马亚娟, 徐福利, 王渭玲*, 陈钦程, 赵海燕, 赵亚芳
(1 西北农林科技大学生命科学学院,陕西杨凌 712100;2 中国科学院水利部水土保持研究所,陕西杨凌 712100;3西北农林科技大学资源环境学院,陕西杨凌 712100)
氮磷提高华北落叶松人工林地土壤养分和酶活性的作用
马亚娟1, 徐福利2,3, 王渭玲1*, 陈钦程3, 赵海燕3, 赵亚芳2
(1 西北农林科技大学生命科学学院,陕西杨凌 712100;2 中国科学院水利部水土保持研究所,陕西杨凌 712100;3西北农林科技大学资源环境学院,陕西杨凌 712100)
【目的】采用田间试验,研究外源施用氮、磷肥对处于中龄林的20年华北落叶松(Larixprincipis-rupprechtii)人工林地土壤养分和酶活性特征的影响,并对土壤肥力水平进行评价,以筛选出最佳施肥方案。【方法】2012年4月中旬对处于中龄林的20年华北落叶松人工纯林进行外源施用氮、磷肥,在5月到10月中旬采集0—20 cm土壤样品,测定土壤养分和土壤酶含量,分析其在整个生长期内的动态变化,运用主成分分析法筛选出最佳施肥方案。【结果】 1)施用氮、磷肥显著增加土壤速效氮和速效磷含量(P<0.05),降低土壤速效钾含量和pH值。与对照相比,不同施肥处理速效氮增加幅度为N2P>N2>N1P>N1>P,速效磷为N1P>P>N2P>N2>N1,而速效钾降低幅度为N2P>N1P>N2>P>N1,pH降低幅度为N2P>N2>P>N1P>N1。2)施肥后,土壤蔗糖酶、磷酸酶和脲酶活性显著增加(P<0.05),过氧化氢酶活性降低。与对照相比,不同施肥处理蔗糖酶增加幅度是N1P>N2P>N1>P>N2,磷酸酶是N2P>N1>N1P>N2>P,脲酶是N2P>N1P>N1>N2>P,而过氧化氢酶降低幅度是N2P> N2 >N1P> P >N1。3)土壤中养分含量对季节变化的响应非常敏感,速效氮、速效磷和速效钾整体呈先降低后增加的趋势,最小值出现在植物生长旺盛的7、8月份。土壤酶活性变化比较复杂,多数最大值出现在7、8月份。4)施氮肥、磷肥和氮磷配施处理均提高了土壤速效氮和速效磷含量,速效氮由21.56 mg/kg上升到35.77 mg/kg,速效磷由1.86 mg/kg上升到3.73 mg/kg,尤以N1P和N2P配施效果最明显。5)氮肥、磷肥和氮磷配施处理,土壤蔗糖酶、脲酶和磷酸酶活性均增加,虽然过氧化氢酶活性小幅下降,但总的来说土壤酶活性增强,以N1P和N2P配施效果最为明显。6)主成分分析表明,施肥提高了土壤肥力水平,提高效果表现为N1P>N2P>P>N1>N2>CK。N1P处理土壤肥力水平增加了1.505,N2P增加了1.405。【结论】施氮、磷肥可显著增加林地土壤养分,增强土壤酶活性,有效改善华北落叶松人工林地土壤肥力状况,缓解氮、磷亏缺导致的林地地力衰退。供试条件下华北落叶松的最佳施肥方案是N 75 kg/hm2和P2O575 kg/hm2(N1P),而N 150 kg/hm2和P2O575 kg/hm2(N2P)次之。
华北落叶松; 氮磷施肥; 养分; 酶活性; 土壤肥力
华北落叶松(Larixprincipis-rupprechtii)为松科落叶松属的落叶乔木,是我国东北、内蒙古林区以及华北、西南地区的高山针叶林的主要森林组成树种,由于造林密度单一,林下植被稀疏,生物多样性匮乏,引起土壤理化性质退化,土壤质量下降,从而导致林地土壤肥力下降。张建国等[1]认为,从本质上说地力衰退的原因是土壤肥力系统的失调或破坏。因此,通过施肥补充土壤营养,调节营养平衡是提高林分生产力的必然途径。氮、磷是植物生长所需矿质元素中最为重要的两种,植物吸收的氮、磷主要来源于土壤。而在自然条件下,土壤中氮、磷元素是有限的,因此,氮、磷营养就不同程度地限制着植物个体的生长、群落的发育乃至整个生态系统的生产力[2-4],为了缓解养分不足导致的华北落叶松人工林地力衰退、土壤肥力下降,本文以立地条件一致, 处于植物生长旺盛期(也是植物对养分需求量最大时期)的20年树龄的华北落叶松人工纯林为研究对象,探讨在土壤氮、磷亏缺的林地内进行不同氮、磷施肥处理对不同生长季节华北落叶松人工林地土壤养分和土壤酶活性等土壤肥力特性的变化,并采用主成分分析对施用氮、磷肥情况下土壤肥力水平进行评价,初步筛选出最佳施肥方案,以期为通过施肥改善林地土壤质量,缓解华北落叶松人工林地力衰退和长期维持林地生产力提供科学依据。
