高、穗数、穗长、穗粒数、结实率、千粒重,并分别称量茎、叶和籽粒的重量。
用凯氏定氮法测定茎鞘、叶片和子粒氮含量。
相关计算方法:
氮素吸收利用率(N recovery efficiency,REN)=(施氮区植株地上部氮累积量-空白区地上部植株氮累积量)/施氮量×100%;
氮素农学利用率(agronomic efficiency of applied N,AEN)=(施氮区产量-空白区产量)/施氮量;
氮素偏生产力(partial factor productivity of applied N,PFPN)=施氮区产量/施氮量;
氮素生理利用率(physiological efficiency of applied N,PEN)=(施氮区产量-空白区产量)/(施氮区地上部氮累积量-空白区地上部氮累积量);
氮素内在养分效率(internal efficiency of applied N,IEN)=施氮区产量/施氮区地上部氮累积量;
氮素收获指数(N harvest index,NHI) = 子粒氮累积量/植株地上部氮累积量。
试验数据采用Excel 2007 和SAS进行处理和分析。
2.1 氮肥和密度对水稻产量的影响
试验结果表明,氮肥用量及移栽密度对水稻产量具有显著的影响(图1)。无论是早稻还是晚稻均以N180D39处理组合的产量最高,分别为9823.0和11354.7 kg/hm2(表1和表2)。从密度看,增加水稻的移栽密度可以显著增加水稻产量,所有处理中都以D39的产量最高,N180与N0、N135 和N225相比,早稻产量分别提高了40.0%、15.6%和4.1%,晚稻产量分别提高了57.3%、5.3%和6.5%。而从施氮水平看,在施氮水平达到180 kg/hm2时,早稻和晚稻的产量达到最大,施氮量与水稻产量呈抛物线关系,移栽密度与水稻产量在本试验设置中呈线性关系。
施氮水平和移栽密度对一些产量构成要素的影响达到了显著水平。施氮水平和移栽密度对早稻和晚稻穗粒数的影响达到了显著水平,而氮肥水平对晚稻结实率的影响也达到了显著水平,而对早稻的结实率则无影响。在同一施氮水平下有效穗数随着移栽密度的增加而增加,均以D39的有效穗数最高,而单个穗子的穗粒数却相反,穗粒数与施氮量间呈抛物线关系,在相同氮水平中均以D21的穗粒数最多,在本研究中当施氮量超过180 kg/hm2时,穗粒数则开始降低。因此,增加施氮量和移栽密度主要通过增加有效分蘖而提高水稻有效穗数及总穗粒数增加水稻产量。除此之外,施氮对水稻的株高和穗长具有显著影响。移栽密度对早稻穗长的影响达到了显著水平,同施氮量水平下早稻穗长随移栽密度增加而降低。
2.2 氮肥和密度对水稻氮素利用效率的影响
表1 不同处理下早稻产量及其构成因子
注(Note): N—N fertilizer; D—Planting density. 数值后不同字母表示处理间差异达5%显著水平 Values followed by different letters for different treatments are significantly different at the 5% probability level. ns 表示不显著Indicates no significant; *和**分别表示达到5%和1%显著水平 Mean significant at the 5% and 1% levels, respectively.
表2 不同处理下晚稻产量及其构成因子
注(Note): N—N fertilizer; D—Planting density. 数值后不同字母表示处理间差异达5%显著水平 Values followed by different letters for different treatments are significantly different at the 5% probability level. ns 表示不显著Indicates no significant; *和**分别表示达到5%和1%显著水平 Mean significant at the 5% and 1% levels, respectively.
表3 早稻不同处理的氮素利用效率
注(Note): N—N fertilizer; D—Planting density. REN—N recovery efficiency; AEN—Agronomic efficiency of applied N; PFP —Partial factor productivity of applied N; PEN—Physiological efficiency of applied N; IEN—Internal efficiency of applied N; NHI—N harvest index. 数值后不同字母表示处理间差异达5%显著水平 Values followed by different letters for different treatments are significantly different at the 5% probability level. ns 表示不显著Indicates no significant; *和**分别表示达到5%和1%显著水平 Mean significant at the 5% and 1% levels, respectively.
图2 不同处理对氮素累积的影响Fig.2 Effects of different treatments on N accumulation[注(Note): N—氮肥 N fertilizer; D—种植密度 Planting density. 柱上不同字母表示处理间差异达5%显著水平 Different letters above the bars for different treatments are significantly different at the 5% probability level.]
