谢雪钦, 杨向莹, 高 静, 梁 爽, 康西西,张 岩, 王小晋, 许美玲, 王 静, 张 捷*
(1.厦门市产品质量监督检验院,福建 厦门361004;2.北京出入境检验检疫局,北京100026;3.长春理工大学化学与环境工程学院,吉林 长春130123;4.河北省食品检验研究院,河北 石家庄050091;5.淮安出入境检验检疫局,江苏 淮安223001;6.临沂出入境检验检疫局,山东 临沂276034;7.威海出入境检验检疫局,山东 威海264205)
近红外荧光探针及其在免疫分析中的应用
谢雪钦1, 杨向莹2, 高 静1, 梁 爽3, 康西西2,张 岩4, 王小晋5, 许美玲6, 王 静7, 张 捷*2
(1.厦门市产品质量监督检验院,福建 厦门361004;2.北京出入境检验检疫局,北京100026;3.长春理工大学化学与环境工程学院,吉林 长春130123;4.河北省食品检验研究院,河北 石家庄050091;5.淮安出入境检验检疫局,江苏 淮安223001;6.临沂出入境检验检疫局,山东 临沂276034;7.威海出入境检验检疫局,山东 威海264205)
综合归纳了有机荧光分子、量子点、稀土配合物及单壁碳纳米管共4类重要近红外荧光标记探针的性质、特征,及其在光学性能改进、信号增强等方面的最新发展,分析评述了其在环境污染物及临床诊断标志分子免疫分析中的应用,展望了基于该类探针的免疫层析法在食源性致病菌快速检测中的应用潜能。相对于发射光光谱位于紫外及可见光区的信号分子,近红外荧光探针因其具有信噪比高、组织穿透力强、对基体损伤小等突出的优势,而在生物分析领域备受瞩目。随着化学合成技术的不断发展及新型荧光材料的持续发掘,近年来近红外荧光探针日益丰富,并在无损分析、免疫检测和生物造影等领域被广泛应用。
近红外荧光探针;有机荧光分子;量子点;稀土配合物;单壁碳纳米管;环境污染物;临床诊断标志分子;免疫分析
由于胶体金、酶等基于颜色信号的标记探针检测灵敏度有限,而电化学信号生成型探针则价格昂贵、操作繁琐,且难以真正实现一步法检测,荧光探针已成为当前最流行的信号分子,在生物分析各领域得到广泛应用[1]。相对于荧光光谱位于紫外及可见光区的标记探针,发射光谱位于近红外区(波长为650~1 100 nm)的近红外荧光探针(Near Infrared Fluorescent Probes,NIFPs),因其高信噪比及由此保障的理想检测灵敏度[2]而在分析领域备受瞩目。首先,生物基体极少在近红外光谱区自发荧光,使得基于NIFPs标记的分析检测免受背景荧光干扰;其次,因散射光强度与波长的四次方成反比,发射光位于长波区的NIFPs受其干扰小。对生物组织穿透力强且损伤小是NIFPs的又一大优势,使其在无损检测[3]及生物造影[4]诸方面得到广泛应用。
近年来,随着探针合成研究的不断推进及新型荧光材料的持续发掘,NIFPs种类日益丰富,根据其性质可分为有机染料、量子点、稀土配合物及单壁碳纳米管4大类[5]。
1.1 近红外荧光染料
尽管形式多样的新型NIFPs被不断合成,传统有机荧光染料仍是当前近红外荧光探针的主流。诸如五甲川等菁类、罗丹明等呫吨类、耐尔蓝等噻嗪类有机染料,它们被广泛开发为近红外荧光探针,其中以菁染料因良好的生物相容性而最受青睐[6]。近期,Zhao和Carreira[7]还合成了一类具有优越光物理性状的新型近红外荧光染料氮杂氟硼二吡咯(aza-BODIPY),此后Lee等[8]使用一种被称为DOFLA (diversity-oriented fluorescence library approach)的方法对其进行进一步的改进和衍生,获得了40余种物化性状优良的NIFPs,其中AZA396较BodipyFl的光稳定性提高了60倍。
