刘贻灿等
摘 要: 华北板块东南缘五河杂岩属于前寒武纪变质基底,出露于蚌埠及相邻地区,主要由变质的镁铁质和长英质火成岩以及表壳岩系组成,并伴生有古元古代片麻状花岗岩和中生代花岗岩类,构成了“蚌埠隆起”。五河杂岩中主要有石榴斜长角闪岩/榴闪岩、石榴麻粒岩、异剥钙榴岩、石榴斜长角闪片麻岩、花岗片麻岩、云母片岩、大理岩和变质砂岩等岩石类型。这些不同类型的变质岩具有类似的峰期变质矿物,如石榴子石、单斜辉石、斜长石、金红石和石英等;结合其锆石U-Pb年龄,表明它们共同经历了古元古代高压麻粒岩相变质作用。石榴斜长角闪岩的石榴子石包体中存在钾长石+斜长石+石英+黑云母等矿物交生体,指示早期花岗质熔体的存在,证明五河杂岩在古元代变质过程中发生了部分熔融作用。此外,部分变基性岩中存在方解石、绿帘石和绿泥石等蚀变矿物,沿石榴子石的裂隙中分布有钾长石+斜长石+石英+黑云母+角闪石等矿物,表明它们经历了含碳酸盐的熔/流体交代作用以及绿帘石化和绿泥石化作用等。遭受过古元古代含碳酸盐的熔/流体交代作用的变基性岩表现为高放射成因Pb同位素组成,而未遭受含碳酸盐的熔/流体交代作用的变基性岩则表现为典型华北板块前寒武纪麻粒岩地体和下地壳包体岩石的低放射成因Pb同位素组成。
关键词: 麻粒岩相;多阶段变质作用;部分熔融;交代作用;前寒武纪;五河杂岩;华北板块
中图分类号: P588.3 文献标志码: A
Abstract: The Wuhe complex is located at the southeastern margin of the North China Block and belongs to the Precambrian metamorphic basement. It is exposed in the Bengbu area and its neighbourhood. The Wuhe complex consists of the metamorphosed igneous mafic and felsic rocks and supracrustal rocks associated with the Paleoproterozoic foliated K-feldspar granites and Mesozoic granitoids, constituting the “Bengbu uplift”. Its main rock types comprise a variety of lithologies, including garnet amphibolite, garnet granulite, rodingite, garnet-plagioclase-amphibolite gneiss, granitoid gneiss, micaschist, marble, quartzite and meta-sandstone. These rocks contain similar peak metamorphic minerals such as garnet, clinopyroxene, plagioclase, rutile and quartz. As a result, combined with their zircon U-Pb ages, it is suggested that they suffer from a common high pressure granulite facies metamorphism in Palaeoproterozoic. The multiphase solid inclusions within garnet porphyroblasts are discovered from the garnet amphibolite. Some multiphase solid inclusions consist of quartz, calcite, hornblende and chlorite, with quartz and calcite showing a secondary rim of hornblende and chlorite. The intergrowths of quartz, K-feldspar, plagioclase and biotite, and related MS inclusions in garnet show that the Wuhe complex experiences the high pressure granulite facies metamorphism, accompanying close-to-coeval partial melting and heterogeneous carbonate metasomatism. In addition, there are late altered minerals such as calcite, epidote and chlorite, and K-feldspar, plagioclase, quartz, biotite and amphibole distribute along fractures of garnets in the meta-basites. It is suggested that the rocks undergo heterogeneously carbonate-bearing hydrous melt/fluid metasomatism, and epidotization and chloritization. The carbonate metasomatism at the Palaeoproterozoic is likely responsible for the exceptionally high Pb-isotopic compositions registered by some of the meta-basic rocks in the metamorphic basement in the area, quite different from those of typical Precambrian granulite terrains or of lower crustal xenoliths in the North China Block.
