高吸水性树脂协同高强度聚焦超声对细粒棘球绦蚴原头节细胞酶活性的影响

2015-02-14 08:08王梦莹赵毅峰韩秀敏李发琪
中国人兽共患病学报 2015年11期
关键词:棘球细粒悬液

张 静,王梦莹,叶 彬,赵毅峰,韩秀敏,李发琪,王 琦

高吸水性树脂协同高强度聚焦超声对细粒棘球绦蚴原头节细胞酶活性的影响

张 静1,2,王梦莹2,叶 彬1,2,赵毅峰3,韩秀敏4,李发琪5,王 琦5

目的 为探索高吸水性树脂(Super Absorbent Resin,SAR)协同高强度聚焦超声(high intensity focused ultrasound,HIFU)对离体细粒棘球绦蚴原头节酶活性的影响。方法 将离体原头节悬液(每mL含有2 000个原头节),分为4组:I组(仅原头节悬液)、Ⅱ组:仅SAR组( 0.01 gSAR)、III组(单纯HIFU照射)、IV组(HIFU照射+ 0.01gSAR)、Ⅴ组(HIFU照射+ 0.1 gSAR)。以声功率为100 w的高强度聚焦超声波辐照30 s,辐照后悬液涂片进行台盼兰及经冰冻切片酶组织化学染色,观察原头节形态学改变,并用半定量方法检测原头节内细胞的葡萄糖-6-磷酸酶和琥珀酸脱氢酶的活性。结果 显示当超声剂量一定时,原头节的形态改变与SAR剂量有正效应关系,SAR量越大,其破坏程度越高。正常原头节透亮、外形完整,各实验组原头节深染或结构崩解。单纯HIFU照射组在作用60 s时,原头节死亡率为80.1%;HIFU结合不同量SAR两组原头节在HIFU作用10 s时,其死亡率分别为87.82%和89.1%。加入SAR后再经过HIFU照射各组原头节内细胞葡萄糖-6-磷酸酶和琥珀酸脱氢酶活性降低,明显低于单纯超声组(P<0.05),阴性对照组无酶反应物产。结论 SAR能增加HIFU辐照对原头节的急性杀伤作用,使原头节内细胞的葡萄糖-6-磷酸酶活性和琥珀酸脱氢酶活性均显著低降低,从而影响其活力。

细粒棘球绦蚴原头节;高吸水性树脂;高强度聚焦超声;三磷酸腺苷酶;葡萄糖-6-磷酸酶;琥珀酸脱氢酶

囊性包虫病是细粒棘球绦虫寄生于人和其它动物体内所致的一种严重的人畜共患病,呈世界性分布。在我国,该病主要分布于西部、中部、东南以及东北的11个省区[1]。我们的前期试验证明,高强度聚焦超声(high intensity focused ultrasound,HIFU)对包虫病有一定的治疗作用[2-3],但由于包虫病是一种囊性病变,内充囊液,据文献[4]:99%囊液成分为水分,其余为蛋白质、电解质等,因此一定强度的超声剂量受囊液的影响而使焦域内能量不能有效聚集,故实验发现不能将棘球蚴包囊内原头节全部杀灭,治疗效果尚有欠缺。

高吸水性树脂(Super Absorbent Resin,简称SAR),又称为超强吸水高分子材料(Super Absorbent Polymer,简称SAR),高吸水性树脂是上世纪六十年代初期迅速发展起来的一种具有疏松网络结构的新型功能高分子材料,主要具有水的传递、转换和储存等功能。与传统的吸水材料不同的是高吸水性树脂既不溶于水也难溶于有机溶剂,但与水接触后,在短时间内溶胀,能吸收自重几百倍甚至上千倍的水,且吸水速度快,保水性能好,即使在加压的状态下也很难脱水,还可反复使用[5]。由此本研究提出在囊液中注入高吸水性树脂把水分吸收,提高HIFU的能量,本实验拟利用SAR的超强的吸水能力,使囊液浓缩,提高HIFU作用后其焦域的温度,杀伤更多的原头节,因此就SAR增强HIFU对离体原头蚴效应进行了研究。