除了不断致力于新型近红外有机探针的合成,研究者还关注传统近红外荧光染料水溶性、量子产率、化学及光稳定性、生物相容性等关键性状的改进,使其更好地应用于生物分析[9]。如染料或染料结合物的聚集会导致荧光严重猝灭[10],许多研究围绕改良染料水溶性而展开。自1993年首次被Waggoner等[11]发现并报道,在芳香环上连接磺酸盐基团可有效增加NIFPs水溶性,此结论亦被Cheng等[12]证实。当前Amersham生物科学公司出品的知名商品化近红外有机分子Cy5.5和Cy7均为磺酸盐吲哚菁染料结构。此外有研究表明,理想的水溶性也可通过将疏水染料包被于脂质体表面亲水磷脂单层而实现[13]。为了有效提高染料的荧光强度以测定痕量靶标分析物,研究者还不断发掘高效信号扩增策略。如将大量荧光染料裹入纳米颗粒,以形成更高荧光强度的近红外纳米微粒探针,这已被广泛证实可有效提高检测信号强度,同时改进标记分子的化学和光稳定性[13-14]。另外,基于金属纳米结构的表面等离子体共振,亦可显著提高近红外荧光染料的荧光强度。如研究表明,通过使用银岛膜(silverisland films)[15]或金纳米外壳[16]等粗糙金属表面,可分别提高吲哚菁绿的信号强度达20和50倍。此外,以多聚体材料包被近红外荧光染料,形成纳米微球,被证实可提高染料的生物相容性。如Kim等[17]通过将Cy5.5包裹于一种亲水性多聚体中,从而有效改善染料与细胞的相容性,此新型NIFP可用于实时监控细胞凋亡早期细胞结构的影像学变化。
1.2 近红外荧光量子点
量子点(quantum dots,QDs)又称半导体纳米微晶粒,作为一类新兴的荧光探针,因其卓越的光学特性近年来在生物分析及医疗诊断等领域被广泛应用[18]。该类探针随粒径大小和组成变化可调的荧光发射光谱,保障了其作为近红外标记探针的可行性。相对于传统有机荧光染料,QDs具有量子产率高、抗光漂白能力强、发射光谱集中且可调等无以比拟的优越性。上述优势加上近红外区荧光的低背景干扰、高穿透力等特性,使得近红外荧光QDs(NIF-QDs)当前在分析领域,尤其是体内成像及诊疗应用方面大放异彩[19]。
然而,QDs对活体系统的潜在毒性严重限制了该类探针,尤其是主要用于体内生物影像分析的NIF-QDs的应用。研究表明,在QDs表面覆以一层具有良好生物相容性的外壳,可有效防止毒性金属离子泄露,从而一定程度降低QDs的潜在毒性[20]。以无毒材料替代常规半导体元素,用于近红外荧光量子点的制造,则为解决QDs的毒性问题提供了一套更彻底的方案。如Li等[21]即用CulnS2/ZnS核/壳结构合成了一种具有理想荧光强度、发射光谱在700~900 nm间、可调的无Cd型NIF-QDs,用于体内医学造影。
1.3 近红外荧光稀土配合物
发射光谱位于近红外区的含Nd3+、Er3+、Yb3+及Tm3+等[22-25]稀土元素(镧系元素)的配合物近年来被广泛开发。相对于有机染料和半导体纳米晶粒等NIFPs,近红外荧光稀土配合物具有诸如斯托克位移大、荧光寿命长、不发生光漂白等独特优势[26]。
游离型镧系元素的使用常受阻于因消光系数低而需要一个光子转换器来处理-OH、-NH及-CH等引发的振动泛频光谱[27]。为了攻克上述技术瓶颈,许多研究者致力于NIF镧系元素的进一步优化。如Foucault-Collet等[28]开发了一种独特的NIF稀土金属-有机物框架结构 (metal-organic frameworks, MOFs),将大量的NIF发射型Yb3+离子与致敏剂phenylenevinylene dicarboxylate(PVDC)包裹于一个小体积内。该结构不仅为镧系元素的敏化和保护提供了一条新途径,同时也因其单位体积内携带探针数的增加而大大提高了检测灵敏度。此外,将稀土元素掺入激光材料[29]或纳米晶体[30]中亦被证实能有效改进其光学性能。
1.4 单壁碳纳米管