Key words: granulite facies; multistage metamorphism; partial melting; metasomatism; Precambrian; Wuhe complex; North China Block
0 引 言
深熔作用(Anatexis)或部分熔融作用(Partial Melting)是大陆碰撞造山带[1-2]和高级变质地体[3-5]中常见的一种重要地质过程。地壳深熔/部分熔融过程中,熔体的产生、分离和运移对大陆地壳内部分异[4,6-8]以及花岗岩的成因[9-11]具有重要意义,并且强烈影响着造山带地壳的热力学和流变学行为[12],可以显著降低俯冲陆壳岩石的力学强度,促使俯冲陆壳内部的拆离和高压—超高压岩石的折返[13-24]。
麻粒岩包体和麻粒岩地体(尤其是高压麻粒岩)是透视下地壳的重要窗口[25]。大多数麻粒岩被认为是在缺乏流体条件下变质形成的[1,26]。其中,高压麻粒岩又称石榴麻粒岩,代表了高级的变基性岩,以单斜辉石+斜长石+石榴子石+石英等矿物组合为主要特征[26-28],至于其他次要矿物(如角闪石和蓝晶石等)是否出现,取决于水活度和全岩成分[29]。高压麻粒岩出露相当广泛,从古元古代(如华北恒山杂岩[30])到新生代(如喜马拉雅山脉[31])的诸多大陆碰撞造山带中均有报道。OBrien等研究结果显示,当变质温度超过800 ℃时,变质压力可能超过1.4 GPa[28],意味着加厚地壳(或俯冲地壳)的下部经历了高温作用。另外,高压麻粒岩有时也与中温榴辉岩共生,如华力西造山带[32]。在特定地带鉴定出高压麻粒岩有助于对涉及大陆碰撞及相关过程中下地壳演化的认识,而对高压麻粒岩相变质作用的岩石学观察和年代学测定对理解变质作用和下地壳演化之间的关系至关重要。但是,获得精确的高压麻粒岩相变质作用的时代往往比较困难。这种困难主要来自于后期多阶段变质作用叠加以及相关过程导致的矿物间同位素体系(尤其是Sm-Nd和Rb-Sr)的重置或不平衡,因此,影响了对岩石的形成过程和构造背景的认识。
在过去的20年里,众多研究者对华北板块前寒武纪变质基底和下地壳包体岩石开展了大量的岩石学、大地构造学、地球化学和同位素年代学研究,并在其形成和演化方面获得了一些重要进展,包括将华北板块变质基底划分为东部陆块、西部陆块及分割东部和西部陆块的中部造山带[33-34]。一般认为,东部和西部陆块沿中部造山带在约1.85 Ga完成华北板块的拼合[33-40];拼合完成之后,在1.6~1.85 Ga期间,华北板块内部和边缘地区经历了一系列的拉张和裂解(Rifting)事件,形成了伴随有镁铁质岩浆群侵位的拗拉槽和边缘裂谷盆地,发育有斜长岩-辉长岩-纹长二长岩-环斑花岗岩套和A型花岗岩,以及喷发超钾火山岩[41-45]。值得注意的是,目前已报道的古元古代高压麻粒岩相变质作用主要来自于中部造山带[30,33-36,38,41-42,46],而东部陆块已在信阳和胶东地区有陆续报道[47-50]。
华北板块的形成与演化虽然受到广泛关注并日益引起国内外研究者的兴趣,但是大部分研究都集中于华北板块内部、北部以及东部和西部陆块结合带或中部造山带,而华北板块东南缘前寒武纪地壳的形成与演化研究尚显得较薄弱。华北板块东南缘霍邱、蚌埠及相邻地区出露的变质基底(五河杂岩和霍邱杂岩)和下地壳包体岩石无疑为这一研究提供极好的天然实验室。
郭素淑等研究认为,五河杂岩中的变基性岩经历了1.80~1.90 Ga的高压麻粒岩相变质作用[51-52]。徐州—宿州一带中生代闪长斑岩中深源包体的岩石学、年代学和岩石地球化学研究表明[51-57],它们包括前寒武纪下地壳包体和古生代幔源包体,而下地壳包体大部分形成于2.5~2.6 Ga,部分形成于约2.1 Ga,并经过约1.8 Ga高压麻粒岩相变质作用, 少数晚太古代下地壳包体还经历了约2.5 Ga或约2.1 Ga麻粒岩相变质作用。此外,五河杂岩中变基性岩表现为两类高、低放射成因Pb同位素组成[58],而高放射成因Pb同位素成分的成因解释仍缺乏可靠证据。而且,研究区前寒武纪变质基底及下地壳岩石是否经历了部分熔融作用以及变质、交代过程与期次仍是亟待解决的重要科学问题。
为了揭示华北板块东南缘前寒武纪地壳(尤其是变质基底)的形成和演化过程,本文根据近年来对蚌埠地区出露的五河杂岩和宿州附近夹沟中生代闪长斑岩中下地壳包体岩石的研究成果和进展,结合已发表的相关资料,提出了华北板块东南缘变质基底岩石的高压麻粒岩相变质、部分熔融以及多期变质和交代作用方面的证据,并阐述了高放射成因Pb同位素的成因。
1 地质背景