1.1 试验地概况
1.2 试验设计
2012年4月,在华北落叶松人工纯林地内设置固定样地18块,每块样地面积为20m×20m,样地之间有两排树作为隔离带,树木基本成排成行分布,密度基本一致。试验设6个处理:对照,不施肥(CK); N 75 kg/hm2(N1); N 150 kg/hm2(N2); P2O575 kg/hm2(P); N 75 kg/hm2和P2O575 kg/hm2(N1P); N 150 kg/hm2和P2O575 kg/hm2(N2P)。每处理3次重复。
试验用氮肥为尿素(含N≥46%),磷肥为过磷酸钙(含P2O5≥12%),2012年4月中旬进行施肥,肥料一次性施入,均匀撒施到样地内。为减少肥料的挥发,施肥是下午17:00以后撒施。
1.3 土壤样品采集与制备
土壤样品分6次采集,分别在2012年5月、6月、7月、8月、9月和10月中旬。采样点选在离标准木50 cm处,每次取样前先铲除土壤表面的植被层及1 cm左右的表层土,再用土钻沿“S”型取0—20 cm的土壤,剔除石砾和植物残根等杂物,每样地设置5个采样点,5个点的土样等比例混合为一个样,每次取土壤样品18个,6次共108个,采集后的土壤样品保存在密封袋中,带回实验室立即风干,并过1 mm筛保存,以备测定。
1.4 土壤pH和养分的测定方法
土壤pH采用DELTA-320 pH 计法(水土比为5 ∶1)。土壤养分的测定参考《土壤农化分析》[6]: 土壤速效磷的测定采用0.5 mol/L NaHCO3浸提—钼锑抗比色法; 土壤速效钾的测定采用1 mol/L NH4OAc浸提—火焰光度法测定; 土壤铵态氮和硝态氮采用1 mol/L KCl浸提后,用AA3型连续流动分析仪测定(德国Bran+Luebbe公司)。
1.5 土壤酶活性的测定方法
土壤酶活性的测定参考《土壤酶及其研究方法》[7]: 土壤过氧化氢酶采用高锰酸钾法,其活性以1 g土消耗0.02 mol/L KMnO4的毫升数表示(mL/g); 土壤磷酸酶采用磷酸苯二钠比色法,其活性以2 h后1 g土壤P2O5毫克数表示(mg/g); 土壤蔗糖酶采用3,5-二硝基水杨酸比色法,其活性以24 h后1 g土壤葡萄糖毫克数表示(mg/g); 土壤脲酶采用靛酚比色法,其活性以24 h后1 g土壤NH3-N毫克数表示(mg/g)。
1.6 数据处理与分析
采用Excel 2013 和SPSS 20.0软件处理数据,进行方差分析和主成分分析。
2.1 不同施肥处理华北落叶松林地土壤养分和pH的动态变化
图1 不同施肥处理土壤速效养分和pH值的周年变化Fig.1 Annual variation of soil available nutrients and pH values under different fertilizer treatments [注(Note): 误差线表示标准差(n=6) Error bars show standard deviation(n=6).]
图2 不同施肥处理土壤酶活性的周年变化Fig.2 Annual variation of soil enzyme activities under different fertilizer treatments [注(Note): 误差线表示标准差 Error bars show standard deviation(n=6).]