1 材料与方法

1.1 实验材料

1.1.1 原头节采集 细粒棘球蚴采自青海省西宁市某屠宰场包虫感染病羊肝,屠宰后立即冰盒低温保存送至实验室。为尽量保持自然状态,用消毒酒精轻轻擦拭病羊肝表面,在无菌室内,直接从包囊吸出囊液和原头节,抽吸出的囊液和原头节分别置于实验用无菌瓶中,4 ℃冰箱短期保存备用。用0.4%台盼兰(trypan blue)染色,检查原头节活力,活力超过95%的原头节用于实验。

1.1.2 实验试剂 高吸水性树脂(SAR,自制),0.01 mol/L PBS溶液(武汉博士得公司),0.4%台盼蓝染液(以PBS溶液稀释、过滤,终浓度为0.4%),OTC冰冻切片包埋剂(包埋剂为美国SAKURA公司),灭菌注射用生理盐水及其他试剂均为国产。

1.2 主要仪器 JC-200型聚焦超声肿瘤治疗系统(简称海扶刀),由重庆医科大学医学超声工程研究所设计制造,青海大学附属医院提供。技术参数:超声换能器的工作频率为0.8 MHz,焦点声强范围0~15000 W/cm2,透镜焦距为110 mm,连续可调。组合治疗头安装于盛循环脱气生理盐水的容器底部,并可在X、Y、Z 3个方向上随意运动,声波由治疗头自下向上发出。普通生物显微镜(日本Nikon公司),扫描电子显微镜 S-3000N(日本日立公司),透射电子显微镜 Hitachi-7500(日本日立公司,恒温箱式冰冻切片机(北京中西远大科技有限公司),20 mL无菌注射器若干。

1.3 实验分组和方法

1.3.1 实验分组 每管5 mL囊液和10 000个原头节。实验分对照组(Ⅰ组:超声假照且原头节悬液中不加SAR)、实验组:SAR半饱和量组(Ⅱ组)、单纯HIFU照射组Ⅲ组、HIFU照射+SAR半饱和组(Ⅳ组:SAR为0.01 g)、HIFU照射+SAR饱和组(Ⅴ组:SAR为0.1 g)。

1.3.2 高吸水性树脂的制备及注射 高吸水性树脂由本室制备并保存于密闭容器中,置37 ℃恒温箱内防止吸潮(批号20100727)。将160~180目SAR颗粒与无水酒精混匀制成混悬液待用,用注射器抽吸掉少量囊液减压后,再将SAR、酒精混悬液注射至盛有原头节悬液的聚乙烯试管中内,静置片刻后,用于HIFU照射实验。

1.3.3 HIFU照射实验 实验中超声波由治疗头自下向上发出,盛装原头节悬液的聚乙烯试管固定于治疗头焦域内,通过诊断超声实时监控,将焦点对准试管内悬液的中心进行定点辐照,采用100W持续照射30 s。照射结束后立即将原头蚴悬液取出涂片每组涂片3张,在光镜下观察原头节的活动度和0.4%胎盘蓝染色检测原头节活力,在3 min内,分别计数原头节死活。

1.3.4 原头节的急性杀伤作用 每张玻片随机数200个原头节,计数其中活原头节数目。以上每个剂量(功率×时间)设3个平行管,实验隔天重复1次,共进行5次,取每组活原头节计数,其平均值作为该组的最终活原头节计数值。根据式(1-1)计算杀伤率:

1.3.4 H辐照后原头节的返种实验 用定点点打方式辐照处理组原头节悬液,对照组予诊断超声以假照。HIFU辐照过的原头节经台盼蓝染色确认为存活状态后,将原头节悬液混匀后置于1640培养液中,37 ℃,二氧化碳温箱培养7 d。接种原头节量约为1 500个/只。同时以假照之悬液同样接种作为阳性对照组。计数原头节死亡率。

1.3.5 冰冻切片制备及染色 载玻片的预处理:以蒸馏水1∶10稀释0.1%多聚赖氨酸溶液,用前将玻片浸于多聚赖氨酸溶液5分钟。在60 ℃烘箱干燥1小时备用。分组同前,采用治疗声功率50 W,辐照时间10 s,定点点打方式辐照处理组原头节悬液,对照组予诊断超声以假照。照射后轻轻混匀悬液,将试管里自然沉淀的原头蚴,经0.1 mol/L PBS洗涤3次后,注入OCT液, 立即经液氮骤冷至恒冷箱切片, 制成厚度为7~10 μm 的连续切片。每一指标均观察原头蚴切面50~60个,用光学显微镜确定原头蚴体内上述组织化学成分的定位, 并以染色深浅及反应程度来判别其含量及强弱。