处理Treatment氮素吸收利用率REN(%)氮素农学效率AEN(kg/kg)氮素偏生产力PFPN(kg/kg)氮素生理利用率PEN(kg/kg)氮素内在养分效率IEN(kg/kg)氮收获指数NHIN135D2142.8abc16.5bc57.3bc38.5bcd66.0bcd0.72aN135D2743.7abc16.7bc62.7b38.2bcd67.5bc0.72aN135D3343.2abc14.9c62.3b34.0cd65.2cd0.72aN135D3950.8a29.8a79.9a58.8a75.2a0.72aN180D2138.1c14.5c45.1efg37.1bcd63.2de0.72aN180D2741.2bc16.3bc50.8cde39.5bcd65.1cd0.70abN180D3342.1bc18.2bc53.8cd43.2bc66.2bc0.70abN180D3947.5ab22.6b63.1b47.2b68.6b0.70abN225D2136.0c14.3c38.8g39.0bcd62.2e0.72aN225D2737.8c11.7c39.3g30.9d58.4f0.68bN225D3340.0bc15.1c43.5fg36.9bcd60.9ef0.70abN225D3943.2abc13.6c47.4def29.5d59.0f0.68b氮肥N**********密度D********nsN×Dns*ns****ns
注(Note): N—N fertilizer; D—Planting density. REN—N recovery efficiency; AEN—Agronomic efficiency of applied N; PFP —Partial factor productivity of applied N; PEN—Physiological efficiency of applied N; IEN—Internal efficiency of applied N; NHI—N harvest index. 数值后不同字母表示处理间差异达5%显著水平 Values followed by different letters for different treatments are significantly different at the 5% probability level. ns 表示不显著Indicates no significant; *和**分别表示达到5%和1%显著水平 Mean significant at the 5% and 1% levels, respectively.
3.1 施氮水平和移栽密度与水稻产量的关系
3.2 施氮水平和移栽密度与氮素利用效率的关系
3.3 氮肥用量和密度的协同优化
移栽密度和氮肥施用量对水稻的群体动态和产量构成具有显著的影响[29],同时影响水稻的叶面积指数、净光合速率及叶绿素含量等[30],进而影响水稻产量。在本研究中,早稻N180D39处理组合具有最高的产量、氮素吸收率和农学效率,对于晚稻而言, N180D39处理组合的氮素吸收率(47.5%)略低于N135D39处理组合(50.8%)且无显著差异,但前者具有较高的产量,增加了5.3%。在水稻栽培中不能一味地追求高氮素吸收率,同时要考虑产量及经济效益等因素。施氮有助于提高产量和养分吸收,增加移栽密度通过提高有效分蘖数而提高产量,但也增加了叶片和茎鞘中的氮累积量,当施氮量达到一定水平时(本试验条件下为180 kg/hm2),虽然能够继续促进作物对氮素的吸收,但并不利于氮素向子粒中转移。因此,协调施氮量和移栽密度是实现高产及高氮肥利用率的关键。统计分析结果表明,本研究设计中N180D39组合产量最高,并具有较高的氮素农学效率、氮素吸收率、氮素内在养分效率等,因此是适宜当地的施氮量和移栽密度。但在合理的氮肥用量下使用更高的移栽密度(大于39×104hole/hm2)是否能够进一步增加本研究区域的水稻产量还有待进一步研究。
[1] Ju X T, Xing G X, Chen X Petal. Reducing environmental risk by improving N management in intensive Chinese agricultural systems[J]. Proceedings of the National Academy of Sciences, 2009, 106(9): 3041-3046.
[2] Le C, Zha Y, Li Yetal. Eutrophication of lake waters in China: cost, causes, and control[J]. Environmental Management, 2010, 45(4): 662-668.
[3] Zheng X H, Han S H, Huang Yetal. Re-quantifying the emission factors based on field measurements and estimating the direct N2O emission from Chinese croplands[J]. Global Biogeochemical Cycles, 2004, 18: 1-19.
[4] 王德建, 林静慧, 孙瑞娟, 等. 太湖地区稻麦高产的氮肥适宜用量及其对地下水的影响[J]. 土壤学报, 2003, 40(3): 426-432. Wang D J, Lin J H, Sun R Jetal. Optimum nitrogen rate for a high productive rice-wheat system and its impact on the groundwater in the Taihu Lake area[J]. Acta Pedologica Sinica, 2003, 40(3): 426-432.
[5] 俞映倞, 薛利红, 杨林章. 太湖地区稻田不同氮肥管理模式下氨挥发特征研究[J]. 农业环境科学学报, 2013, 32(8): 1682-1689. Yu Y L, Xue L H, Yang L Z. Ammonia volatilization from paddy fields under different nitrogen schemes in Tai Lake region[J]. Journal of Agro-Environment Science, 2013, 32(8): 1682-1689.