华北板块是世界上最古老、最大的克拉通地块之一,保留有大于3.6 Ga的古老地壳物质残留[59]。地质位置上,华北板块西接早古生代祁连造山带,北邻晚古生代—三叠纪的天山—内蒙古—大兴安岭造山带;在南部,秦岭—大别—苏鲁印支期造山带把华北板块和华南(扬子)板块分开(图1)。基于年代学、岩石组合、构造演化和P-T-t轨迹的不同,将华北克拉通划分为东部陆块、西部陆块及夹于其中的中部造山带[30,33,42,60]。研究区位于华北板块东南缘,距苏鲁造山带西端的郯城—庐山断裂带以西约 100 km,距大别造山带北端大约300 km(图1)。区内变形的新元古代和古生代盖层以及晚太古代到古元古代的变质基底岩石中分布有大量小的中生代闪长斑岩(如夹沟等)和花岗岩(如荆山、涂山等)。研究区前寒武纪变质基底主要零星出露于霍邱、蚌埠及相邻地区(包括五河杂岩或五河群、霍邱杂岩或霍邱群),并且被中生代花岗岩所侵入;而中生代闪长斑岩中含有大量下地壳或幔源包体或捕虏体的徐州—宿州地区则无变质基底出露[52-54,56-57]。王安东等研究表明,变质基底出露区(荆山、怀远和凤阳等地)发育的部分含石榴子石花岗岩是由华南三叠纪俯冲陆壳岩石在159 Ma左右发生部分熔融形成的[61-62]。
五河杂岩主要由变质的镁铁质和长英质火成岩以及表壳岩系所组成,并伴生有古元古代片麻状花岗岩和中生代花岗岩类,构成了“蚌埠隆起”。五河杂岩中主要含有石榴斜长角闪岩/榴闪岩、石榴麻粒岩、异剥钙榴岩、石榴斜长角闪片麻岩、花岗片麻岩、云母片岩、大理岩和变质砂岩等不同类型的变质岩。
2 峰期高压麻粒岩相及退变质过程
五河杂岩主要出露于“蚌埠隆起”区,如蚌埠、怀远、凤阳及五河一带(图1)。岩石类型主要有含石榴斜长角闪岩、榴闪岩、石榴麻粒岩、异剥钙榴岩和片麻岩(石榴斜长角闪片麻岩、花岗片麻岩)以及云母片岩、大理岩和变质砂岩等。野外调查表明,石榴斜长角闪岩已发生明显部分熔融(这已被岩相学研究所证实),甚至混合岩化作用,并表现为强烈的面理化和含有浅色体(Leucosome) [图2(a)],并有时呈构造透镜体或岩块产于不纯的大理岩中[图2(b)], 它们与大理岩之间为构造接触关系,反映了其原岩的不同以及可能具有不同的演化历史,它们的原岩分别为基性岩和灰岩。图3为变基性岩的代表性显微照片。石榴斜长角闪岩(如样品07FY01)主要由石榴子石、斜长石和角闪石,以及少量单斜辉石、石英、榍石和微量金红石等矿物组成。石英以包裹体形式存在于石榴子石中,单斜辉石常退变为角闪石和斜长石的交生体或后成合晶[图3(a)],金红石退变为钛铁矿[图3(d)]或榍石。石榴子石在成分上是均一的,为铁铝榴石-镁铝榴石-钙铝榴石固溶体,锰含量较低。斜长石有3种产出形式:以包裹体形式产于石榴子石中;以后成合晶形式与绿色角闪石共生;以基质形式产出。富Ti的棕色角闪石通常以包裹体形式产于斜长石或基质[图3(c)、(d)]中,TiO2含量(质量分数,下同)高达3.82%,而产于基质中或与斜长石共生产于后成合晶或棕色角闪石的退变边中[图3(a)、(c)、(d)]的绿角闪石几乎不含Ti。基质中残留的单斜辉石为透辉石。
石榴麻粒岩的主要矿物组合为石榴子石+单斜辉石+斜长石+角闪石+石英[图3(b)],这种矿物组合指示其经历了高压麻粒岩相变质作用[27-28,63]。
榴闪岩主要由石榴子石、角闪石、斜长石和石英等组成[图3(c)],石榴子石在成分上相对均一,类似于样品石榴斜长角闪岩(样品07FY01)的石榴子石组成;角闪石有2期,分别为早期的棕色高钛角闪石和晚期的绿色低钛角闪石,这些特征暗示榴闪岩也经历了类似的高压麻粒岩相变质作用及后期角闪岩相和绿片岩相退变质叠加[52]。
近期的岩石学研究还表明,不纯大理岩中主要矿物有方解石、石英、单斜辉石、角闪石、榍石、磷灰石、不透明矿物(钛铁矿/磁铁矿),以及少量黑云母、斜长石和钾长石(图4)。其中,(具有格子状双晶)钾长石和石英的交生体[图4(a)] 可能代表早期熔体的结晶产物[64-65],证明大理岩经历了部分熔融作用(这也与其共生的石榴斜长角闪岩中发现有部分熔融证据相吻合)。结合大理岩中1.83~1.85 Ga变质锆石区的石英+单斜辉石+斜长石+金红石等矿物组合,大理岩类似于石榴斜长角闪岩[52]和石榴麻粒岩[58],同样经历了古元古代高压麻粒岩相变质作用。
综上所述,五河杂岩中不同类型的变质岩大多数都含有石榴子石、单斜辉石、金红石、斜长石和石英等峰期矿物组合,指示其形成于高压麻粒岩相条件下[52]。而且,基于上述岩相学显微结构观察和矿物之间的关系,至少可以区分出峰期高压麻粒岩相(石榴子石+斜长石+单斜辉石+石英+金红石±富钛角闪石)变质矿物组合以及后期角闪岩相(斜长石+绿角闪石+钛铁矿+榍石)和绿片岩相(绿泥石+方解石+磁铁矿)等退变质矿物组合(图3、4)。矿物组合与初步的温压计算结果表明,高压麻粒岩相变质阶段温度、压力分别为800 ℃~860 ℃和1.0~ 1.2 GPa[52,66],这也与夹沟中生代闪长斑岩中下地壳包体岩石及其变质锆石的温压估算[52,57]一致。
3 部分熔融作用
五河杂岩(乃至华北板块东南缘前寒武纪变质基底岩石)是否经历了部分熔融作用,至今未见报道或缺乏部分熔融的直接证据。岩石学研究表明,在五河杂岩的石榴斜长角闪岩石榴子石中发现多相固体包裹体, 主要由钾长石、斜长石、石英和黑云母的交生体构成(图5),表现为“纳米花岗岩”(Nanogranite)[2,67-69]。 这种位于石榴子石变斑晶核部的“纳米花岗岩”常被解释为石榴子石在峰期变质生长期间伴随有部分熔融作用产生的熔体并结晶形成的[2,70]。结合该石榴斜长角闪岩的峰期变质时代为