作为一种新型碳材料,单壁碳纳米管 (singlewalled carbon nanotubes,SWCNTs)因具有特殊的纳米结构和优异的光学、力学、电学和磁学性能而在生物医学领域显示巨大的应用潜力,引起越来越多研究者的关注[31-32]。SWCNTs可光致发光,其发射光谱位于1 000 nm以外,是一种理想的近红外荧光材料。其相对于其他探针分子具有如下优势:首先,因SWCNTs在1 000~1 400 nm的近红外区有强发射光且斯托克位移大,其相对于其他荧光探针受自发荧光的干扰显著降低[33];其次,SWCNTs极短的荧光寿命(t<2 ns)可有效消除非辐射失活,从而使得该类荧光探针具有高荧光量子产率;此外,SWCNTs发射的荧光还对光漂白高度耐受,稳定性好[34]。
鉴于其量子产率高、背景干扰小、光稳定性好等特性,SWCNTs近年来作为理想的NIFPs已被广泛用于体内[35]、体外[36]生物造影,及具重要诊疗意义标志分子的免疫检测[37]。
低背景干扰、强穿透力等特性使NIFPs成为生物分析的理想示踪材料,在诸多应用中基于NIFPs的近红外荧光免疫测定 (near infrared fluorescence immunoassays,NIFIAs)日益受到关注。自Boyer等[38]1992年首次将NIFIAs用于人免疫球蛋白的定量分析以来,该技术目前在环境监测、医疗诊断等领域被广泛用于多种靶标物的定性或定量免疫检测。
2.1 环境污染物分析
有机溴除草剂除草啶和拟除虫菊酯类杀虫剂氰戊菊酯被广泛用于害虫及杂草防治,但其残留时间长且迁移力强,严重污染土壤和地下水系统[39-40]。上述两种农药环境残留的检测多依赖仪器法,需要繁杂的提取程序、昂贵的仪器及专业分析人员,难以实现现场快捷检测。为了克服上述缺陷,Wengatz等[41]开发了一种简便的基于近红外荧光菁染料标记的免疫测定法,用于其定量分析。该法的灵敏度与ELISA相当,为农药残留的环境监测提供了一个理想的分析工具。
2.2 医疗诊断标志分子检测
与NIFIAs在环境污染物监测的少数报道相比,该法更多地被应用于诊疗学上重要标志分子的免疫检测。到目前为止,NIFPs已被成功开发用于免疫微量滴定板[38]、光纤免疫传感器[42]、毛细管印迹[43-44]、毛细管电泳免疫分析[45]及免疫层析试纸条[46]等多种不同免疫分析模式,以检测医疗诊断关键蛋白质。
在20世纪90年代初期,NIFPs首次被应用于免疫检测,在包被抗原的聚乙烯微孔滴定板中通过加入过量的经NIR染料标记的抗体及此后的荧光检测,实现了人免疫球蛋白的定量测定[38]。而后Daneshvar等[47]设计并开发了一种荧光光纤免疫传感器(fluorescent fiber-optic immunosenseor,FFOI),用于人源IgG的近红外标记检测。在此法中抗体被固定于FFOI的感应端,用于痕量特异性抗原的识别和捕获,其免疫模式为三明治型,可在10~15 min内完成,检测限达10 ng/mL。在后续研究中,以一种水溶性更好的NIR染料替代上述研究中所用的Dye1,FFOI体系被进一步证实可高效定量检测人IgG并有效增敏1个数量级,同时FFOI亦可用于嗜肺军团菌血清组1的检测[42]。FFOI系统的检测灵敏度可与ELISA技术相媲美,且具有操作时间短、检测成本低及适用于现场检测等ELISA无以比拟的优势。此外,Silva等[48]开发了基于近红外染料Cy5的光学免疫传感器,用于绵羊Brucella sp.疾病感染的测定,该体系可实现患病绵羊血清中Brucella sp.抗体(0.005~0.11 mg/mL)的定量分析。根据抗原抗体复合物与游离的抗原、抗体在电泳行为上的差异,Cy5还被用于人唾液中分泌的IgA的毛细管电泳免疫检测[45]。