[6] 晏娟, 尹斌, 张绍林, 等. 不同施氮量对水稻氮素吸收与分配的影响[J]. 植物营养与肥料学报, 2008, 14(5): 835-839. Yan J, Yin B, Zhang S Letal. Effect of nitrogen application rate on nitrogen uptake and distribution in rice[J]. Plant Nutrient and Fertilizer Science, 2008, 14(5): 835-839.
[7] 贺帆, 黄见良, 崔克辉, 等. 实时实地氮肥管理对不同杂交水稻氮肥利用率的影响[J]. 中国农业科学, 2008, 41(2): 470-479. He F, Huang J L, Cui K Hetal. Effect of real-time and site-specific nitrogen management on various hybrid rice[J]. Scientia Agricultura Sinica 2008, 41(2): 470-479.
[8] 易琼, 赵士诚, 张秀芝, 等. 实时实地氮素管理对水稻产量和氮素吸收利用的影响[J]. 植物营养与肥料学报, 2012, 18(4): 777-785. Yi Q, Zhao S C, Zhang X Zetal. Yield and nitrogen use efficiency as influenced by real time and site specific nitrogen management in two rice cultivars[J]. Plant Nutrient and Fertilizer Science, 2012, 18(4): 777-785.
[9] 汪秀志, 钱永德, 吕艳东, 等. 施氮和密度对寒地水稻分蘖状况及产量的影响[J]. 浙江大学学报(农业与生命科学版), 2011, 37(1): 69-76. Wang X Z, Qian Y D, Lü Y Detal. Effects of N-fertilizer application and density on tiller and yield of rice in cold area[J]. Journal of Zhejiang University(Agriculture & Life Sciences), 2011, 37(1): 69-76.
[10] 石扬娟, 黄艳玲,申广勒, 等. 氮肥用量和栽插密度对水稻茎秆力学特性的影响研究[J]. 中国农学通报, 2008, 24(7): 101-106. Shi Y J, Huang Y L, Shen G Letal. Effect of N-application rate and planting density on mechanic characteristics of rice culms[J]. Chinese Agricultural Science Bulletin, 2008, 24(7): 101-106.
[11] 周江明, 赵琳, 董越勇, 等. 氮肥和栽植密度对水稻产量及氮肥利用率的影响[J]. 植物营养与肥料学报, 2010, 16(2): 274-281. Zhou J M, Zhao L, Dong Y Yetal. Nitrogen and transplanting density interactions on the rice yield and N use rate[J]. Plant Nutrient and Fertilizer Science, 2010, 16(2): 274-281.
[12] 王淳, 周卫, 李祖章, 等. 不同施氮量下双季稻连作体系土壤氨挥发损失研究[J]. 植物营养与肥料学报, 2012, 18(2): 349-358. Wang C, Zhou W, Li Z Zetal. Effects of different nitrogen application rates on ammonia volatilization from paddy fields under double-harvest rice system[J]. Plant Nutrient and Fertilizer Science, 2012, 18(2): 349-358.
[13] 李红莉, 张卫峰, 张福锁, 等. 中国主要粮食作物化肥施用量与效率变化分析[J]. 植物营养与肥料学报, 2010, 16(5): 1136-1143. Li H L, Zhang W F, Zhang F Setal. Chemical fertilizer use and efficiency change of main grain crops in China[J]. Plant Nutrient and Fertilizer Science, 2010, 16(5): 1136-1143.
[14] 杨梢娜, 俞巧钢, 叶静, 等. 施氮水平对杂交晚粳“浙优 12”产量及氮素利用效率的影响[J]. 植物营养与肥料学报, 2010, 16(5): 1120-1125. Yang S N, Yu Q G, Ye Jetal. Effects of nitrogen fertilization on yield and nitrogen use efficiency of hybrid rice[J]. Plant Nutrient and Fertilizer Science, 2010, 16(5): 1120-1125.
[15] 江立庚, 曹卫星, 甘秀芹, 等. 不同施氮水平对南方早稻氮素吸收利用及其产量和品质的影响[J]. 中国农业科学, 2004, 37(4): 490-496. Jiang L G, Cao W X, Gang X Qetal. Nitrogen uptake and utilization under different nitrogen management and influence on grain yield and quality in rice[J]. Scientia Agricultura Sinica, 2004, 37(4): 490-496.
[16] 谢黎虹, 叶定池, 胡培松, 等. 氮肥用量和施用方式对水稻“甬优6号”产量和品质的影响[J]. 植物营养与肥料学报, 2011, 17(4): 789-794. Xie L H, Ye D C, Hu P Setal. Effects of nitrogen fertilizer application rate and management strategy on grain yield and quality of rice variety “Yongyou 6”[J]. Plant Nutrient and Fertilizer Science, 2011, 17(4): 789-794.