2.2 不同施肥处理华北落叶松林地土壤酶活性的动态变化
2.3 华北落叶松人工林地土壤肥力水平评价
为了更好地评价6种施肥处理土壤的肥力状况,从而筛选出适用于华北落叶松人工林地的最佳施肥处理。本研究选用0—20 cm这一最能体现植物对外源氮磷肥利用情况的土层来进行试验,将土壤pH、速效氮、速效磷、速效钾、蔗糖酶、脲酶、磷酸酶和过氧化氢酶等8个指标进行主成分分析(表1)。结果表明,第一主成分的方差贡献率最大为41.876%,第二主成分的方差贡献率为24.721%,第三主成分的方差贡献率为16.484%,三个主成分的累计方差贡献率为83.082%,接近85%,因此,这三个主成分基本能反映林地土壤各指标的相对重要性及各指标之间的关系。
表1 各主成分的贡献率和累计贡献率(%)
对8个土壤质量因子在各主成分上的因子载荷进行分析(表2),结果表明pH、速效氮、速效钾和蔗糖酶对第一主成分影响因子较大,综合了氮、钾利用和运移以及有机碳分解过程的信息,表明它们对土壤系统起着主导作用,即包括蔗糖酶的第一主成分可作为评价林地土壤质量的重要指标,对第二主成分影响较大的是速效磷和脲酶,综合了磷利用和尿素分解过程,且脲酶以较大的因子载荷出现在第二主成分中,表明它对林地土壤系统具有重要作用,第三主成分主要由磷酸酶和过氧化氢酶决定,综合了有机磷转化和过氧化氢的分解过程,且两者出现的因子载荷较大,分别为0.613和0.758,表明磷酸酶和过氧化氢酶在林地土壤综合肥力评价中也具有重要作用。
表2 土壤肥力特征向量分析
将得到的特征向量与标准化后的数据相乘,得到主成分的表达式,最后以每个主成分所对应的特征值占所提取主成分总的特征值之和的比例作为权重计算主成分的综合模型,得到不同施肥处理土壤肥力水平的综合得分(表3)。结果表明,各施肥处理能不同程度地增加林地土壤肥力水平,最佳施肥方案是N1P,N2P次之。与对照相比,施肥初步缓解了华北落叶松人工林地力衰退的现象,林地土壤肥力水平提高。
表3 主成分因子及土壤肥力水平综合得分
施肥使林地土壤养分增加,土壤酶活性增强,土壤肥力水平不同程度地提高,初步缓解了华北落叶松人工林地氮、磷亏缺导致的土壤质量下降、地力衰退等问题,但土壤养分和酶活性之间存在着复杂的联系,受光照、水分和地理位置等多种因素的影响,本研究所得结论能初步反映施肥对林地土壤肥力的改善效果,但具有一定的局限性。今后的研究工作中,仍需重点开展土壤养分、酶活性季节变化特征以及后续监测其年变化特征,可以为长期维持华北落叶松人工林地生产力、恢复地力提供科学依据。
[1] 张建国, 盛炜彤, 熊有强, 万细瑞. 施肥对盆栽杉木苗土壤养分含量的影响[J]. 林业科学, 2006, 42(4): 44-50. Zhang J G, Sheng W T, Xiong Y Q, Wan X R. Effect of fertilization on soil nutrient content of potted Chinese fir seedling[J]. Scientia Silvae Sinicae, 2006, 42(4): 44-50.
[2] Vitousek P.M, Howarth R.W. Nitrogen limitation on land and in the Sea: How can it occur?[J]. Biogeochemistry, 1991, 13(2): 87-115.
[3] Cassman K G, Kropff M J, Gaunt J, Peng S. Nitrogen use efficiency of rice reconsidered: what are the key constraints?[J]. Plant and Soil, 1993, 155-156(1): 359-362.
[4] Crawford N. M, Glass D M A. Molecular and physiological aspects of nitrate uptake in plants[J]. Trends in Plant Science, 1998, 3(10): 389-395.
[5] 全国土壤普查办公室. 中国土壤普查技术[M]. 北京: 中国农业出版社, 1992. National Soil Survey Office. Soil survey and technology of China [M]. Beijing: China Agriculture Press, 1992.
[6] 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2005. Bao S D. Soil agricultural chemistry analysis [M]. Beijing: China Agriculture Press, 2005: 34-110.