1997年,Williams等[49]首次尝试在硝酸纤维素膜上进行NIFIAs,开启了NIFPs用于固相免疫测定的先河。此举有效简化了检测程序,但其实际应用仍受阻于膜基质发射的散射光干扰大、膜致非特异性结合、难以与微量滴定板免疫测定法相契合等缺陷。在后续研究中,通过使用水溶性更好、因带有负电荷磺酸盐基团而有效减少同样带负电荷膜基质对染料-抗体复合物的非特异性结合的七甲川花菁染料NN382,上述困扰得到了有效解决,促进了固相NIFIAs的发展。此后,Zhao等[43]开发了一种称为毛细管印迹的固相近红外免疫荧光检测技术,可用于复杂生物流体基质中多肽的免分离直接检测。与商品化的杂交板相比,此法有效降低了印迹面积,提高靶标分析物强啡肽的检测灵敏度达1 000倍。
近年来,有机荧光染料外的新型NIFPs亦被引入NIFIAs系统。如Deng等[50]通过将低廉的近红外荧光染料亚甲蓝包裹于疏水的硅胶外壳中,制备了一种新型核/壳结构NIF纳米颗粒,经免疫凝集反应测定全血样本中的甲胎蛋白质。该特殊结构较常规的覆染料硅纳米粒子呈现更高的荧光强度及更好的稳定性,从而免受染料泄露及外源猝灭因子干扰。此外,基于双重稳定剂修饰的CdTe[51]、CdTe/CdS核(薄)/壳(厚)[52]和以巯基丙酸为稳定剂的CdTe[53]及CdSeTe/CdS/ZnS[54]量子点的近红外电致化学发光免疫传感器也被开发,分别用于胎蛋白抗原、人IgG和癌胚抗原的检测。上述体系利用近红外荧光共振能量转移系统,通过测定近红外量子点标记蛋白质与另一探针(如金颗粒等)标记蛋白质间因免疫反应而产生的距离效应,根据引起的能量传递所致荧光强度变化,实现靶标分析物的高敏定量检测。除NIR-QDs外,新兴的NIR荧光材料SWCNTs也被Iizumi等[37]用于IgG的免疫测定。通过检测结合IgG的SWCNTs与连接蛋白质G的免疫磁珠间的免疫共沉淀,该体系可测定浓度低至600 pmol/L的靶标分析物。
尽管高度灵敏,但NIFPs在上述免疫测定中的应用仍缺乏简便性,因此其用户友好性有待进一步改进。为了克服此缺陷,Swanson和D’Andrea[46]开发了一种基于近红外荧光探针的定量免疫层析试纸条,用于白细胞介素-6和C-反应蛋白质的单重及多重同步检测。NIFPs的高信噪比使得该试纸条的检测限低至pg/mL级,与ELISA相当。综上,近红外标记免疫层析试纸条,为即时检验环境下生物标记蛋白质的评价提供了一个有力的工具。
鉴于背景干扰小、组织穿透力强等突出的优点,近年来NIFPs引起越来越多的关注。尽管当前体外及体内生物造影仍是NIFPs的主要应用领域[55-56],其在免疫分析中的应用自Boyer等[38]于1992年首开先河后多年来从未停止。随着新型NIFPs的持续发掘及免疫分析技术的不断发展,二者的结合应用在多个分析领域日益流行。免疫层析试纸条因操作简单且可便携而成为即时检验的最有力免疫分析工具,NIFPs在层析试纸条中的应用在不久的将来无疑能为现场、高敏型生物分析提供一个有价值的平台。然而,据作者所知,当前仅有一个使用近红外荧光染料800CW进行免疫层析试纸条标记的报道[46]。
食源性病原微生物是当前全世界范围内食品中毒事件的最主要威胁因子之一。然而,传统的基于微生物培养的检测方法费时费力,无法提供及时的数据以有效降低食源性疾病的发生率。因此,当前无论是从食品企业控制产品质量,或是政府有效监管食品安全,从而保障公众健康的角度,均亟需一种更快速、独立的食源性致病微生物检测方法。尽管当前基于胶体金的层析试纸仍是病原微生物现场快速检测的金标准,但该标记技术仍受限于其较低的灵敏度及无法精确定量等缺陷。
综合考虑上述因素,作者所在团队正致力于靶向于沙门氏菌、副溶血性弧菌及单增李斯特菌等重要食源性致病菌检测的近红外荧光染料标记免疫层析试纸条的开发。高敏型近红外标记探针与便携、简便的免疫层析试纸条的结合,将为食源性致病菌的灵敏、快速检测提供一个全新的平台。
[1]Pyo D J,Yoo J S.New trends in fluorescence immunochromatography[J].Journal of Immunoassay&Immunochemistry,2012,33(2):203-222.