1.3.6 对照及结果判定 检测琥珀酸脱氢酶活性(SDH)采用N-BT法显示SDH,检测葡萄糖6-磷酸酶活性(G-6-P)采用硝酸铅法检测G-6-P。以正常小鼠肾上腺皮质作为SDH的阳性对照,正常小鼠肝脏作为G-6-P的阳性对照,作用液中不加反应底物结果作为阴性对照。所有切片均在相同的条件下平行操作。SDH活性部位显蓝色,活性较低时显紫红色。棕黑色硫化铅沉淀处为G-6-P酶活性所在部位,光镜下G-6-P酶反应产物较均匀分布于胞质中。

1.4 统计学分析 采用SPSS 12. 0统计软件包作数据处理,检验水准设定为α=0.05,P<0.01即为差异有统计学意义。即刻杀伤作用的实验结果测量资料的多因素方差分析,不同因素间两两比较用F检验。

2 结 果

2.1 对原头节的杀伤效果 HIFU照射及SAR协同作用于原头节的急性杀伤作用如图1。除超声假照组外, 各组原头节随作用时间延长,其死亡率升高,仅有SAR的囊液中原头节死亡率与空白组差异有统计学意义(P<0.001),但各时段死亡率明显低于同一处理时段的单纯HIFU照射组(P<0.001);单纯HIFU照射组原头节死亡率在各作用时间点(5, 10, 20, 30, 40, 50, 60 seconds)分别为21%, 50.83%, 56,5%, 73.7%, 78%, 80.1%;HIFU 照射(100W+SAR半饱和)组为63.8%、87.82%、89.4%、92.3%、100%、100%、100%;HIFU照射 (100W+SAR饱和)组为68.4%、89.1%、90.6%、93.2%、100%、100%、100%。根据对数据进行ANOVA分析,不同实验组之间存在统计学差异(F=357.5,P<0.001),不同作用时间对原头节的影响具有时间-效应关系,Ⅲ组、Ⅳ组原头节死亡率在HIFU作用40 s后差异无统计学意义(P>0.01)。

2.2 原头节形态变化 光镜观察HIFU辐照后的各组原头节:对照组存活的原头节,能排斥染料而不被染成蓝色,内部结构清楚(图1)。死亡的原头蚴被台盼兰染色后,表现为几种形式,1)虫体浅染,大小正常,外形完整,小钩、吸盘、钙小体尚清晰;2)虫体深染,浓缩,小钩聚集成团,钙小体消失;3)虫体已完全解体,碎片蓝染,小钩、钙小体散落。单纯100W HIFU作用后,死亡的原头节虽被蓝染,内部结构仍可辨(图2)。HIFU+SAR各组可见破裂的虫体、散落出来的头钩、大量钙小体、及吸水后的SAR颗粒(图3)。

图1 对照组活原头节Fig.1 Alive protoscolices in the control group(×20)

2.3 原头节内酶反应结果 正常对照组原头节内显示深蓝色颗粒分布在原头节的实质细胞内,而小钩内没有深蓝色颗粒,提示原头节内SDH酶活性较高(图4)。而实验各组(包括加入SAR)原头节实质细胞内显示内浅蓝色颗粒甚少或缺如,而SAR协同HIFU照射组原头节内SDH活性显著降低(图5~7)。G-6-P染色后,正常对照组原头节染成金黄色,头节内茶褐色颗粒沉积(图8);HIFU作用各组原头节内G-6-P颗粒浅染(图9~11)。

表1 不同SAR协同HIFU照射对原头节的急性杀伤作用(致死率%)

Tab.1 The death rates of protoscolices in the protoscolices suspension after irritation of HIFU (100W) and HIFU combined with SAR in different exposure times (%) (n=5)