[7] 关松荫. 土壤酶及其研究方法[M]. 北京: 中国农业出版社, 1986. Guan S Y. Soil enzyme and its research methods [M]. Beijing: China Agricultural Press, 1986: 57-323.
[8] 陈立新, 陈祥伟, 段文标. 落叶松人工林凋落物与土壤肥力变化的研究[J]. 应用生态学报, 1998, 9(6): 581-586. Chen L X, Chen X W, Duan W B. Larch litter and soil fertility[J]. Chinese Journal of Applied Ecology, 1998, 9(6): 581-586.
[9] Rennenberg H, Wildhagen H, Ehlting B. Nitrogen nutrition of poplar trees[J]. Plant Biology, 2010, 12(2): 275-291.
[10] 陈钦程, 徐福利, 王渭玲, 程治文.秦岭北麓不同林龄华北落叶松土壤速效钾变化规律[J]. 植物营养与肥料学报, 2014,(25): 1244-1250. Chen Q C, Xu F L, Wang W L, Cheng Z W. Seasonal dynamics in soil content of available K for different ages of Larix Principis-rupprechtii in the northern foot of the Qinling[J]. Plant Nutrient and Fertilizer Science, 2014,(25): 1244-1250.
[11] 李俊清, 宫伟光. 东北主要造林树种的营养元素含量特征分析[J]. 植物生态学与地植物学学报, 1991, 15(4): 380-385. Li J Q, Gong W G. Characteristic analysis of nutrient contents of major tree species in Northeast China[J]. Acta Phytoecologica Et Geobotanica Sinica, 1991, 15(4): 380-385.
[12] 郭蓓, 刘勇, 李国雷, 等. 飞播油松林地土壤酶活性对间伐强度的响应[J]. 林业科学, 2007, 43(07): 128-133. Guo B, Liu Y, Li G L, et al. Response of soil enzyme activity to thinning intensity of aerial seedingPinustabulaeformisstands[J]. Scientia Silvae Sinicae, 2007, 43(07): 128-133.
[13] 许翠清, 陈立新, 颜永强, 纪萱.温带森林土壤铵态氮、硝态氮季节动态特征[J]. 东北林业大学学报, 2008, 36(10): 19-21. Xu C Q, Chen L X, Yan Y Q, Ji X. Seasonal dynamic characteristics of ammonium-nitrogen and nitrate-nitrogen contents in soils in temperate forests[J]. Journal of Northeast Forestry University, 2008, 36(10): 19-21.
[14] 杨振安, 宋双飞, 李靖, 等. 不同龄林华北落叶松人工林根系特征和氮磷养分研究[J]. 西北植物学报, 2014, 34(7): 1432-1442. Yang Z A, Song S F, Li Jetal. A study on root characteristics and nutrients of different agedLarixprincipis-rupprechtiiMayr. plantations[J]. Acta Botanica Boreali-Occidentalia sinica, 2014, 34(7): 1432-1442.
[15] 刘勇, 李国雷, 林平, 等. 华北落叶松人工幼、中龄林土壤肥力变化[J]. 北京林业大学学报, 2009,(3): 17-23. Liu Y, Li G L, Lin Petal. Changes of soil fertility in young and middle agedLarixprincipis-rupprechtiiplantations[J]. Journal of Beijing Forestry University, 2009,(3): 17-23.
[16] 马红亮, 王杰, 高人, 等. 施用铵态氮对森林土壤硝态氮和铵态氮的影响[J]. 土壤, 2011, 43(6): 910-916. Ma H L, Wang J, Gao Retal. Effect of ammonium application on contents of nitrate and ammonium nitrogen in forest soil[J]. Soils, 2011, 43(6): 910-916.
[17] 潘瑞炽. 植物生理学(第六版)[M]. 北京: 高等教育出版社, 2008. Pan R C. Plant physiology(Sixth edition) [M]. Beijing: Higher Education Press, 2008.
[18] Bolland M D A, Weatherley A J, Gilkes R J. The long-term residual value of rock phosphate and superphosphate fertilizers for various plant species under field conditions[J]. Nutrient Cycling in Agroecosystems, 1989, 20(2): 89-100.