1.83 Ga[52],首次证明了研究区变质基底岩石经历了古元古代部分熔融作用,以及发生的时代应接近于峰期高压麻粒岩相变质阶段。但是, 至于研究区变质基底岩石是否经历了更早期(晚太古代末期)和后期(燕山期)的部分熔融作用,尚需要进一步岩石学和年代学方面的研究。
4 多期变质、交代作用
五河杂岩经历了复杂的多阶段变质演化与改造。除了高压麻粒岩相、角闪岩相和绿片岩相变质作用以及部分熔融和绿帘石化作用外,五河杂岩还遭受了碳酸盐交代作用、含水熔/流体交代作用和绿泥石化作用等。凤阳一带与大理岩相共生的石榴斜长角闪岩经历了多期交代作用(图6):①石榴子石中多相矿物包裹体指示了碳酸盐交代、角闪岩相变质和绿泥石化[图6(a)],即石英和方解石位于中心,而边部有角闪石和绿泥石等蚀变矿物,也就是说,前者指示早期存在含碳酸盐的熔体或者近于峰期变质之后就发生含碳酸盐的熔/流体交代作用,而后者则指示晚期的角闪岩相变质和绿泥石蚀变;②石榴子石斑晶的裂隙中分布有钾长石+石英+斜长石+角闪石+黑云母等矿物[图6(b)],指示了熔/流体活动和交代作用。此外,研究区异剥钙榴岩的成因也与钙质交代作用有关[71-73]。
石榴斜长角闪岩在高温条件下经历了含碳酸盐的熔/流体交代作用,并且可能发生在古元古代,为其高放射成因Pb同位素成分的成因解释提供了可靠证据。因为不纯大理岩与其共生的石榴斜长角闪岩具有一致的峰期高压麻粒岩相变质时代,共同经历了古元古代高温变质作用,而含碳酸盐的熔/流体通常具有高的Pb含量和高放射成因Pb同位素组成[74],比较而言,那些未遭受含碳酸盐的熔/流体交代作用的变基性岩则仍显示华北板块前寒武纪变质地体或下地壳岩石的低放射成因Pb成分。
此外,部分熔融以及多期变质、交代作用常导致矿物之间的Fe-Mg交换或重置[26,75],这为研究区前寒武纪变质岩的温度、压力计算带来了巨大困难和挑战。而且,矿物之间Fe-Mg交换的封闭温度(Closure Temperature)低于麻粒岩相峰期变质温度[1,26,75-76]。因此,目前已获得的五河杂岩高压麻粒岩相阶段的最高变质温度(843 °C)[52]可能代表峰期变质温度的最小估计值[77]。
5 结 语
(1)华北板块东南缘五河杂岩中不同类型的变质岩(包括大理岩等)都具有类似的峰期变质矿物组合,共同经历了古元古代高压麻粒岩相变质以及之后的角闪岩相和绿片岩相退变质作用。
(2)首次获得五河杂岩古元古代部分熔融作用的证据,证明研究区前寒武纪变质岩经历了多期不同程度的变质、交代作用,包括含碳酸盐的熔/流体交代、绿帘石化和绿泥石化作用等。
(3)证明华北板块东南缘五河杂岩中前寒武纪变质基底岩石中因遭受过古元古代含碳酸盐的熔/流体交代作用的变基性岩表现为高放射成因Pb同位素组成,从而首次为揭示研究区变质基底及下地壳包体岩石中高放射成因Pb同位素组成的成因提供了直接证据。
参考文献:
References:
[1] HARLEY S L.The Origins of Granulites:A Metamorphic Perspective[J].Geological Magazine,1989,126(3):215-247.
[2] GROPPO C,ROLFO F,INDARES A.Partial Melting in the Higher Himalayan Crystallines of Eastern Nepal:The Effect of Decompression and Implications for the ‘Channel Flow Model[J].Journal of Petrology,2012,53(5):1057-1088.
[3] SAWYER E W.Criteria for the Recognition of Partial Melting[J].Physics and Chemistry of the Earth,Part A:Solid Earth and Geodesy,1999,24(3):269-279.
[4] SAWYER E W.Melt Segregation in the Continental Crust:Distribution and Movement of Melt in Anatectic Rocks[J].Journal of Metamorphic Geology,2001,19(3):291-309.
[5] VILLASECA C,ROMERA C M,BARBERO L.Melts and Residua Geochemistry in a Low-to-mid Crustal Section(Central Spain)[J].Physics and Chemistry of the Earth,Part A:Solid Earth and Geodesy,2001,26(4/5):273-280.
