击荷载下角焊缝动态强度试验研究

2015-04-17 18:20陈英刘瑞娟霍静思
湖南大学学报·自然科学版 2015年3期

陈英 刘瑞娟 霍静思

摘要:对焊喉处受拉和受剪两种受力状态的角焊缝连接件进行动态拉伸试验,研究冲击荷载作用下受力状态对角焊缝破坏形态、断面角度、极限强度的影响规律.并通过与静态力学性能比较发现,动态冲击荷载作用下,角焊缝受拉和受剪极限强度均明显提高,即动态应变率效应显著;受拉角焊缝的破坏面角度均为45°,与静力试验结果(90°左右)有显著差异.角焊缝受拉下的应变率效应比受剪时明显,且角焊缝动态极限强度增大系数随应变率的影响规律与以往文献试验结果一致.

关键词:冲击荷载;动态拉伸;极限强度;应变率

中图分类号:TU392.4 文献标识码:A

随着科学技术的不断发展,建筑结构向大跨、高层以及超高层发展,钢结构的使用不断增加,对于复杂的节点,焊接成为了主要的连接方式.自20世纪以来,焊接技术发展十分迅速.过去的半个多世纪里关于焊缝的静力性能已有大量研究工作,尤其是角焊缝的强度\[1-7\]和断裂角度的研究\[1-4\],以及外加荷载与焊缝轴线呈一定夹角时焊缝的力学性能研究\[7-10\];此外,对角焊缝的焊脚尺寸\[3-5,7-11\]和焊接方法\[3-4\]、焊条类型\[3,5,7,9-11\]以及温度\[3,7,10-12\]等参数的研究也较多.在实际结构中,大部分焊缝不是轴心受力,因此有学者对偏心荷载作用下角焊缝的力学性能进行了研究\[13-16\].

在制作加工过程中焊缝不可避免地存在一定缺陷,王元清等\[17\]对钢厚板母材焊接影响区的力学性能进行了试验研究.动力荷载作用下焊缝缺陷对结构安全带来隐患,建筑结构在遭受爆炸、地震和冲击作用时,钢材表现出不同的力学行为,其中应变率效应的影响较为显著\[18\].刘瑞娟\[19\]对角焊缝和对接焊缝分别进行动态冲击试验,研究焊缝的极限强度随应变率的变化规律.于安林等\[20\]采用快速加载的试验方法研究了角焊缝的动力性能,建议不降低中级工作制吊车梁的正面角焊缝强度,与承受静载时取相同值.

本文针对角焊缝焊喉处受拉和受剪两种受力状态,利用一种可实现落锤拉伸冲击试验的转换装置和高性能落锤冲击试验机进行角焊缝的动态冲击力学性能试验研究,对比分析角焊缝在静力荷载和动态冲击荷载作用下的力学性能.

1试验概况

1.1试件设计与制作

对于抗拉角焊缝和抗剪角焊缝分别设计了3个静力加载试件和9个动力冲击加载试件,动力试验通过调整落锤冲击高度(H=4 m, 5 m, 6 m)分为3组(a, b, c),考察应变率对其动态力学性能的影响,每组试件的冲击速度v见表1.试件制作采用目前工程中常用的Q235钢,焊接工作在工厂中进行,焊接电压为24~30 V,电流为220~280 A,采用直径为φ1.2的ER506 (AWS ER70S6) 焊丝进行气体保护焊.制作抗拉角焊缝时将两块长为780 mm的钢板按图1(b)所示整体焊接,焊接完成后去掉两端起灭弧位置,并采用着色渗透探伤法检测焊缝质量,未发现明显缺陷,最后按照设计宽度50 mm切取试验试件,受剪角焊缝也以同样的制作方法(如图1(a)),以保证每条焊缝的质量是相同的.受拉角焊缝试件正、反两面均开90°“V”形坡口焊,受剪角焊缝试件两侧“V”形坡口亦为90°,使得坡口尺寸与焊脚尺寸相同.在保证角焊缝的破坏先于母材的屈服的前提下,两种试件焊脚尺寸hf设计值均为8 mm,实测角焊缝有效厚度he(焊喉部位)见表1.

1.2试验方法

动态试验加载及测量装置如图2所示,动力试验采用一种可实现落锤拉伸冲击试验的转换装置\[21\]和高性能落锤冲击试验机共同完成:落锤试验机的锤头通过自由落体冲击上梁,上梁通过传力框将冲击力传给下梁,以带动试件受拉,即实现了将落锤冲击力转化为试件的轴向拉伸动态力.为使试件与装置形成统一整体,在试件两端各焊一块端板,并用高强螺栓与装置连接.试件变形采用LTM200S型位移计测量,动态冲击荷载通过与试件相连的力传感器测得,动态试验数据通过NIPXIe1006Q动态采集仪进行采集,数据采集时的频率为1 MHz.