[19] Mercik S, Nemeth K. Effects of 60-year N, P, K and Ca fertilization on EUF-nutrient fractions in the soil and on yields of rye and potato crops[J]. Plant and Soil, 1985, 83(1): 151-159.
[20] 李银水, 鲁剑巍, 廖星, 等. 磷肥用量对油菜产量及磷素利用效率的影响[J]. 中国油料作物学报, 2011, 33(1): 52-56. Li Y S, Lu J W, Liao X et al. Effect of phosphorus application rate on yield and fertilizer-phosphorus utilization efficiency in rape seed[J]. Chinese Journal of Oil Crop Sciences, 2011, 33(1): 52-56.
[21] 张秀娟, 吴楚, 梅莉, 等. 水曲柳和落叶松人工林根系分解与养分释放[J]. 应用生态学报, 2006, 17(8): 1370-1376. Zhang X J, Wu C, Mei Letal. Root decomposition and nutrient release ofFraxinusmanshuricaandLarixgmeliniiplantations[J]. Chinese Journal of Applied Ecology, 2006, 17(8): 1370-1376.
[22] 袁玲, 杨邦俊, 郑兰君, 刘学成. 长期施肥对土壤酶活性和氮磷养分的影响[J]. 植物营养与肥料学报, 1997, 3(4): 300-306. Yuan L, Yang B J, Zheng L J, Liu X C. Effects of long-term fertilization on enzymatic activities and transformation of nitrogen and phosphorus in soil[J]. Plant Nutrient and Fertilizer Science, 1997, 3(4): 300-306.
[23] 齐高强, 耿增超, 周锋利. 秦岭南坡火地塘林区华北落叶松人工林土壤酶活性研究[J]. 西北农林科技大学学报, 2005, 33(3): 81-84. Qi G Q, Gen Z C, Zhou F L. Study on the activity of soil enzymes inLarixpincipis-rupprechtiistands at Huo Di Tang on the south slope of the Qinling mountains[J]. Journal of Northwest A&F University(Natural Science Edition), 2005, 33(3): 81-84.
[24] 彭小兰, 王德建, 王灿, 等. 长期不同施肥处理对麦季土壤酶活性的影响[J]. 中国农学通报, 2013, 29(33): 200-206. Peng X L, Wang D J, Wang Cetal. Effect of long-term different fertilizations on soil enzyme activities at panicle and harvest stage of wheat[J]. Chinese Agricultural Science Bulletin, 2013, 29(33): 200-206,
[25] 李娟, 赵秉强, 李秀英, So Hwat Bing. 长期不同施肥条件下土壤微生物量及土壤酶活性的季节变化特征[J]. 植物营养与肥料学报, 2009, 15(5): 1093-1099. Li J, Zhao B Q, Li X Y, Bing S H. Seasonal Variation of soil microbial and soil enzyme activities in different long-term fertilizer regimes[J]. Plant Nutrient and Fertilizer Science, 2009, 15(5): 1093-1099.
[26] 杨成德, 龙瑞军, 薛莉, 等. 东祁连山高寒草本草地土壤微生物量及酶的季节动态[J]. 中国草地学报, 2014, 36(2): 78-84. Yang C D, Long R J, Xue Letal. Seasonal dynamic of soil microbial biomass and enzymatic activities in alpine grasslands of the Eastern Qilian Mountains[J]. Chinese Journal of Grassland, 2014, 36(2): 78-84.
[27] 王艮梅, 罗琳琳, 郑聚锋. 苏北不同代次和林龄杨树人工林土壤酶活性季节变化特征[J]. 南京林业大学学报, 2014, 38(4): 45-50. Wang G M, Luo L L, Zheng J F. Seasonal dynamics characteristics of soil enzyme activities of poplar plantation with different stand ages and rotations[J]. Journal of Nanjing Forestry University, 2014, 38(4): 45-50.
[28] 王渭玲, 杜俊波, 徐福利, 张晓虎. 不同施肥水平对桔梗土壤微生物和土壤酶活性的影响[J]. 中国中药杂志, 2013, 38(22): 3851-3856. Wang W L, Du J B, Xu F L, Zhang X H. Effect of fertilization levels on soil microorganism amount and soil enzyme activities[J]. China Journal of Chinese Material, 2013, 38(22): 3851-3856.