[6] BROWN M.The Generation,Segregation,Ascent and Emplacement of Granite Magma:The Migmatite-to-crustally-derived Granite Connection in Thickened Orogens[J].Earth-science Reviews,1994,36(1/2):83-130.
[7] BROWN M.The Mechanism of Melt Extraction from Lower Continental Crust of Orogens[J].Transactions of the Royal Society of Edinburgh:Earth Sciences,2004,95(1/2):35-48.
[8] BROWN M.Crustal Melting and Melt Extraction,Ascent and Emplacement in Orogens:Mechanisms and Consequences[J].Journal of the Geological Society,2007,164(4):709-730.
[9] THOMPSON A B.Dehydration Melting of Pelitic Rocks and the Generation of H2O-undersaturated Granitic Liquids[J].American Journal of Science,1982,282(10):1567-1595.
[10] CLEMENS J D,VIELZEUF D.Constraints on Melting and Magma Production in the Crust[J].Earth and Planetary Science Letters,1987,86(2/3/4):287-306.
[11] VIELZEUF D,CLEMENS J D,PIN C,et al.Granites,Granulites,and Crustal Differentiation[M]∥VIELZEUF D,VIDAL P.Granulites and Crustal Evolution.Dordrecht:Kluwer Academic Publishers,1990:59-85.
[12] WHITNEY D L,TEYSSIER C,FAYON A K,et al.Tectonic Controls on Metamorphism,Partial Melting,and Intrusion:Timing and Duration of Regional Metamorphism and Magmatism in the Nigde Massif,Turkey[J].Tectonophysics,2003,376(1/2):37-60.
[13] HERMANN J,GREEN D H.Experimental Constraints on High Pressure Melting in Subducted Crust[J].Earth and Planetary Science Letters,2001,188(1/2):149-168.
[14] VANDERHAEGHE O,TEYSSIER C.Partial Melting and Flow of Orogens[J].Tectonophysics,2001,342(3/4):451-472.
[15] ZHONG Z Q,SUO S T,YOU Z D,et al.Major Constituents of the Dabie Collisional Orogenic Belt and Partial Melting in the Ultrahigh-pressure Unit[J].International Geology Review,2001,43(3):226-236.
[16] WHITNEY D L,TEYSSIER C,REY P F.The Consequences of Crustal Melting in Continental Subduction[J].Lithosphere,2009,1(6):323-327.
[17] BROWN M.Melting of the Continental Crust During Orogenesis:The Thermal,Rheological,and Compositional Consequences of Melt Transport from Lower to Upper Continental Crust[J].Canadian Journal of Earth Sciences,2010,47(5):655-694.
[18] LABROUSSE L, PROUTEAU G,GANZHORN A C. Continental Exhumation Triggered by Partial Melting at Ultrahigh Pressure[J].Geology,2011,39(12):1171-1174.
[19] 刘贻灿,李曙光,徐树桐,等.北大别片麻岩的超高压变质证据:来自锆石提供的信息[J].岩石学报,2006,22(7):1827-1832.
LIU Yi-can,LI Shu-guang,XU Shu-tong,et al.Ultrahigh-pressure Metamorphic Evidence for Gneiss from the Northern Dabie Complex,Central China:Message from Zircon[J].Acta Petrologica Sinica,2006,22(7):1827-1832.
[20] 刘贻灿,李 远,刘理湘,等.大别造山带三叠纪低级变质的新元古代火成岩:俯冲陆壳表层拆离折返的岩片[J].科学通报,2013,58(23):2330-2337.
LIU Yi-can,LI Yuan,LIU Li-xiang,et al.Neoproterozoic Low-grade Metagranites and Metabasites in the Dabie Orogen: Implications for Detachment of Subducted Continental Crust at Shallow Depths[J].Chinese Science Bulletin,2013,58(23):2330-2337.
[21] 古晓锋,刘贻灿,邓亮鹏.北大别罗田榴辉岩的同位素年代学和岩石成因及其在折返过程中的元素和同位素行为[J].科学通报,2013,58(22):2132-2137.
GU Xiao-feng,LIU Yi-can,DENG Liang-peng. Geochronology and Petrogenesis of Eclogite from the Luotian Dome,North Dabie Complex Zone(Central China), and Their Element and Isotope Behavior During Exhumation[J].Chinese Science Bulletin,2013,58(22):2132-2137.
[22] 刘贻灿,古晓锋,邓亮鹏.北大别的高温超高压变质作用与多阶段折返[J].岩石学报,2011,27(2):589-600.
LIU Yi-can,GU Xiao-feng,DENG Liang-peng.High-T/UHP Metamorphism and Multistage Exhumation History of the North Dabie Complex Zone[J].Acta Petrologica Sinica,2011,27(2):589-600.
[23] 刘贻灿,刘理湘,古晓锋,等.大别山北淮阳带西段新元古代浅变质花岗岩的发现及其大地构造意义[J].科学通报,2010,55(24):2391-2399.