[17] 李国辉, 钟旭华, 田卡, 等. 施氮对水稻茎秆抗倒伏能力的影响及其形态和力学机理[J]. 中国农业科学, 2013, 46(7): 1323-1334. Li G H, Zhong X H, Tian Ketal. Effect of nitrogen application on stem lodging resistance of rice and its morphological and mechanical mechanisms[J]. Scientia Agricultura Sinica, 2013, 46(7): 1323-1334.
[18] 汤亮, 朱相成, 曹梦莹, 等. 水稻冠层光截获、光能利用与产量的关系[J]. 应用生态学报, 2012, 23(5): 1269-1276. Tang L, Zhu X C, Cao M Yetal. Relationships of rice canopy PAR interception and light use efficiency to grain yield[J]. Chinese Journal of Applied Ecology, 2012, 23(5): 1269-1276.
[19] 朱相成, 汤亮, 张文宇, 等. 不同品种和栽培条件下水稻冠层光合有效辐射传输特征[J]. 中国农业科学, 2012, 45(1): 34-43. Zhu X C, Tang L, Zhang W Yetal. Transfer characteristics of canopy photo-synthetically active radiation in different rice cultivars under different cultural conditions[J]. Scientia Agricultura Sinica, 2012, 45(1): 34-43.
[20] 李旭毅, 孙永健, 程洪彪, 等. 两种生态条件下氮素调控对不同栽培方式水稻干物质积累和产量的影响[J]. 植物营养与肥料学报, 2011, 17(4): 773-781. Li X Y, Sun Y J, Cheng H Betal. Effects of nitrogen regulation on dry matter accumulation and grain yield of rice under different cultivation models and two kinds of ecological conditions[J]. Plant Nutrient and Fertilizer Science, 2011, 17(4): 773-781.
[21] 张福锁, 王激清, 张卫峰, 等. 中国主要粮食作物肥料利用率现状与提高途径[J]. 土壤学报, 2008, 45(5): 915-924. Zhang F S, Wang J Q, Zhang W Fetal. Nutrient use efficiency of major cereal crops in China and measures for improvement[J]. Acta Pedologica Sinica, 2008, 45(5): 915-924.
[22] 赵庆雷, 吴修, 高洁, 等. 氮肥不同用量对南四湖区水稻产量及氮素利用率的影响[J]. 山东农业科学, 2013, 45(7): 78-82. Zhao Q L, Wu X, Gao Jetal. Influence of different nitrogen application amounts on rice yield and nitrogen use efficiency in Nansi Lake area[J]. Shandong Agricultural Sciences, 2013, 45(7): 78-82.
[23] 吴文革, 张四海, 赵决建, 等. 氮肥运筹模式对双季稻北缘水稻氮素吸收利用及产量的影响[J]. 植物营养与肥料学报, 2007, 13(5): 757-764. Wu W G, Zhang S H, Zhao J Jetal. Nitrogen uptake, utilization and rice yield in the north rimland of double-cropping rice region as affected by different nitrogen management strategies[J]. Plant Nutrient and Fertilizer Science, 2007, 13(5): 757-764.
[24] 仇少君, 赵士诚, 苗建国, 等. 氮素运筹对两个晚稻品种产量及其主要构成因素的影响[J]. 植物营养与肥料学报, 2012, 18(6): 1326-1335. Qiu S J, Zhao S C, Miao J Getal. Effect of different N management practices on yield and its main formed factors in two later-season rice genotypes[J]. Plant Nutrient and Fertilizer Science, 2012, 18(6): 1326-1335.
[25] 张秀芝, 易琼, 朱平, 等. 氮肥运筹对水稻农学效应和氮素利用的影响[J]. 植物营养与肥料学报, 2011, 17(4): 782-788. Zhang X Z, Yi Q, Zhu Petal. Agronomic responses to nitrogen application and nitrogen utilization in rice fields[J]. Plant Nutrient and Fertilizer Science, 2011, 17(4): 782-788.
[26] 李向辉, 鲁艳红, 廖育林, 等. 氮肥施用量对晚稻产量和氮肥利用效率的影响[J]. 湖南农业科学, 2010, 15: 52-54. Li X H, Lu Y H, Liao Y Letal. Effects of nitrogen application rate on yield and nitrogen use efficiency of late rice[J]. Hunan Agricultural Sciences, 2010, 15: 52-54.