GroupDeathratesofprotoscolicesafterirritationofHIFU(%)Exposureduration(seconds)5102030405060Ⅰ组:空白组(超声假照)5.01±0.15.22±0.115.29±0.1015.36±0.125.53±0.1116.27±0.1326.73±0.1Ⅱ组:SAR组(半饱和量)5.82±0.126.7±0.1217.0±0.1177.2±0.127.25±0.167.67±0.1128.03±0.106Ⅲ组:HIFU(100W)21±0.11150.83±0.12456.5±0.13668.4±0.1373.7±0.1278±0.14380.1±0Ⅳ组:HIFU(100W+SAR半饱和)63.8±0.1287.82±0.15287.33±0.12789.4±0.11592.3±0.113100±0100±0Ⅴ组:HIFU(100W+SAR饱和)68.4±0.13289.1±0.15890.6±0.10493.2±0.13100±0100±0100±0

Note: there were significant death in the HIFU duration groups comparison with the no duration groups (*P<0.05), in the SAR groups comparison with the simple HIFU group (#P<0.05), in the SAR combined with HIFU groups comparison with the simple HIFU group (#P<0.05); and between the SAR combined with HIFU groups (§P<0.05).

图2 HIFU单纯照射组原头节

Fig.2 Total death of coloured protoscolices due to exposure to HIFU of 100 W acoustic power for 30 seconds (×10)

图3 SAR协同HIFU照射组原头节

Fig.3 The less structures of dead protoscolices (P), super-absorbent resin(S), free hooks (H), calcareous corpuscles (C) after exposure to HIFU of 100 w combined with SAR for 30 seconds (×40)

图4 对照组原头节内细胞SDH酶颗粒呈深蓝色(×40)

Fig.4 Normal SDH staining in the live protoscolices ofEchinococcusgranulosus(×40)

图5 HIFU单纯照射组照射后原头节内细胞SDH酶颗粒浅染(×40)

Fig.5 The SDH staining intensity was reduced after exposure to the 100 W acoustic power of HIFU (×40)

3 讨 论

原头蚴在细粒棘球绦虫的生活史中是非常重要的发育阶段,是相对独立的个体。原头节不耐高温,但耐低温,在-4 ℃冰箱保存可存活几天,在-20 ℃可存活几个月[6],而且原头节是包虫囊液中最活跃和最富有生理机能的成分,其功能表现在:1)

图6 SAR(半饱和组)协同HIFU照射后原头节内SDH颗粒浅染甚或无色(×40)

Fig.6 The SDH staining intensity was markedly reduced after exposure to the 100 W acoustic power of HIFU (×40)

图7 SAR(饱和组)协同HIFU照射后原头节内SDH颗粒浅染甚或无色(×40)

Fig.7 The SDH staining intensity was markedly reduced after exposure to the 100 W acoustic power of HIFU (×40)

图8 对照组原头节内细胞G-6-P酶活性强,呈视野呈茶褐色。(×40)

Fig.8 Normal G-6-P staining in the live protoscolices ofEchinococcusgranulosus(×40)

原头节一旦逸入宿主组织器官,即可继发包虫病。2)原头节具有较高的免疫原性。3)若被终宿主吞入,则可发育为一条成虫[7]。从形态上来看,原头节体细胞的类型与生发层上的细胞基本上是一致的[8-9],这种细胞是合胞体结构,似类上皮细胞,属于未分化的细胞, 有极强的繁殖生长能力[10]。因此,抑制原头节活性或杀灭原头节是在包虫病治疗过程中最关键的研究内容[11-12]。

图9 SAR(饱和组)协同HIFU照射后原头节内SDH颗粒浅染(×40)

Fig.9 The G-6-Pstaining intensity was markedly reduced after exposure to the 100 W acoustic power of HIFU (×40)

图10 SAR(半饱和组)协同HIFU照射后原头节内G-6-P颗粒浅染(×40)

Fig.10 The G-6-P staining intensity was markedly reduced after exposure to the 100 W acoustic power of HIFU (×40)

图11 SAR(饱和组)协同HIFU照射后原头节内SDH颗粒浅染(×40)

Fig.11 The G-6-P staining intensity was markedly reduced after exposure to the 100 W acoustic power of HIFU (×40)

HIFU已广泛用于治疗临床上的各种实体肿瘤[13],尤其对子宫肌瘤的疗效非常好[14-18]。其充分利用声波的聚焦原理,将超声波能量汇集于机体深部某一靶区,通过超声波的热效应、空化效应、机械效应、声化学效应等使靶区内温度瞬间达到65 ℃~100 ℃,肿瘤组织产生凝固性坏死[19]发生不可逆破坏,必要时可重复进行,直至病灶全部破坏,从而达到“深部切除”的目的,达到无创治疗的效果。