LIU Yi-can,LIU Li-xiang,GU Xiao-feng,et al.Occurrence of Neoproterozoic Low-grade Metagranite in the Western Beihuaiyang Zone,the Dabie Orogen[J].Chinese Science Bulletin,2010,55(24):2391-2399.
[24] 刘贻灿,古晓锋,李曙光.北大别超高压榴辉岩的快速折返与缓慢冷却过程[J].岩石学报,2009,25(9):2149-2156.
LIU Yi-can,GU Xiao-feng,LI Shu-guang.Rapid Exhumation and Slow Cooling of Ultrahigh-pressure Eclogite in the North Dabie Complex Zone,Central China[J].Acta Petrologica Sinica,2009,25(9):2149-2156.
[25] WEBER M B I,TARNEY J,KEMPTON P D,et al.Crustal Make-up of the Northern Andes:Evidence Based on Deep Crustal Xenolith Suites,Mercaderes,SW Colombia[J].Tectonophysics,2002,345(1/2/3/4):49-82.
[26] PATTISON D R M.Petrogenetic Significance of Orthopyroxene-free Garnet+Clinopyroxene+Plagioclase±Quartz-bearing Metabasites with Respect to the Amphibolite and Granulite Facies[J].Journal of Metamorphic Geology,2003,21(1):21-34.
[27] YARDLEY B W D.An Introduction to Metamorphic Petrology[M].Englewood Cliffs:Prentice Hall,1989.
[28] OBRIEN P J,ROTZLER J.High-pressure Granulites: Formation,Recovery of Peak Conditions and Implications for Tectonics[J].Journal of Metamorphic Geology,2003,21(1):3-20.
[29] INDARES A D.Metamorphic Textures and P-T Evolution of High-P Granulites from the Lelukuau Terrane,NE Grenville Province[J].Journal of Metamorphic Geology,2003,21(1):35-48.
[30] ZHAO G C,WILDE S A,CAWOOD P A,et al.Archean Blocks and Their Boundaries in the North China Craton: Lithological,Geochemical,Structural,and P-T Path Constraints and Tectonic Evolution[J].Precambrian Research,2001,107(1/2):45-73.
[31] LIU Y,ZHONG D.Petrology of High-pressure Granulites from the Eastern Himalayan Syntaxis[J].Journal of Metamorphic Geology,1997,15(4):451-466.
[32] CARSWELL D A,OBRIEN P J.Thermobarometry and Geotectonic Significance of High-pressure Granulites:Examples from the Moldanubian Zone of the Bohemian Massif in Lower Austria[J].Journal of Petrology,1993,34(3):427-459.
[33] ZHAO G C,CAWOOD P A,WILDE S A,et al.Metamorphism of Basement Rocks in the Central Zone of the North China Craton:Implications for Paleoproterozoic Tectonic Evolution[J].Precambrian Research, 2000,103(1/2):55-88.
[34] ZHAO G C,SUN M,WILDE S A,et al.Late Archean to Paleoproterozoic Evolution of the North China Craton:Key Issues Revisited[J].Precambrian Research,2005, 136(2):177-202.
[35] GUO J H,OBRIEN P J,ZHAI M.High-pressure Granulites in the Sanggan Area,North China Craton:Metamorphic Evolution,P-T Paths and Geotectonic Significance[J].Journal of Metamorphic Geology,2002, 20(8):741-756.
[36] GUO J H,SUN M,CHEN F K,et al.Sm-Nd and SHRIMP U-Pb Zircon Geochronology of High-pressure Granulites in the Sanggan Area,North China Craton:Timing of Paleoproterozoic Continental Collision[J].Journal of Asian Earth Sciences,2005,24(5):629-642.
[37] WILDE S A,ZHAO G C,SUN M.Development of the North China Craton During the Late Archaean and Its Final Amalgamation at 1.8 Ga:Some Speculations on Its Position Within a Global Palaeoproterozoic Supercontinent[J].Gondwana Research,2002,5(1):85-94.
[38] KRONER A,WILDE S A,LI J H,et al.Age and Evo-lution of a Late Archean to Paleoproterozoic Upper to Lower Crustal Section in the Wutaishan/Hengshan/ Fuping Terrain of Northern China[J].Journal of Asian Earth Sciences,2005,24(5):577-595.
[39] WILDE S A,ZHAO G C.Late Archean to Paleoproterozoic Evolution of the North China Craton[J].Journal of Asian Earth Sciences,2005,24(5):519-522.
[40] HOU G T,LIU Y L,LI J H.Evidence for ~1.8 Ga Extension of the Eastern Block of the North China Craton from SHRIMP U-Pb Dating of Mafic Dyke Swarms in Shandong Province[J].Journal of Asian Earth Sciences,2006,27(4):392-401.
[41] 翟明国,卞爱国.华北克拉通新太古代末超大陆拼合及古元古代末—中元古代裂解[J].中国科学:D辑,地球科学,2000,30(增):129-137.
ZHAI Ming-guo,BIAN Ai-guo.The Amalgamation of the Supercontinent of North China Craton at the End of Neoarchaean and Its Breakup During Late Palaeoproterozoic and Mesoproterozoic[J].Science in China: Series D,Earth Sciences,2000,30(S):129-137.
