煤矿井下安全开关电源设计思路探析

2015-05-30 10:00:13李超
科技创新与应用 2015年20期
关键词:电源煤矿设计

摘 要:近年来,伴随着煤矿生产设备在井下的广泛使用,在电源线路出现线路老化或者使用不当的情况下,产生短路、漏电或者电火花等事故的机率明显增加,对煤矿生产以及工人的生命安全造成极大隐患。因此,必须高度重视煤矿井下安全开关电源设计工作,采取有效措施,确保电路安全运行和煤矿的安全生产。

关键词:煤矿;安全开关;电源;设计

煤炭在我国的能源结构中占有重要地位,我国的煤炭产量占世界煤炭总产量的35%以上。但是,在煤炭的生产过程中,由于各种因素的影响,矿井下会产生大量的易燃易爆气体以及粉尘等,极易引发爆炸以及火灾等事故,对煤矿生产以及工人的生命财产安全造成严重影响。近年来,随着科学技术的快速发展,很多检测仪器、通讯设备、监控系统以及报警装置等被广泛运用到煤矿井下生产过程中。这些用电设备在煤矿生产中,由于各种因素的影响,可能会产生短路、漏电以及电火花等事故,煤炭井下用电安全问题已经引起社会的高度关注。

1 煤矿井下安全开关电源电路放电特性分析

在当前我国的能源结构中,煤矿仍然是支撑我国经济社会发展的重要组成部分。在煤矿井下生产过程中,由于各种因素的影响,难免会发生爆炸等危险,造成严重的人员伤亡以及财产损失等。因此,在煤矿井下生产中,应当高度重视安全开关电源设计。根据煤矿井下安全开关电源的要求,应当严格控制电路的火花放电能量,包括电路放电的电流、电压以及放电时间等。同时,煤矿井下安全开关电源还应当具有稳压、限流等功能,并且能够在特殊情况下采取快速切断保护措施,确保满足煤矿安全生产的相关要求。而由于煤矿井下安全开关电源电路中含有很多电容、电感等储能元器件,这些元器件会对电源电流的输出产生直接影响。因此,在对煤矿井下安全开关电源进行设计的时候,首先应当熟悉电容、电感放电等过程,掌握其放电的基本原理,在此基础上,才能设计出符合安全要求的煤矿井下安全开关电源。

1.1 煤矿井下电路产生电火花的规律

在易燃、易爆的环境下,电气设备在运行过程中产生出大量的电火花,在达到爆炸性气体临界值的状态下,会引燃周围爆炸性物质,造成严重的后果。因此,必须要重视研究煤矿井下电路电火花的规律,努力从源头消除其危害。大量研究表明,煤矿井下电路放电主要包括三种类型:电弧放电、辉光放电以及火花放电,或者这三种类型同时出现。一般来说,电弧放电是在电压以及电流都不高的情况下出现的,由于某种不稳定的放电经过转化产生。在电流很小而且处于低电压的状态下,因为开关器件所具有的特殊性质,电路发生切换时会产生电弧放电现象。而辉光放电则是在高电压、小电流的情况下产生的。由于这种情况很特殊,在实际的煤矿井下电路运行中非常少见。由于煤矿井下电源电路在一般情况下带有电容和电感的,电路在导通以及断开的过程中,由于击穿了放电间隙,会发生电火花放电现象,这就是火花放电产生的主要原因。

1.2 电容性电路放电特性

煤矿井下安全开关电源应当充分满足电气设备性能指标的要求,确保电气设备的安全运行。其中,电容、电感的影响较大。如果取值太大,那么相应的输出短路释放出的能量就会显著增加,而如果取值太小,就会增加开关管中的电流应力,导致输出纹波电压变大,严重影响到输出电压的稳定性。所以,在取值过程中,应当充分考虑到电气设备性能指标的要求,合理的取值是影响煤矿井下安全开关电源设计的关键性因素。在一般情况下,煤矿井下安全开关电源的输出端,会存在较大的输出电容,当出现输出短路等问题时,就会对电源安全性能产生较大危害。一般来说,要想在电容性电路放电过程中点燃气体混合物,就必须要同时满足能量、功率等要求,如果仅仅满足单个条件,即使放电时间很长,也无法点燃气体混合物。在很多时候,人们把电容性电路放电过程分为火花放电、放电维持以及极间放电结束等阶段。大量研究成果表明,在电容性电路整个放电过程中,第一阶段的能量变化最大,因而也是最有威胁性的。随着放电间隙的击穿,放电电流以及瞬时功率几乎在同一时达到最大值。可见,由于电容性电路的放电具有电压变化快、电流变化显著以及放电能量集中等特征,因此,放电引爆混合性气体的破坏后果非常严重。