我们的前期研究证明了HIFU治疗对棘球蚴有杀伤效果[20],而对囊内原头蚴有一定杀灭作用,但效果不尽如人意。主要是因为囊液聚焦性差,同时液体散热又比较快,使得高强度聚焦超声波作用后囊液温度明显不如囊壁实体组织升得高且快。因此,对囊液的处理和充分发挥HIFU的热效应在治疗包虫病过程尤为重要和关键。从高强度聚焦超声波对原头节的急性杀伤效应看,其死亡率与照射剂量及照射时间正相关,HIFU对棘球蚴也有热效应。本实验观察到死亡的原头蚴被台盼兰染色后,表现为几种形式,集中体现了HIFU对虫体破坏既有空化效应、机械效应(如原头节被撕裂成碎片),也有热效应(如原头节虫体完整,但台盼兰染料能渗入皮层细胞)。从原头节的死亡率看,与SAR量亦有剂量-效应关系,SAR量越大,原头节死亡率亦有增高,可见加入SAR后,HIFU照射对原头节的杀伤效果优于不加SAR的单纯囊液,提示SAP吸液后,游离水减少,一方面缓冲了液体对热量的消减作用,使局部组织温度瞬间上升,导致蛋白变性及组织细胞发生不可逆的凝固性坏死。

本实验采用冰冻切片(frozen section)的方式来观察酶的活性,酶组织化学在显示细胞功能受损方面更直观。检测了琥珀酸脱氢酶和葡萄-6-磷酸酶的活性。琥珀酸脱氢酶(Succinatedehydrogenase,简称SDH)是脱氢酶中最重要的酶,它存在于所有有氧呼吸的细胞内,和线粒体内膜紧密结合黄素酶类,是线粒体内膜的结合酶,属膜结合酶,是连接氧化磷酸化与电子传递的枢纽之一,可为真核细胞线粒体和多种原核细胞需氧和产能的呼吸链提供电子,为线粒体的一种标志酶。故为三羧酸循环的标志酶,也为线粒体的标志酶[21-22]。细粒棘球绦虫的原头节具有完全的三羧酸循环功能[23],邹晓毅等证实HIFU作用降低了酶活性,改变原头节内体细胞功能,干扰细粒棘球绦虫原头节营养吸收与代谢,抑制其增殖,对原头节的杀伤具有一定迟发性效应,能够抑制辐照后存活的原头节在体内、外的生长,并可能最终导致寄生虫死亡[24]。葡萄-6-磷酸酶(G-6-P)定位于内质网网腔和核膜间隙,为内质网的标志酶。G-6-P参加糖代谢,且具有特异性,仅能水解葡萄糖-6-磷酸而释放出葡萄糖和磷酸,但不能水解葡萄糖-1-磷酸,是糖代谢的关键酶,反应细胞有氧代谢及为细胞及虫体提供能量。

本实验观察到,正常原头节内SDH和G-6-P非常丰富,而钙小体内G-6-P更多,表现为深棕褐色。当加入SAR后再经过HIFU照射,原头节内主要酶颜色变浅甚至消失,表明酶活性明显减弱;钙小体减少,意味着酶活性消失;头钩脱落意味着失去感染终末宿主并寄生在终末宿主肠道的能力,但是在中间宿主体内这些结构也会自然退化,所以对中间宿主而言,最重要的是看原头蚴体细胞的凋亡与坏死程度。

[1]Yu SH. Global progress of echinococcosis control and an insight to the national control program[J]. Chin J Parasitol Parasit Dis, 2008, 26(4): 241-244. DOI: 10.3969/j.issn.1000-7423.2008.04.001 (in Chinese) 余森海. 棘球蚴病防治研究的国际现状和对我们的启示[J]. 中国寄生虫学与寄生虫病杂志,2008,26(4):241-244.