[2]Heise H M.Application of near-infrared spectroscopy in medical sciences[M].Siesler H W,Ozaki Y,Kawata S,et al.Near-Infrared Spectroscopy:Principles,Instruments,Applications.Leipzig:WILEY-VCH Verlag GmbH,2002:289-333.
[3]Alander J T,Bochko V,Martinkauppi B,et al.A review of optical nondestructive visual and near-infrared methods for food quality and safety[J].International Journal of Spectroscopy,2013,20:1-36.
[4]Guo Z Q,Park S,Yoon J Y,et al.Recent progress in the development of near-infrared fluorescent probes for bioimaging applications[J].Chemical Society Reviews,2014,43(1):16-29.
[5]Amiot C L,Xu S P,Liang S,et al.Near-infrared fluorescent materials for sensing of biological targets[J].Sensors,2008,8(5):3082-3105.
[6]Stoyanov S.Probes:Dyes fluorescing in the NIR region[M].Raghavachari R.Near-Infrared Applications in Biotechnology.Boca Raton:CRC Press,2000:35-93.
[7]Zhao W L,Carreira E M.Conformationally restricted aza-BODIPY:Highly fluorescent,stable near-infrared absorbing dyes[J]. Chemistry-A European Journal,2006,12(27):7254-7263.
[8]Lee S C,Zhai D T,Mukherjee P,et al.The Development of novel near-infrared(NIR)tetraarylazadipyrromethene fluorescent dyes[J].Materials,2013,6(5):1779-1788.
[9]傅妮娜,王红,张华山.近红外荧光探针及其在生物分析中的应用进展[J].分析科学学报,2008,24(2):233-239.
FU Nina,WANG Hong,ZHANG Huashan.Progress in near-infrared fluorescent probe and its bioanalytical application[J]. Journal of Analytical Science,2008,24(2):233-239.(in Chinese)
[10]Gruber H J,Hahn C D,Kada G,et al.Anomalous fluorescence enhancement of Cy3 and Cy3.5 versus anomalous fluorescence loss of Cy5 and Cy7 upon covalent linking to proteins and noncovalent binding to avidin[J].Bioconjugate Chemistry,2000,11(5):696-704.
[11]Waggoner A S,Ernst L A,Mujumdar R B.Method for labeling and detecting materials employing arylsulfonate cyanate dyes:US Patent 5268486[P].1993-01-01.
[12]Cheng Z,Wu Z,Xiong Z,et al.Near-Infrared fluorescent RGD peptides for optical imaging of integrin avb3 expression in living mice[J].Bioconjugate Chemistry,2005,16(6):1433-1441.
[13]Chen J,Corbin I R,Li H,et al.Ligand conjugated low-density lipoprotein nanoparticles for enhanced optical cancer imaging in vivo[J].Journal of the American Chemical Society,2007,129(18):5798-5799.