1.36注:“SF”和“TF”分别表示受剪角焊缝和受拉角焊缝;字母“S”和“D”分别表示静力试验和动力试验;字母“a”“b”“c”分别表示落锤冲击高度为4 m,5 m,6 m,数字“1”“2”“3”代表重复试验次数.

2试验结果及分析

2.1试件破坏形态对比

图3给出了受拉角焊缝和受剪角焊缝在静载和动态冲击荷载作用下的破坏形态.试验表明,两种加载方式下受剪角焊缝以及静载下受拉角焊缝的破坏截面均为平整截面,动态冲击拉伸作用下部分受拉角焊缝试件破坏截面出现凹凸现象.两种角焊缝的破坏截面角度 (断裂面与力作用方向的夹角)见表1,可知,受剪角焊缝在静力和动力作用下的破坏截面角度均在10°以内,与理论破坏角度0°较接近;受拉角焊缝在静载下的破坏截面角度与理论值90°接近,而动态冲击荷载下的破坏截面角度均为45°,可能是由于施焊位置的影响使得受拉角焊缝两个焊脚尺寸存在差异,文献\[3\]的试验也得出两个焊脚尺寸之比对焊缝破坏截面角度有显著影响的结论;此外,角焊缝根部存在严重的应力集中\[22\],在动力荷载作用下应力集中的不利影响将十分突出,往往是引起脆性破坏的根源.

2.2角焊缝动态强度

受拉和受剪角焊缝试件的极限荷载Fud,焊缝的极限强度fud,极限强度平均值fa,位移Δ,单位尺寸变形Δ/hf测量值列于表1,动态冲击拉伸作用下两种受力状态角焊缝极限强度均明显增大,且随着冲击速度的增加,焊缝强度有增大的趋势.将相同冲击速度下角焊缝受拉和受剪极限强度平均值进行对比,可知,角焊缝受剪与受拉强度比在0.62~0.67之间,与钢材抗剪设计强度为抗拉设计强度的0.58倍接近,可用相同的理论确定角焊缝动态强度设计值.由焊缝变形可知,受剪角焊缝的变形性能更好,其单位尺寸变形约为受拉角焊缝的3倍左右.

通常用动力荷载下的极限强度与静力下的极限强度之比来衡量强度的增大程度,称之为动力增大系数DIF(Dynamic Increase Factor).DIF随着应变率的增大有增大的趋势\[18\],Soroushian\[23\],林峰\[24\]和Symonds\[25\]分别根据试验结果提出了钢材强度增大系数随应变率发展规律的经验公式.图4将本文的试验结果分别用这3种经验公式计算结果对比,发现动态冲击试验离散性较大,由于试件外形及尺寸不同,两种受力状态的角焊缝在相同冲击速度下的应变率也有明显差别;但角焊缝受拉和受剪极限强度增大系数均大于1且小于1.5.

/s-1

3结论

通过对焊喉处受拉和受剪的正面角焊缝动态冲击力学性能的试验研究,在本文试验范围内,可得到如下结论:

受拉角焊缝在动态冲击荷载下的破坏截面角度与理论值有显著差异,静力荷载作用下受拉角焊缝破坏截面角度约为90°,与理论值接近,而动态冲击荷载作用下的破坏截面角度约为45°,即破坏面为“V”型坡口与焊缝接触面;动态冲击拉伸作用下角焊缝受拉和受剪极限强度均有显著提高,即动态应变率效应显著,且角焊缝受拉时的应变率效应比受剪时更明显,但两者的极限强度增大系数均在1~1.5之间;角焊缝动态应变率效应随应变率的影响规律与以往文献中钢材的动态试验结果一致.

参考文献

[1]KATO B, MORITA K. Strength of transverse fillet welded joints \[J\]. Welding Journal, 1974, 53(2): 59s-64s.

[2]KAMTEKAR A G. A new analysis of the strength of some simple fillet welded connections \[J\]. Journal of Constructional Steel Research, 1982, 2(2): 33-45.

[3]NG A K F, DRIVER R G, GRONDIN G Y. Behavior of transverse fillet welds \[R\]. Edmonton, Canada:Department of Civil and Engineering, University of Alberta, 2002:1-90.

[4]MELLOR B G, RAINEY R C T, KIRT N E. The static strength of end and T fillet weld connections \[J\]. Materials & Design, 1999, 20(4): 193-205.

[5]KANVINDE A M, GOMEZ I R, ROBERTS M, et al. Strength and ductility of fillet welds with transverse root notch \[J\]. Journal of Constructional Steel Research, 2009, 65(4): 948-958.

[6]NEIS V V. New constitutive law for equal leg fillet welds \[J\]. Journal of Structural Engineering, 1985, 111(8): 1747-1759.

[7]CALLELE L J, GRONDIN G Y, DRIVER R G. Strength and behavior of multiorientation fillet weld connections \[R\]. Edmonton, Canada: Department of Civil and Engineering, University of Alberta,2005:1-218.