[29] 张长华, 蒋卫, 蒋玉梅, 等. 施肥对烤烟产量、品质及土壤养分、酶活性的影响[J]. 中国土壤与肥料, 2012,(3): 77-80. Zhang C H, Jiang W, Jiang Y Metal. Influence of fertilization on the yield and quality of flue-cured tobacco, soil nutrient and enzyme activity[J]. Soil and Fertilizer Sciences in china, 2012,(3): 77-80.
[30] 孙瑞莲, 赵秉强, 朱鲁生, 等. 长期定位施肥对土壤酶活性的影响及其调控土壤肥力的作用[J]. 植物营养与肥料学报, 2003, 9(4): 406-410. Sun R L, Zhao B Q, Zhu L Setal. Effects of long-term fertilization on soil enzyme activities and its role in adjusting-controlling soil fertility[J]. Plant Nutrient and Fertilizer Science, 2003,9(4): 406-410.
[31] 李慧杰, 徐福利, 林云, 栾晓波. 施用氮磷钾对黄土丘陵区山地红枣林土壤酶与土壤肥力的影响[J]. 干旱地区农业研究, 2012, 30(4): 53-59. Li H J, Xu F L, Lin Y, Luan X B. Effects of N, P and K fertilization on soil enzyme activities and soil fertility in mintane Jujube forest of hilly loess region[J]. Agriculture Research in the Arid Areas, 2012, 30(4): 53-59.
[32] 王才斌, 郑亚萍, 梁晓艳, 等. 施肥对旱地花生主要土壤肥力指标及产量的影响[J]. 生态学报, 2013, 33(4): 1300-1307. Wang C B, Zheng Y P, Liang X Yetal. Effects of fertilization on soil fertility indices and yield of dry-land peanut[J]. Acta Ecologica Sinica, 2013, 33(4): 1300-1307.
[33] 余晓章, 杨正菊, 李贤伟, 等. 施肥对川中丘陵杨树人工林土壤生物活性的影响[J]. 土壤通报, 2014, 45(3): 618-624. Yu X Z, Yang Z J, Li X Wetal. Effects of fertilization on soil biological activity for polar plantation in Sichuan Hilly Basin[J]. Chinese Journal of Soil Science, 2014, 45(3): 618-624.
[34] Zhong W H, Gu T, Wang Wetal. The effects of mineral fertilizer and organic manure on soil microbial community and diversity[J]. Plant and Soil, 2010, 326(1): 511-522.
[35] 樊晓刚, 金轲, 李兆君, 荣向农.不同施肥和耕作制度下土壤微生物多样性研究进展[J]. 植物营养与肥料学报, 2010, 16(3): 744-751. Fan X G, Jin K, Li Z J, Rong X N. Soil microbial diversity under different fertilization and tillage practices: A review[J]. Plant Nutrient and Fertilizer Science, 2010,16(3): 744-751.
[36] 闫湘, 金继运, 何萍, 等. 提高肥料利用率技术研究进展[J]. 中国农业科学, 2008, 41(2): 450-459. Yan X, Jin J Y, He P, Liang M Z. Recent advance in technology of increasing fertilizer use efficiency[J]. Scientia Agriculture Sinica, 2008, 41(2): 450-459.
[37] 朱兆良. 我国土壤供氮和化肥氮去向研究的进展[J]. 土壤, 1985, 17(1): 2-91. Zhu Z L. Research progresses on the fate of soil N supply and applied fertilizer N in China[J]. Soils, 1985, 17(1): 2-91.
[38] 杨宁, 邹冬生, 杨满元, 等. 衡阳紫色土壤土丘陵坡地不同植被恢复阶段土壤酶活性特征研究[J]. 植物营养与肥料学报, 2013, 19(6): 1516-1524. Yang N, Zou D S, Yang M Yetal. Soil enzyme activities in different re-vegetation stages on sloping-land with purple soils in Hengyang of Hunan Province, China[J]. Plant Nutrient and Fertilizer Science, 2013, 19(6): 1516-1524.
[39] 叶协锋, 杨超, 李正, 敬海霞. 绿肥对植烟土壤酶活性及其土壤肥力的影响[J]. 植物营养与肥料报, 2013, 19(2): 445-454. Ye X F, Yang C, Li Z, Jing H X. Effects of green manure in corporation on soil enzyme activities and fertility in tobacco-planting soils[J]. Plant Nutrient and Fertilizer Science, 2013, 19(2): 445-454.