1.3 电感在电容火花放电中的影响

由于煤矿井下安全电源线路回路中同时存在电容、电感这两种储能元器件,而電感的存在会对煤矿井下安全开关电源的设计产生出一定的影响。因此,要高度重视电感及其在电容火花放电中的影响进行研究。研究表明,煤矿井下安全电源电路中的初始电压以及所选取的电感数值的不同,都会对电容火花放电过程中电流的变动情况产生出明显的影响。而由于电阻的存在,会对电容火花放电造成一定的能量损耗,因此,通过串联电感能够在一定程度上减缓电容火花放电的电流增长速率,使其延迟达到电流峰值的时间,从而避免煤矿井下危险环境中可燃气体的爆炸。

2 煤矿井下安全开关电源的设计

由于在煤矿井下的易燃易爆的危险环境下工作,因此,与一般的开关电源相比,安全开关电源具有特殊要求。首先,必须有安全保护电路限制能量。依靠安全保护电路,煤矿井下安全开关电源可以有效限制故障状态下火花放电能量,包括限制放电电压、电流以及放电时间等。在安全开关电源的输出功率小,对电压的稳定性要求不高的时候,可以通过在电源输出端进行串联限流电阻的方式降低放电能量。如果安全开关电源的输出功率较大,就应当加入过流、过压多重保护电路,确保安全开关电源的安全输出。其次,重视电气隔离。电气隔离指的是安全开关电源的输出端与输入端要有电气隔离,防止能量由非本安的输入端传递至输出端,对输出端的安全性能产生不利影响。在多路输出时,一定要进行隔离处理,以限制火花放电的能量,充分满足电源线路的安全运行要求。再次,确保不间断供电。在煤矿井下承担着检测、监控以及报警等职能的电器设备必须能够在电网断电之后可以继续工作。然而,煤矿井下的供电质量比较差,经常会出现电网断电的情况,这就要求安全开关电源能够不间断供电,以确保矿井下电气设备的正常工作与运行,提高煤矿生产安全性能。最后,煤矿井下电源电路能够提供多重化保护。电源的隔离、保护以及可靠性组件的设计要确保安全等级的双重化或多重化,根据相关国家标准,煤矿井下电气设备必须满足ib等级要求,保护电路要进行多重化设计。

2.1 煤矿井下安全开关电源技术指标及结构设计

根据煤矿井下安全开关电源的工作需要,其设计技术指标主要包括:额定输入电压127VAC,频率50HZ;额定输出电压12V;纹波电压小于2%Vo;开关频率200kHZ。煤矿井下安全开关电源将交流电127V转变成直流电12V。电源结构图如图1所示。交流电经过整流、滤波等环节,成为纹波较大的直流电。在Buck-Boost变换器的作用下,经双重过压、过流保护电路之后,输出12V直流电。由于安全开关电源主要是在煤矿井下这种危险性的条件下使用,因此,为了安全的需要,必须要有双重过压、过流保护电路。煤矿井下安全开关电源结构主要包括输入滤波电路、整流滤波电路、备用电源、Buck-Boost变换器、多重过压、过流保护电路等,最终实现安全输出。其总体结构框图如图1所示。