[2]Zou XY, Wang JA, Zhou QT, et al. Inhibiting effects of high intensity focused ultrasound onEchinococcusgranulosusprotoscolicesinvitro[J]. Chin J Endemiol, 2008, 27(002): 154-157. DOI: 10.3760/cma.j.issn.1000-4955. 2008.02.012 (in Chinese) 邹晓毅, 王俊安, 周潜涛,等. 高强度聚焦超声波对细粒棘球绦虫原头节的杀伤效应[J]. 中国地方病学杂志,2008, 27(002): 154-157.

[3]Wang JA, Zou XY, Ye B, et al. Pathological change in hydatid cysts ofEchinococcusgranulosustreated with high intensity focused ultrasound[J]. Chin J Parasitol Parasit Dis, 2007,25(6): 461-2-465. DOI: 10.3969/j.issn.1000-7423.2007.06.006 (in Chinese) 王俊安, 邹晓毅, 叶彬,等. 高强度聚焦超声辐照后细粒棘球蚴囊壁的病理变化[J]. 中国寄生虫学与寄生虫病杂志,2007, 25(6): 461-2-465.

[4]Xu XP, Wang GL. The harm and prevention and control strategies of hydatid cyst[J]. Xinjiang Farm Res Sci Technol, 2013, 9: 52-55.DOI: 10.3969/j.issn.1001-361X.2013.09.041(in Chinese) 徐雪萍, 王光雷. 棘球蚴病流行危害及防控策略[J]. 新疆农垦科技. 2013,9:52-55.

[5]Long MC, Wang P, Zheng T. Progress in the preparation and application of high water-absorbent resins[J]. Polymer Materials Sci Engineer, 2002,18(5): 31-35. DOI: 10.3321/j.issn:1000-7555.2002.05.007 (in Chinese) 龙明策,王鹏,郑彤. 高吸水性树脂的合成及其应用[J]. 高分子材料科学与工程,2002,18(5):31-35.

[6]Galindo M, Schadebrodt G, Galanti N.Echinococcusgranulosus: cellular territories and morphological regions in mature protoscoleces[J]. Exper Parasitol, 2008, 19(4): 524-533.

[7]Yuan LY, Zhang ZZ, Shi BX,et al.Invitrocultivation protoscoleces of the protoslices ofEchinococcusgranulosusin medium RPMI-1640 and MEM[J]. J Anim Sci Vet Med, 2008, 27(5): 16-18. DOI: 10.3969/j.issn.1004-6704.2008.05.005 (in Chinese) 袁丽英, 张壮志, 石保新,等. 细粒棘球绦虫--原头蚴在两种细胞培养液中体外培养的初步观察[J]. 畜牧兽医杂志,2008, 27 (5): 16-18.

[8]Shan JY, Kang JF, Akira I. Isolating the body cells of the protoscolices of theEchinococcusgranulosusinvitroand the characteristics of the cell morphology[J]. J Xinjiang Med Univ, 2005, 28(4): 360-363. DOI: 10.3969/j.issn.1009-5551.2005.04.025 (in Chinese) 单骄宇 ,康金凤, 伊藤亮. 细粒棘球蚴原头蚴体细胞的分离及其细胞形态特点[J]. 2005, 28(4):360-363.

[9]Xu JB, Sun JG, Yuan H, et al. Experimental study on the growing influence and apoptosis of germinal cells of bone echinococcosis by intensity modulated radiation therapy[J]. J Xinjiang Med Univ, 2014, 7: 821-823. DOI: 10.3969/j.issn.1009-5551.2014.07.002 (in Chinese) 徐江波,孙俊刚,袁宏,等. 三维适形调强放疗对骨细粒棘球蚴生发细胞生长及凋亡影响的实验研究[J]. 新疆医科大学学报,2014, 7:821-823.

[10]Lu JH, Cheng WX, Yu XB, et al. The cell line establishment and immunogenic study ofEchinococcusgranulosus[J]. Acad J Sun Yat-Sen Univ Med Sci, 2001, 22(2): 81-84. DOI: 10.3321/j.issn:1672-3554.2001.02.001 (in Chinese) 陆家海,程维兴,余兴炳,等. 细粒棘球蚴细胞系培育及其免疫研究[J]. 中山医科大学学报,2001,22(2);81-84.