[8]BUTLER L J, KULAK G L. Strength of fillet welds as a function of direction of load \[J\]. Welding Journal, 1971, 50(5): 231s-234s.

[9]MIAZGA G S, KENNEDY D J L. Behavior of fillet welds as a function of the angle of loading \[J\]. Canadian Journal of Civil Engineering,1989,16(4): 583-599.

[10]DENG K, GRONDIN G Y, DRIVER R G. Effect of loading angle on the behavior of fillet welds\[R\]. Edmonton, Canada: Department of Civil and Engineering, University of Alberta, 2003:1-169.

[11]LI C, GRONDIN G Y, DRIVER R G. Reliability analysis of concentrically loaded fillet welded joints \[R\].Edmonton, Canada:Department of Civil and Engineering, University of Alberta, 2007:1-277.

[12]陈建锋, 曹平周, 董先锋. 高温后正面角焊缝抗拉剪切强度的试验\[J\]. 焊接学报, 2009, 30 (9): 81-84.

CHEN Jianfeng, CAO Pingzhou, DONG Xianfeng. Experiment on tensile and shear strength of front fillet welded joint posthightemperatures \[J\]. Transactions of the China Welding Institution, 2009, 30 (9): 81-84. (In Chinese)

[13]DAWE J L, KULAK G L. Behaviour of welded connections under combined shear and moment \[R\].Edmonton, Canada:Department of Civil Engineering, University of Alberta,1972: 1-89.

[14]范正磊. 角焊缝焊接节点在平面外偏心荷载作用下的受力分析\[D\]. 西安:西安建筑科技大学土木工程学院, 2012: 1-79.

FAN Zhenglei. Analysis of fillet welded joints subjected to out of plane eccentric loads \[D\]. Xi'an: School of Civil Engineering, Xi'an University of Architecture and Technology, 2012: 1-79.(In Chinese)

[15]KULAK G L, TIMLER P A. Tests on eccentrically loaded fillet welds \[R\]. Edmonton, Canada: Department of Civil and Engineering, University of Alberta, 1984:1-21.

[16]LESIK D F, KENNEDY D J L. Ultimate strength of eccentrically loaded fillet welded connections \[R\]. Edmonton, Canada: Department of Civil Engineering, University of Alberta:1988:1-75.

[17]王元清, 张元元, 石永久. 钢厚板母材及其焊接影响区的Z向拉伸试验\[J\]. 湖南大学学报:自然科学版,2014, 41(2): 26-31.

WANG Yuanqing, ZHANG Yuanyuan, SHI Yongjiu. Experimental research of the Zdirection tensile properties of thick plate steel and its heat affected zone\[J\]. Journal of Hunan University: Natural Sciences, 2014, 41(2): 26-31.(In Chinese)

[18]JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures \[C\]//Proceedings of the 7th International Symposium on Ballistics. 1983, 21: 541-547.

[19]刘瑞娟.冲击荷载作用下钢焊缝的动态力学性能研究\[D\]. 长沙:湖南大学土木工程学院, 2012: 1-90.

LIU Ruijuan. Dynamic behavior of steel weld under impact loading \[D\]. Changsha: College of Civil Engineering,Hunan University, 2012:1-90. (In Chinese)

[20]于安林, 陈绍蕃, 申林. 角焊缝在快速荷载作用下的受力性能\[J\]. 西安建筑科技大学学报: 自然科学版, 1996, 28(4): 364-367.

YU Anlin, CHEN Shaofan, SHEN Lin. On behavior of fillet welds subjected to speedy loading \[J\]. Journal of Xi'an University of Architecture and Technology, 1996, 28(4): 364-367. (In Chinese)

[21]湖南大学. 一种可实现落锤拉伸冲击试验的转换装置:中国, 201110185973.3\[P\]. 2012-06-11.

Hunan University. A test conversion device to transfer falling weight to tensile impact:China, 201110185973.3\[P\]. 2012-06-11. (In Chinese)

[22]CHANG K H, LEE C H. Finite element analysis of the residual stresses in Tjoint fillet welds made of similar and dissimilar steels \[J\]. The International Journal of Advanced Manufacturing Technology, 2009, 41(3/4): 250-258.

[23]SOROUSHIAN P, CHOI K B. Steel mechanical properties at different strain rates \[J\]. Journal of Structural Engineering, 1987, 113(4): 663-672.

[24]林峰, 顾祥林, 匡昕昕, 等. 高应变率下建筑钢筋的本构模型 \[J\]. 建筑材料学报, 2008, 11(1): 14-20.

LIN Feng, GU Xianglin, KUANG Xinxin, et al. Constitutive models for reinforced steel bars under high strain rates \[J\]. Journal of Building Materials, 2008, 11(1): 14-20. (In Chinese)

[25]SYMONDS P S. Survey of methods of analysis for plastic deformation of structures under dynamic loading\[R\].Providence, USA:Division of Engineering, Brown University, 1967:1-67.