图1 电源总体结构框架图

2.2 电路参数设计及选型分析

电路参数设计的主要内容包括功率器件的選型、备用电源以及控制芯片的选取等

首先,功率器件的选型包括开关管和二极管的选型。开关管在进行选型时,Buck-Boost变换器的开关管S选型必须符合下列要求:首先,开关管输出电流的额定值Ivt>ILp=1.1A;其次,开关管漏极与源极之间所承受的最大电压UDS,max>1.5(Vi,max+Vo)。而Buck-Boost变换器中二极管的选型应当满足下列条件:峰值电流必须大于变换器的输出电流(1A);反向最大耐压值应大于输出电压的最大值1.5 (Vimax+Vo)≈50V。

其次,关于备用电源的选取。对于煤矿井下安全防爆电源来说,备用电源与主电路之间有很多不同的接线方法,备用电源的种类也非常多,比较常见的是锂电池和铅蓄电池。在很多煤矿井下安全开关电源设计中,电路选用的是额定电压为24V,容量2Ah的蓄电池,这种蓄电池在充电完成之后,可达到2小时的工作时长。

最后,在选取控制芯片过程中,通过电压控制技术实现PWM,这只是通过输出电压进行信号反馈,是一个单环控制。在此基础上,通过电流控制型PWM,采用电流控制技术来调节脉宽,在电路结构上增加了电流反馈环,达到控制开关管峰值电流的目的。如果在运行中出现故障,可以限制瞬时峰值电流。由于采用电压和电流两种控制手段,所以,对于电压调整率、负载调整率以及瞬态响应等进行了改善与处理,这是一种比较有效的控制器件。

2.3 电容、电感的选取

在煤矿井下安全开关电源的设计过程中,使用到了很多电容和电感,这些电容电感会对电源的安全稳定运行起到极为重要的作用。因此,要高度重视电容、电感的选取。电容有很多类型,包括安规电容、涤纶电容、云母电容以及电解电容等。不同类型的电容会对煤矿井下安全开关电源的性能产生直接影响。例如,使用滤波电容,将会影响到安全开关电源输出电压的稳定性以及抗干扰能力。因此,应该根据容量、特点以及应用场合等的需要选择不同的电容。在电感的设计中,由于电感是煤矿井下安全开关电源常用的元件,一般用作蓄能元件,或者与电容一起用在滤波电路中。煤矿井下安全开关电源设计,在输入整流滤波电路和输出整流电路中,都会使用到电感元件,主要用于平滑电流,避免产生较大电压。

3 结束语

安全开关电源是煤矿井下生产的关键性设备,其安全、高效以及稳定等特点,成为煤矿井下供电的重要供电电源。因此,在设计煤矿井下安全开关电源时,应当充分考虑到电路放电特性,研究安全开关电源技术指标,分析电路参数,合理选择电容和电感,确保电路安全运行和煤矿的安全生产。

参考文献

[1]周亚夫,许辰雨.矿用本安电源保护电路的优化设计[J].中国煤炭,2015(1).

[2]林引.矿用高可靠性本安型传感器电源电路设计与实现[J].煤炭科学技术,2013(6).

[3]刘亚辉,等.矿用宽电压自适应防爆本质安全型电源设计[J].工矿自动化,2013(4).

作者简介:李超(1978-),男,四川江津人,凉山州益门煤矿机电科,助理工程师,大学本科学历,研究方向:煤矿机电技术。

猜你喜欢
电源煤矿设计
Cool Invention炫酷发明
瞒天过海——仿生设计萌到家
艺术启蒙(2018年7期)2018-08-23 09:14:18
设计秀
海峡姐妹(2017年7期)2017-07-31 19:08:17
有种设计叫而专
Coco薇(2017年5期)2017-06-05 08:53:16
大型煤矿自动化控制系统的设计与应用
工业设计(2016年4期)2016-05-04 04:00:23
哪一款移动电源充电更多?更快?
消费者报道(2016年3期)2016-02-28 19:07:38
阳光电源
风能(2016年12期)2016-02-25 08:46:10
上半年确定关闭煤矿名单513处
现代企业(2015年8期)2015-02-28 18:55:34
去年95.6%煤矿实现“零死亡”
现代企业(2015年6期)2015-02-28 18:51:50
瞬变电磁法在煤矿防治水中的应用
河南科技(2014年8期)2014-02-27 14:07:41