Increase of soil nutrients and enzymatic activity by adding nitrogen and phosphorus toLarixprincipis-rupprechtiiplantation
MA Ya-juan1, XU Fu-li2,3, WANG Wei-ling1*, CHEN Qin-cheng3, ZHAO Hai-yan3, ZHAO Ya-fang2
(1CollegeofLifeSciences,NorthwestA&FUniversity,Yangling,Shaanxi712100,China; 2InstituteofSoilandWaterConservationofChineseAcademyofSciences,MinistryofWaterResources,Yangling,Shaanxi712100,China;3CollegeofResourcesandEnvironment,NorthwestA&FUniversity,Yangling,Shaanxi712100,China)
【Objectives】 A field experiment was conducted to study effects of exogenous nitrogen and phosphorus fertilization on soil nutrients and enzyme activities, and select proper fertilizer amounts for the half-matureLarixprincipis-rupprechtiiplantation in the Qinling Mountains of China. 【Methods】 Nitrogen and phosphate fertilizers were applied individually or together in three levels in a 20-year-old half-matureLarixprincipis-rupprechtiiplantation in mid April 2012. Soil samples in 0-20 cm depth were collected from May to October 2012, and the soil nutrient contents and enzyme activities were measured. The principal components analysis was used to select the optimum fertilization scheme. 【Results】 1) The application of nitrogen and phosphorus fertilization significantly increases the soil available nitrogen(N) and available phosphorus(P) contents, but decreases soil available potassium(K) content and pH. The increase levels of different treatments in soil available N was in the order of N2P>N2>N1P>N1>P, and available P in N1P>P>N2P>N2>N1, while the soil available K decrease was in the order of N2P>N1P>N2>P>N1 and pH in order of N2P>N2>P>N1P>N1. 2) The activities of soil invertase, phosphatase, and urease could be significantly increased, but that of hydrogen peroxidase decreased by the N and P fertilization. The increase levels of the soil enzyme activities for invertase are in the order of N1P>N2P>N1>P>N2, for phosphatase are N2P>N1>N1P>N2>P, and for urease are N2P>N1P>N1>N2>P, while the decreased of hydrogen peroxidase are in the order of N2P>N2>N1P>P>N1. 3) The responses of soil nutrient contents are sensitive to seasons. The available N, P and K contents decrease firstly and then increase during the year, with the minimum values appeared in plants in July and August. The changes of soil enzyme activities are complex, most often the maximum values are also appeared in July and August. 4) Nitrogen and phosphorus fertilizer alone, or their combined application could increase the contents of soil available N and available P. The soil available N is increased from 21.56 mg/kg to 35.77 mg/kg and soil available P from 1.86 mg/kg to 3.73 mg/kg. The soil fertility levels are improved by fertilization, with satisfactory effects with the N1P and N2P treatments. 5) Both the nitrogen and phosphorus fertilization could increase the activities of soil invertase, urease and phosphatase, but decrease hydrogen peroxidase activity slightly. The fertilization generally increases the soil enzyme activities. 6) The principal components analysis indicates that the fertilization could significantly improve soil fertility levels with the order of N1P> N2P> P > N1 > N2>CK. The highest increase is 1.505 in N1P, then is 1.405 in N2P. 【Conclusions】 Fertilization is capable of enhancing soil nutrients and enzyme activities, thus improving soil fertility and alleviating the decline in soil fertility caused by nitrogen and phosphorus deficiencies in theLarixprincipis-rupprechtiiplantation. The proper fertilization amount is N 75 kg/hm2and P2O575 kg/hm2(N1P), followed by N 150 kg/hm2and P2O575 kg/hm2(N2P).
Larixprincipis-rupprechtii; nitrogen and phosphorus fertilization; nutrient; enzyme activity; soil fertility
2014-07-21 接受日期: 2014-11-25 网络出版日期: 2015-02-13
国家重点基础研究发展计划(973计划)2012CB416902资助。
马亚娟(1989—),女,甘肃庆阳人,硕士研究生,主要从事植物生理生态方面的研究。E-mail:yang02410241@163.com * 通信作者 E-mail:ylwwl@163.com
S791.22; S718.5
A
1008-505X(2015)03-0664-11