[11]Bao GS, HU HH, Jing T, et al.Invitroobservation on albendazole sulfoxide and its enantiomers againstEchinococcusgranulosusprotoscolex[J]. Chin J Parasitol Parasit Dis, 2008, 26(6): 459-465. DOI: 10.3969/j.issn.1000-7423.2008.06.012 (in Chinese) 包根书, 张虹,景涛,等. 阿苯达唑亚砜及其对映体体外抗细粒棘球绦虫原头蚴作用. 中国寄生虫学与寄生虫病杂志,2008,26(6):459-461,465.

[12]Kang JF, Hu HH, Baishan BK, et al.Invitroobservation on the apoptosis induced by H2O2in protoscolex ofEchinococcusgranulosus[J]. Chin J Parasitol Parasit Dis, 2008, 26(5): 332-337. DOI: 10.3969/j.issn.1000-7423.2008.05.003 (in Chinese) 康金风,胡汉华,白山别克,等. 过氧化氢体外诱导细粒棘球蚴原头节细胞凋亡的实验观察[J]. 中国寄生虫学与寄生虫病杂志, 2008,26(5):332-337.

[13]Wu XJ, Cui L, Liu JJ,et al. Clinical observation of the therapr of TACE, PVE sequenced HIFU for primaryliver carcinoma[J]. J Mod Oncol, 2010, 18(09): 1780-1783. DOI: 10.3969/j.issn.1672-4992.2010.09.40 (in Chinese) 吴兴军,崔林,刘建军,等. TACE、PVE联合HIFU治疗原发性肝癌的临床观察[J]. 现代肿瘤医学,2010,18(09):1780-1783.

[14]Xia ZY, Xiong ZA, Zhang XX, et al. The study on the correlation between the volume of tissue necrosis and two dimensional ultrasound grey scale on rabbit muscle with high intensity focused ultrasound[J]. J Ultrasound Clin Med, 2006, 8(4): 200-203. DOI: 10.3969/j.issn.1008-6978.2006.04.003 (in Chinese) 夏正勇,熊正爱,张潇潇,等. 高强度聚焦超声辐照兔肌肉组织后B超灰度值与坏死体积的相关性研究[J].中国超声医学杂志,2006,8(4):200-203.

[15]Wang WJ, Wu F, Wang ZL, et al. High intensity focused ultrasound for W256 liver cancer and activities of lymphocytes from peripheral blood in rats[J]. Chin J Exper Surg, 2001, 18(2): 33. DOI: 10.3760/j.issn:1001-9030.2001.02.033 (in Chinese) 王文见,伍烽,王芷龙,等. 高强度聚焦超声对大鼠肝癌及外周血淋巴细胞功能的影响[J]. 中华实验外科杂志,2001, 18(2): 33.

[16]Cao YD, Chen WZ, Wu F, et al. The effects of HIFU treatment on biological behaviors of breast cancer[J]. Chin J Ulrasound Med, 2002, 18(4): 285-288. DOI: 10.3969/j.issn.1002-0101.2002.04.016 (in Chinese) 曹友得, 陈文直,伍烽,等.高强度聚焦超声治疗对乳腺癌细胞生物学行为的影响[J].中国超声医学杂, 2002,18(4):285-288.

[17]He SX, Xiong LL, Wang GM, et al. HIFU treatment for 869 patients with abdominal and pelvic solid tumors and hyperplasia[J]. Chin J Ulrasound Med, 2002, 18(3): 180-183. DOI: 10.3969/j.issn.1002-0101.2002.03.007 (in Chinese) 何申戍,熊六林,王国民.高强度聚焦超声治疗869例腹腔、盆腔实性癌瘤和组织增生症临床初步报告[J].中国超声医学杂志,2002,18(3):180-183.

[18]Poissonnier L, Chapelon JY, Rouviere O, et al. Control of prostate cancer by transrectal HIFU in 227 patients[J]. Eur Urol, 2007, 51(2): 381-387.

[19]Ji M, Zhao H, Hua YQ. Investigation to physico-mechanism and problem on HIFU treatment on tumor[J]. Shanghai Med Imag, 2005, 13(4): 310-312. DOI: 10.3969/j.issn.1008-617X.2005.04.023 (in Chinese) 冀敏, 赵洪, 滑炎卿. 聚焦超声波治疗肿瘤的物理机制及有关问题探讨[J].上海医学影像, 2005, (4):310-312.