[14]Christian N A,Milone M C,Ranka S S,et al.Tat-Functionalized Near-Infrared emissive polymersomes for dendritic cell labeling [J].Bioconjugate Chemistry,2007,18(1):31-40.
[15]Malicka J,Gryczynski I,Geddes C D,et al.Metal-enhanced emission from indocyanine green:a new approach to in vivo imaging [J].Journal of Biomedical Optics,2003,8(3):472-478.
[16]Tam F,Goodrich G P,Johnson B R,et al.Plasmonic enhancement of molecular fluorescence[J].Nano Letters,2007,7(2):496-501.
[17]Kim K,Lee M,Park H,et al.Cell-Permeable and biocompatible polymeric nanoparticles for apoptosis imaging[J].Journal of the American Chemical Society,2006,128(11):3490-3491.
[18]Kairdolf B A,Smith A M,Stokes T H,et al.Semiconductor quantum dots for bioimaging and biodiagnostic applications[J]. Annual Review of Analytical Chemistry,2013,6(1):143-162.
[19]van Veggel F C J M.Near-Infrared quantum dots and their delicate synthesis,challenging characterization,and exciting potential applications[J].Chemistry of Materials,2014,26(1):111-122.
[20]Ma Q,Su X G.Near-Infrared quantum dots:synthesis,functionalization and analytical applications[J].Analyst,2010,135(8):1867-1877.
[21]Li L,Daou J,Texier I,et al.Highly luminescent CulnS2/ZnS core/shell nanocrystals:Cadmium-Free quantum dots for in vivo imaging[J].Chemistry of Materials,2009,21(12):2422-2429.
[22]Aita K,Temma T,Shimizu Y,et al.Synthesis of a new NIR fluorescent Nd complex labeling agent[J].Journal of Fluorescence,2010,20(1):225-234.
[23]Yu C,Zhang J,Wen L,et al.New transparent Er3+-doped oxyfluoride tellurite glass ceramic with improved near infrared and upconversion fluorescence properties[J].Materials Letters,2007,61(17):3644-3646.
[24]Korovin Y V,Rusakova N V,Popkov Y A,et al.Luminescence of ytterbium and neodymium in complexes with bis-macrocyclic ligands[J].Journal of Applied Spectroscopy,2002,69(6):841-844.
[25]Zhang J,Petoud S.Azulene-Moiety-Based ligand for the efficient sensitization of four near-infrared luminescent lanthanide cations:Nd3+,Er3+,Tm3+,and Yb3+[J].Chemistry,2008,14(4):1264-1272.
[26]Comby S,Bünzli J-C G.Chapter 235 Lanthanide near-infrared luminescence in moleclular probes and devices[M].Gschneidner K A,Bünzli J-C G,Pecharsky V K.Handbook on the physics and chemistry of rare earths.North Holland:[s.n.],2007:217-470.
[27]Eliseeva S V,Bünzli J-C G.Lanthanide luminescence for functional materials and bio-sciences[J].Chemical Society Reviews,2010,39(1):189-227.
[28]Foucault-Collet A,Gogick K A,White K A,et al.Lanthanide near infrared imaging in living cells with Yb3+nano metal organic frameworks[J].Proceedings of the National Academy of Sciences of the United States of America,2013,110(43):17199-17204.
[29]Duan Z C,Zhang J J,He D B,et al.Effect of CdF2 addition on thermal stability and upconversion luminescence properties in Tm3+-Yb3+codoped oxyfluoride silicate glasses[J].Materials Chemistry&Physics,2006,100(2-3):400-403.
[30]Wei Y,Lu F Q,Zhang X R,et al.Synthesis and characterization of efficient near-infrared upconversion Yb and Tm codoped NaYF4 nanaocrystal reporter[J].Journal of Alloys&Compounds,2007,427:333-340.
[31]Ajayan P M,Zhou O Z.Application of carbon nanotubes[J].Topics in Applied Physics,2001,80:391-425.
[32]Endo M,Strano M S,Ajayan P M.Potential applications of carbon nanotubes[J].Topics in Applied Physics,2008,111:13-61.