[42] ZHAI M G,LIU W J. Palaeoproterozoic Tectonic His- tory of the North China Craton:A Review[J].Precambrian Research,2003,122(1/2/3/4):183-199.
[43] PENG P,ZHAI M G,ZHANG H F,et al.Geochronological Constraints on the Paleoproterozic Evolution of the North China Craton:SHRIMP Zircon Ages of Different Types of Mafic Dikes[J].International Geology Review,2005,47(5):492-508.
[44] HOU G T,LI J H,YANG M H,et al.Geochemical Constraints on the Tectonic Environment of the Late Paleoproterozoic Mafic Dyke Swarms in the North China Craton[J].Gondwana Research,2008,13(1):103-116.
[45] LU S N,ZHAO G C,WANG H C,et al.Precambrian Metamorphic Basement and Sedimentary Cover of the North China Craton:A Review[J].Precambrian Research,2008,160(1/2):77-93.
[46] 翟明国,郭敬辉,阎月华,等.中国华北太古宙高压基性麻粒岩的发现及初步研究[J].中国科学:B辑,1992,22(12):1325-1330.
ZHAI Ming-guo,GUO Jing-hui,YAN Yue-hua,et al.The Preliminary Study and Discovery of High Pressure Granulites in North China[J]. Science in China:Series B,1992,22(12):1325-1330.
[47] ZHENG J P,SUN M,LU F X,et al.Mesozoic Lower Crustal Xenoliths and Their Significance in Lithospheric Evolution Beneath the Sino-Korean Craton[J].Tectonophysics,2003,361(1/2):37-60.
[48] 刘文军,翟明国,李永刚.胶东莱西地区高压基性麻粒岩的变质作用[J].岩石学报,1998,14(4):449-459.
LIU Wen-jun,ZHAI Ming-guo,LI Yong-gang.Metamorphism of the High-pressure Basic Granulites in Laixi,Eastern Shandong,China[J].Acta Petrologica Sinica,1998,14(4):449-459.
[49] 周喜文,魏春景,耿元生,等.胶北栖霞地区泥质高压麻粒岩的发现及其地质意义[J].科学通报,2004,49(14):1424-1430.
ZHOU Xi-wen,WEI Chun-jing,GENG Yuan-sheng,et al.Discovery and Implications of the High-pressure Pelitic Granulite from the Jiaobei Massif[J].Chinese Science Bulletin,2004,
49(14):1424-1430.
[50] LIU P H,LIU F L,LIU C H,et al.Petrogenesis,P-T-t Path,and Tectonic Significance of High-pressure Mafic Granulites from the Jiaobei Terrane,North China Craton[J].Precambrian Research,2013,233:237-258.
[51] 郭素淑,李曙光.华北克拉通东南缘古元古代变质和岩浆事件的锆石SHRIMP U-Pb年龄[J].中国科学:D辑,地球科学,2009,39(6):694-699.
GUO Su-shu,LI Shu-guang.SHRIMP Zircon U-Pb Ages for the Paleoproterozoic Metamorphic-magmatic Events in the Southeast Margin of the North China Craton[J].Science in China:Series D,Earth Sciences,2009,39(6):694-699.
[52] LIU Y C,WANG A D,ROLFO F,et al.Geochronological and Petrological Constraints on Palaeoproterozoic Granulite Facies Metamorphism in Southeastern Margin of the North China Craton[J].Journal of Metamorphic Geology,2009,27(2):125-138.
[53] 许文良,王冬艳,刘晓春,等.徐淮地区早侏罗世侵入杂岩体中榴辉岩类包体的发现及其地质意义[J].科学通报,2002,47(8):618-622.
XU Wen-liang,WANG Dong-yan,LIU Xiao-chun,et al. Discovery of Eclogite Inclusions and Its Geological Significance in Early Jurassic Intrusive Complex in Xuzhou-northern Anhui,Eastern China[J].Chinese Science Bulletin,2002,47(8):618-622.
[54] XU W L,GAO S,WANG Q H,et al.Mesozoic Crustal Thickening of the Eastern North China Craton:Evidence from Eclogite Xenoliths and Petrologic Implications[J].Geology,2006,34(9):721-724.
[55] XU W L,GAO S,YANG D B,et al.Geochemistry of Eclogite Xenoliths in Mesozoic Adakitic Rocks from Xuzhou-Suzhou Area in Central China and Their Tectonic Implications[J].Lithos,2009,107(3/4):269-280.
[56] LIU Y C,WANG A D,LI S G,et al.Composition and Geochronology of the Deep-seated Xenoliths from the Southeastern Margin of the North China Craton[J].Gondwana Research,2013,23(3):1021-1039.
[57] WANG A D,LIU Y C,GU X F,et al.Late-Neoarchean Magmatism and Metamorphism at the Southeastern Margin of the North China Craton and Their Tectonic Implications[J].Precambrian Research,2012,220/221:65-79.
