周 齐 杨爱民
(河北联合大学理学院 河北唐山 063000)
概率的本质特性分析及讨论
周 齐 杨爱民
(河北联合大学理学院 河北唐山 063000)
概率在数学上的发展历史悠久,可以追溯到16世纪,在经过科尔莫格罗夫等伟大数学家的发展逐渐成为了数学的一个重要分支,而概率的公理化定义的提出使得概率作为一门数学学科趋于成熟严密,概率的本质问题是关于在概率公理化定义的基础上,怎样将概率这一抽象的概念转化成我们所熟悉的其他数学概念,而对概率的本质问题的界定将有助于促进人们对概率的理解,也将促进概率在其他学科领域的渗透。本文介绍概率的相关概述并对概率的本质特性进行解读,以及提出对当代概率教学的一些看法。
概率 可能性 测度 公理化定义 教育教学
现代概率统计领域学科交叉纵横,各种分支琳琅满目,随机过程、时间序列、数理统计等等概率统计领域的内容被广泛的应用于社会经济,民生,财政税收,民事调查等,然而在众多分科当中概率是学科的学术基石,概率的概念在支撑起上层学科内容的同时,其抽象性与发展过程也是极其深刻与丰富的,逻辑学家与经济学家杰文斯说过:“概率论是生活真正的领路人,如果没有对概率的某种估计,我们就寸步难行,我所作为”,可见概率的重要价值,同时伯努利也认为,“先前的概率都是从主观上去认识”。因此,以下我将从较为基础的角度试图表述我关于概率本质与意义的理解以及对目前概率课教学的一些看法。
数学作为一种科学基础被广泛的应用于各个领域,其大体经过了形成时期,初等数学,高等数学,现代数学四个阶段,而概率论作为数学领域当中一个庞大分支其思想广泛的渗透到数学的各个领域里。概率论起源于一个赌博问题,16世纪意大利数学家卡尔达诺开始研究投骰子等有关赌博的问题,而概率论甚至统计起先确实最先运用于赌博和人口统计模型,随着发展的深入,人们渐渐意识到不确定性的背后隐藏着某种必然规律,从而将这一问题引入数学,并用数学的方式进行研究,从而使概率论从真正意义上成为了一门严谨的学科。在这一过程中,瑞士数学家伯努利创建了大数定律,阐明了频率与概率的关系,从而标志着概率论的诞生。概率论自诞生起至今,被广泛的应用于医疗,金融,军事,自然科学等各个方面。
在引入概率之前,我先想引入一个极其简单的定义即长度,长度众所周知是度量一个事物的属性概念,而诸如面积体积无不是人为规定的能够反映现实意义的一些量,而这些我们统统都知道他们就是数学上的测度,顾名思义,测度即是测量的量度,而概率其本质仍是测度,通俗的理解是对事情发生可能性大小的量度,对于概率这种测度,其抽象性本身来源于其度量对象的不具体化。从最初的古典概型,到后来的几何概型以及众多分布,都是前苏联数学家柯尔莫哥洛夫的概率公理化定义上的框架范围之内的,尽管这个具有公理地位的定义比较它之前出现的相对片面与狭小的概率定义—古典概型与几何概型还要晚,可是其仍旧在相对前两者更彻底的呈现着概率的本质,更透明更像数学一样的用这个伟大的定义解释着究竟什么是概率,又十分大胆的做出将概率用于一件事情发生可能性大小的度量,即以数字(0与1之间)极富创新的对应“可能性”这一看似根本无法度量的事情,概率对其的量化正是概率的魅力所在,也是概率论区别于一般数学更显“神奇”的地方,而反过头来在看概率的公理化定义与古典概型和几何概型出现时间先后,虽然感觉上“本末倒置”,仔细想想也能理解,他同样符合着由浅显到深刻,由特殊到一般的归纳思维。那么下面对于这种人为给定的测度,包括对于可能性的具体测度值是不是具有客观性,这里涉及更深的理论在此不加讨论,唯一想做出强调的涉及概率本质定义的东西是诸如那些经典的分布,比如二项分布,泊松分布,甚至于正态分布以及数理统计中的三大分布,如果从一个鲜有考虑的视角思索,他们无不都是一种定义,或者说利用测度进行映射的一个整体,而这却是那样与事实符合,甚至可以高度准确的对接下来或者另外的更多的可能性进行预测,那些在脑海中的分布如此根深蒂固以致永远不会使人觉得它们需要证明,它们自然到甚至于不会有丝毫怀疑,而这仅仅全部因为它们在对应现实事情时高度的合理性以及相关联理论的一脉相承性。
概率作为当代数学的一个分支方向,其本身相对于其他数学领域是极富特色的,这种特色,第一是他的研究手段和传统的数学研究手段有所区别,第二他的研究对象—随机现象和数学中经常研究的确定现象也具备本质上的不同,而众所周知,在缤纷复杂的现实世界,大部分情况都是不确定的,都带有一定的随机性,所以这恰恰决定了概率的生命力以及概率研究的无穷魅力。
目前高校都开设统计领域的课程,而概率论课程作为这个领域的发展基石更是备受关注,尤其对于数学类专业的学生来说,概率论更是极为重要的,而概率统计方向也随着其在社会各个领域的成功运用而受到越来越多的关注,可是对于大多数关于概率论课的教学都美中不足,主要体现在以下几方面,第一,在开设概率论课程之前并未开设测度论这一更为基础的课程,导致概率上很多至关重要的东西让学生觉得莫名其妙,其二,关于概率论上很多定义的前后逻辑性与定理的证明都不曾涉及也让对概率的本质精髓不能很好把握,所以关于概率论课程的安排个人觉得应该从以下几点有所改变,第一,在开设概率论课程之前应该使学生具备一些知识积累,比如对测度论的基本内容,对分析数学、复变函数中的部分内容都应有所了解,第二,应该较为细致的讲解有关概率这一概念的形成以及概率论的发展史,力求使学生能够将来龙去脉把握清楚,第三,在对概率论深刻内涵与理论的讲解之下注意引入相对具体的例子,从而化抽象为具体,使学生能够对概率有一个更为感性的认识。
[1]盛举,谢式千,潘承毅,概率论与数理统计(第三版)北京:高等教育出版社,2011:146-147
[2]毛纲元,概率论与数理统计解题方法技巧归纳[M],武汉:华中理工大学出版社2000:523-530
[3]茆诗松,程依明,濮晓龙,概率论与数理统计教程[M],高等教育出版社,2004
[4]骆先南,周勇,概率论与数理统计[M],北京,科学出版社,2005
[5]徐国祥,刘汉良,统计学[M],上海,上海财经大学出版社,2001