[33]O’Connell M J,Bachilo S M,Huffman C B,et al.Band gap fluorescence from individual single-walled carbon nanotubes[J]. Science,2002,297(5581):593-596.
[34]Heller D A,Baik S,Eurell T E,et al.Single-walled carbon nanotube spectroscopy in live cells:towards long-term labels and optical sensors[J].Advanced Materials,2005,17(23):2793-2799.
[35]Tao H Q,Yang K,Ma Z,et al.In vivo NIR fluorescence imaging,biodistribution,and toxicology of photoluminescent carbon dots produced from carbon nanotubes and graphite[J].Small,2012,8(2):281-290.
[36]Welsher K,Liu Z,Daranciang D,et al.Selective probing and imaging of cells with single walled carbon nanotubes as nearinfrared fluorescent molecules[J].Nano Letters,2008,8(2):586-590.
[37]Iizumi Y,Okazaki T,Ikehara Y,et al.Immunoassay with single-walled carbon nanotubes as near-infrared fluorescent labels[J]. Applied Material&Interfaces,2013,5(16):7665-7670.
[38]Boyer A E,Lipowska M,Zen J-M,et al.Evaluation of near infrared dyes as labels for immunoassays utilizing laser diodedetection:Development of near infrared dye immunoassay(NIRDIA)[J].Analytical Letters,1992,25(3):415-428.
[39]Zhu Y,Li Q X.Movement of bromacil and hexazinone in soils of Hawaiian pineapple fields[J].Chemosphere,2002,49(6):669-674.
[40]Liess M,Schulz R.Linking insecticide contamination and population response in an agricultural stream [J].Environmental Toxicology and Chemistry,1999,18(9):1948-1955.
[41]Wengatz I,Szurdoki F,Swamy A R,et al.Immunoassays for pesticide monitoring[M].Lakowicz J R.Advances in fluorescence sensing technology II.Bellingham:Proc SPIE,SIPE-the international society of optical engineering,1995:408-416.
[42]Daneshvar M I,Peralta J M,Casay G A,et al.Detection of biomolecules in the near-infrared spectral region via a fiber-optic immunosensor[J].Journal of Immunological Methods,1999,226(1-2):119-128.
[43]Zhao X Y,Kottegoda S,Shippy S A.Solid-phase immunoassay detection of peptides from complex matrices without a separation [J].Analyst,2003,128(4):357-362.
[44]Zhao X Y,Shippy S A.Competitive immunoassay for microliter protein samples with magnetic beads and near-infrared fluorescence detection[J].Analytical Chemistry,2004,76(7):1871-1876.
[45]Liu C M,Tung K H,Chang T H,et al.Analysis of secretory immunoglobulin A in human saliva by laser-induced fluorescence capillary electrophoresis[J].Journal of Chromatography B-Analytical Technologies in the Biomedical&Life Sciences,2003,791(1-2):315-321.
[46]Swanson C,D’Andrea A.Lateral flow assay with near-infrared dye for multiplex detection[J].Clinical Chemistry,2013,59(4):641-648.
[47]Daneshvar M I,Casay G A,Patonay G,et al.Design and development of a fiber-optic immunosensor utilizing near-infrared fluorophores[J].Journal of Fluorescence,1996,6(2):69-74.
[48]Silva M,Cruz H ,Rossetti O,et al.Development of an optical immunosensor based on the fluorescence of Cyanine-5 for veterinarian diagnostics[J].Biotechnology Letters,2004,26(12):993-997.
[49]Williams R J,Peralta J M,Tsang V C W,et al.Near-infrared heptamethine cyanine dyes:A new tracer for solid phase immunoassays[J].Applied Spectroscopy,1997,51(6):836-843.
[50]Deng T,Li J S,Jiang J H,et al.Preparation of near-IR fluorescent nanoparticles for fluorescence-anisotropy-based immunoagglutination assay in whole blood[J].Advanced Functional Materials,2006,16(16):2147-2155.