[58] WANG A D,LIU Y C,SANTOSH M,et al.Zircon U-Pb Geochronology,Geochemistry and Sr-Nd-Pb Isotopes from the Metamorphic Basement in the Wuhe Complex:Implications for Neoarchean Active Continental Margin Along the Southeastern North China Craton and Constraints on the Petrogenesis of Mesozoic Granitoids[J].Geoscience Frontiers,2013,4(1):57-71.
[59] LIU D Y,NUTMAN A P,COMPSTON W,et al. Remnants of ≥3 800 Ma Crust in the Chinese Part of the Sino-Korean Craton[J].Geology,1992,20(4):339-342.
[60] KUSKY T M,LI J H.Paleoproterozoic Tectonic Evolution of the North China Craton[J].Journal of Asian Earth Sciences,2003,22(4):383-397.
[61] 王安东,刘贻灿,古晓锋,等.蚌埠老山含石榴子石片麻状花岗岩的锆石SHRIMP U-Pb年龄及其对华南俯冲陆壳再循环的意义[J].矿物岩石,2009,29(2):38-43.
WANG An-dong,LIU Yi-can,GU Xiao-feng,et al.Zircon SHRIMP U-Pb Dating for Garnet-bearing Gneissic Granite at Laoshan,Bengbu:Implications for Recycling of the Subducted Continental Crust of the South China Block[J].Journal of Mineralogy and Petrology,2009,29(2):38-43.
[62] YANG D B,XU W L,WANG Q H,et al.Chronology and Geochemistry of Mesozoic Granitoids in the Bengbu Area,Central China: Constraints on the Tectonic Evolution of the Eastern North China Craton[J].Lithos,2010,114(1/2):200-216.
[63] PATTISON D R M,CHACKO T,FARQUHAR J,et al. Temperatures of Granulite-facies Metamorphism:Constraints from Experimental Phase Equilibria and Thermobarometry Corrected for Retrograde Exchange[J].Journal of Petrology,2003,44(5):867-900.
[64] VERNON R H,COLLINS W J.Igneous Microstructures in Migmatites[J].Geology,1988,16(12):1126-1129.
[65] HOLNESS M B,SAWYER E W.On the Pseudomorphing of Melt-filled Pores During the Crystallization of Migmatites[J].Journal of Petrology,2008,49(7):1343-1363.
[66] 刘贻灿,王安东.华北克拉通东南缘前寒武纪下地壳的幕式生长与多期改造:岩石学、年代学和Hf同位素证据[J].地球科学与环境学报,2012,34(4):1-11.
LIU Yi-can,WANG An-dong.Episodic Growth and Multiple Modification of Precambrian Lower Crust in the Southeastern Margin of North China Craton:Petrologic,Geochronological and Hf-isotopic Evidences[J].Journal of Earth Sciences and Environment,2012,34(4):1-11.
[67] CESARE B,FERRERO S,SALVIOLI-MARIANI E,et al.“Nanogranite” and Glassy Inclusions:The Anatectic Melt in Migmatites and Granulites[J].Geology,2009,37(7):627-630.
[68] SAWYER E W,CESARE B,BROWN M.When the Continental Crust Melts[J].Elements,2011,7(4):229-234.
[69] FERRERO S,BARTOLI O,CESARE B,et al.Microstructures of Melt Inclusions in Anatectic Metasedimentary Rocks[J].Journal of Metamorphic Geology,2012,30(3):303-322.
[70] BARTOLI O,TAJCMANOVA L,CESARE B,et al. Phase Equilibria Constraints on Melting of Stromatic Migmatites from Ronda(S.Spain):Insights on the Formation of Peritectic Garnet[J].Journal of Metamorphic Geology,2013,31(7):775-789.
[71] COLEMAN R G.Minerals and Rocks:Ophiolites[M]. Berlin:Springer-Verlag,1977.
[72] LI X P,RAHN M,BUCHER K.Metamorphic Processes in Rodingites of the Zermatt-Saas Ophiolites[J].International Geology Review,2004,46(1):28-51.
[73] FERRANDO S,FREZZOTTI M L,ORIONE P,et al.Late-Alpine Rodingitization in the Bellecombe Meta-ophiolites (Aosta Valley,Italian Western Alps):Evidence from Mineral Assemblages and Serpentinization- derived H2-bearing Brine[J].International Geology Review,2010,52(10/11/12):1220-1243.
[74] OTHMAN D B,WHITE W M,PATCHETT J.The Geochemistry of Marine Sediments,Island Arc Magma Genesis,and Crust-mantle Recycling[J].Earth and Planetary Science Letters,1989,94(1/2):1-21.
[75] FROST B R,CHACKO T.The Granulite Uncertainty Principle: Limitations on Thermobarometry in Granulites[J].The Journal of Geology,1989,97(4):435-450.
[76] SPEAR F S,FLORENCE F P.Thermobarometry in Granulites:Pitfalls and New Approaches[J].Precambrian Research,1992,55(1/2/3/4):209-241.
[77] DAVIS W J,CANIL D,MACKENZIE J M,et al.Petrology and U-Pb Geochronology of Lower Crustal Xenoliths and the Development of a Craton,Slave Province,Canada[J].Lithos,2003,71(2):541-573.