[27] Krauss A, Isherwood K, Heffer P. Fertilizer best management practices: General principles, strategy for their adoption and voluntary initiatives vs regulations[D]. Paris, France: International Fertilizer Industry Association, 2007. 1-28.
[28] Buresh R J, Pampolino M G, Witt C. Field-specific potassium and phosphorus balances and fertilizer requirement for irrigated rice-based cropping systems[J]. Plant and Soil, 2010, 335: 35-54.
[29] 程建平, 张再君, 赵锋, 等. 机械插秧密度和氮肥运筹对两优 1528群体动态和产量的影响[J]. 杂交水稻, 2011, 26(6): 69-73. Cheng J P, Zhang Z J, Zhao Fetal. Effects of planting density and nitrogen fertilizer management on population formation and yield of Liangyou 1528 under mechanized transplanting conditions[J]. Hybrid Rice, 2011, 26(6): 69-73.
[30] 杨艳君, 王宏富, 郭平毅, 等. 施肥和密度对张杂谷5号光合特征及产量的影响[J]. 植物营养与肥料学报, 2013, 19(3): 566-576. Yang Y J, Wang H F, Guo P Yetal. Effects of fertilization and density on photosynthetic characteristics and yield of hybrid foxtail millet[J]. Plant Nutrient and Fertilizer Science, 2013, 19(3): 566-576.
Effects of nitrogen and density interactions on grain yield and nitrogen use efficiency of double-rice systems
XU Xin-peng1, ZHOU Wei1*, LIANG Guo-qing1, SUN Jing-wen1, WANG Xiu-bin1,HE Ping1, XU Fang-sen2, YU Xi-chu3
(1InstituteofAgriculturalResourcesandRegionalPlanning,ChineseAcademyofAgriculturalSciences,Beijing100081,China;2CollegeofResourcesandEnvironmentalSciences,HuazhongAgriculturalUniversity,Wuhan430070,China;3JiangxiInstituteofRedSoil,Jiangxi,Jinxian331717,China)
【Objectives】 Over-fertilization by farmers driven by desire for higher yields does not always contribute to increase yield, however, the over-fertilization causes fertilizer waste and negative effects on environment, meanwhile leads to low nutrient recovery efficiency and agronomic efficiency. In order to determine effects of nitrogen(N) application and transplanting density(D) on double-rice systems, a field experiment was conducted to study yield, yield components and nitrogen use efficiency of double-rice in Jiangxi province. 【Methods】 A split-plot experimental design was used with different nitrogen application amounts in the main plots and transplanting density in the sub-plots to study grain yield and N use efficiency under four N rates(N 0, 135, 180 and 225 kg/hm2, and express as N0, N135, N180 and N225) and four transplanting densities(21×104, 27×104, 33×104and 39×104hole/hm2, and express as D21, D27, D33 and D39) for double-rice systems, the grain yield and its components were measured, and N uptake, N use efficiency and N harvest index were analyzed at rice maturity. 【Results】 The results show that there are significant effects of the N levels and planting density on the rice yield separately. The high transplanting density contributes to increase effective panicle number per unit area, grain yield and total N uptake of shoot. The high N rate increases total N accumulation of rice, but decreases the N recovery efficiency, N partial factor productivity, N internal efficiency, N physiological efficiency and N harvest index. The agronomic efficiency of N is increased with increasing of N application rate at first and decreased after N application rate exceeding 180 kg/hm2. Compared to other treatments, there are the highest yields under the 180 kg/hm2and 39×104hole/hm2treatment combination, the yields are 9823.0 and 11354.7 kg/hm2for early and late rice, and the N recovery efficiencies are 42.4% and 47.5% for early rice and late rice, respectively. The grain yield is not increased when N application rate exceeding 180 kg/hm2, while the yield is increased with increasing transplanting density in our study. 【Conclusions】 The rational combination of nitrogen application and transplanting density can indeed significantly increase the effective panicle number per unit area and total N uptake of rice shoot, which further increases the rice yield and nitrogen use efficiency. The N180D39 treatment combination is recommended for double-rice systems in Jiangxi province.
rice; N fertilizer rate; planting density; grain yield; N use efficiency
2014-02-18 接受日期: 2014-07-16
现代农业产业技术体系建设专项资金(CARS-01-31); 农业部公益性行业(农业)科研专项(201003016); 国家重点基础研究发展计划(2013CB127405)资助。
徐新朋(1984—), 男, 河北承德人, 博士研究生, 主要从事高效施肥方面的研究。 E-mail: xinpengxu@163.com * 通信作者 E-mail: wzhou@caas.ac.cn
S511.4+2.062
A
1008-505X(2015)03-0763-10