[51]Liang G D,Liu S F,Zou G Z,et al.Ultrasensitive immunoassay based on anodic near-infrared electrochemiluminescence from dual-stabilizer-capped CdTe nanocrystals[J].Analytical Chemistry,2012,84(24):10645-10649.
[52]Wang J,Han H,Jiang X,et al.Quantum dot-based near-infrared electrochemiluminescent immunosensor with gold nanoparticlegraphene nanosheet hybrids and silica nanospheres double-assisted signal amplification[J].Analytical Chemistry,2012,84(11):4893-4899.
[53]Liang G X,Pan H C,Li Y,et al.Near infrared sensing based on fluorescence resonance energy transfer between Mn:CdTe quantum dots and Au nanorods[J].Biosensors and Bioelectronics,2009,24(12):3693-3697.
[54]Li L L,Chen Y,Lu Q,et al.Electrochemiluminescence energy transfer-promoted ultrasensitive immunoassay using nearinfrared-emitting CdSeTe/CdS/ZnS quantum dots and gold nanorods[J].Scientific Reports,2013(3):15-29.
[55]Escobedo J O,Rusin O,Lim S,et al.NIR dyes for bioimaging applications[J].Current Opinion in Chemical Biology,2010,14(1):64.
[56]Li Y,Li Z,Wang X H,et al.In vivo cancer targeting and imaging-guided surgery with near infrared-emitting quantum dot bioconjugates[J].Theranostics,2012,2(8):769-776.
Near Infrared Fluorescent Probes and Their Applications in Immunoassay
XIE Xueqin1, YANG Xiangying2, GAO Jing1, LIANG Shuang3, KANG Xixi2,ZHANG Yan4, WANG Xiaojin5, XU Meiling6, WANG Jing7, ZHANG Jie*2
(1.Xiamen Products Quality Supervision&Inspection Institute,Xiamen 361004,China;2.Beijing Enter-Exit Inspection and Quarantine Bureau,Beijing 100026,China;3.School of Chemical and Engineering,Changchun University of Science and Technology,Changchun 1300123,China;4.Hebei Food Inspection and Research Institute,Shijiazhuang 050091,China;5.Huaian Enter-Exit Inspection and Quarantine Bureau,Huaian 223001,China;6.Linyi Enter-Exit Inspection and Quarantine Bureau,Linyi 276034,China;7.Weihai Enter-Exit Inspection and Quarantine Bureau,Weihai 264205,China)
Owing to the distinguished superiority of lower background noises,deeper penetrating capacity and less destructiveness to biomatrix over UV and visible fluorophores,near-infraredfluorescent probes(NIFPs)have gaining more and more attentions for analytical applications to date. With continuous research efforts in chemical synthesis and exploration of novel fluorescent materials,the number of NIFPs applicable for biological systems has grown substantially and widely applied in fields such as non-destructive detection,immunoassay and bioimaging in recent years.In this review,the properties,characterization and recent progresses in improvements of optical properties and signal intensity of 4 types of vital NIFPs(i.e.organic fluorophores,quantum dots,rare earth compounds and single-walled carbon nanotubes)were summarized.The applications of such important NIFPs in immunological analysis of environmental contaminants and clinically important biomarkers were also elaborated.Moreover,the potential of NIFPs-based immunochromatography technique adaptable for rapid detection of foodborne pathogens was also forecasted.
near infrared fluorescent probes,organic fluorophores,quantum dots,rare earth compounds,single-walled carbon nanotubes,environmental contaminants,clinically diagnostic biomarkers,immunoassay
R 122.12;X 502;TS 207.5
A
1673—1689(2015)03—0225—07
2014-09-10
国家质检总局科技项目 (2013IK144);国家质检总局公益性行业科研专项 (201410049);福建省自然科学基金项目(2014J01118)。
谢雪钦(1982—),女,福建莆田人,理学博士,工程师,主要从事食品微生物分子生物学及转基因检测研究。
E-mail:cherryxie36@163.com
*通信作者:张 捷(1965—),男,北京人,理学博士,高级工程师,主要从事食品检测与食品安全评估研究。E-mail:zhangjie@bjciq.gov.cn