[20]Wang JA, Zou XY, Ye B, et al. High intensity focus ultrasound kills hydatid cysts ofEchinococcusgranulosus[J]. Acta Academiae Medicinae Millitaris Tertiae, 2009,31(14): 1333-1336. DOI: 10.3969/j.issn.1000-7423.2007.06.006 (in Chinese) 王俊安, 邹晓毅, 叶彬,等. 高强度聚焦超声波对棘球蚴的杀伤效果[J]. 第三军医大学学报,2009,31(14):1333-1336.

[21]Zhou TC, Zhang Y, Tong K,et al. Study on the reference method of catalytic concentration of lactate dehydrogenase at 37 ℃ and its clinical preliminary application[J]. J Mod Lab Med, 2013, 28(1): 24-26, 30. DOI: 10.3969/j.issn.1671-7414.2013.01.008 (in Chinese) 周铁成, 张莹, 童开,等. 探讨乳酸脱氢酶37℃参考方法在临床中的初步应用[J]. 现代检验医学杂志, 2013, 28 (1):24-26,30.

[22]Chen GD, McWilliams ML, Fechter LD. Succinate dehydrogenase (SDH) activity in hair cells: a correlate for permanent threshold elevations[J]. Hear Res, 2000, 145: 91-100.

[23]Gimenez-Pardo C, Ros Moreno RM, De Armas-Serra C, et al. Presence of cholinesterases inEchinococcusgranulosusprotoscolices[J]. Parasitology, 2000, 7(1): 47-50.

[24]Zou XY, Ye B, Wang JA, et al. Effect of high intensity focused ultrasound on the enzymatic activity ofEchinococcusgranulosusprotoscolices[J]. Chin J Zoonoses, 2007, 23(11): 1097-1100. DOI: 10.3969/j.issn.1002-2694.2007.11.008 (in Chinese) 邹晓毅,叶彬,王俊安,等. 高强度聚焦超声波对细粒棘球绦虫原头节酶活性的影响[J]. 中国人兽共患病学报,2007,23(11):1097-1100.

Effect of cell activity of protoscolices by super absorbent resin in coordination with high intensity focused ultrasound

ZHANG Jing1,2,WANG Meng-ying2,YE Bin1,2,ZHAO Yi-feng3,HAN Xiu-ming4,LI Fa-qi5,WANG Qi5

(1.DepartmentofPathogenicBiology,ChongqingMedicalUniversity,Chongqing400016,China;2.ResearchCenterforMolecularMedicineandTumor,ChongqingMedicalUniversity,Chongqing400016,China;3.DepartmentofOncology,theAffiliatedHospitalofQinghaiUniversity,Qinghai810001,China;4.QinghaiInstituteforEndemicDiseasePreventionandControl,Qinghai811602,China;5.StateKeyLaboratoryofUltrasoundEngineeringinMedicineCo-foundedbyChongqingandtheMinistryofScienceandTechnology,Chongqing400016,China)

We investigated the effects of a combination of high intensity focused ultrasound (HIFU) and super absorbent resin on the cell activities ofEchinococcusgranulosusprotoscolices with enzyme histochemical techniqueinvitro. The suspension with 2 000 protoscoleces/ML from the hydatid cysts in sample sheep liver was divided into groups: group I (blank control) was without HIFU treatment and SAR in the suspension, group II was only SAR, group III was treated with HIFU only, group IV was treated with HIFU and 0.01 g SAR, and groupⅤ was treated with HIFU and 0.1g SAR. Then, all these groups were exposed to the suspension of HIFU at a dose of 100 W acoustic powers for 30 seconds. The HIFU treated protoscolices were smeared onto glass slides for enzymatic activities localization. The protoscolex morphological changes and related enzyme activities in the HIFU treated protoscolices were determinated by the histochemical staining methods. Results showed the morphological changes of protoscoleces, the effect relationship was with dose of SAR, SAR was larger and the extent of damage was higher. There were clear and intact form in the nomal group, however, the protoscoleces showed stained and disintegrated in the tested groups. The death rate in the duratioh of single HIFU group was 80.1%, they were 87.82% and 89.1% respectively in the HIFU combined SAR groups. In the groups of the combination of HIFU and SAR, the main enzyme color of protoscoleces in shallow or disappeared, which suggested the treatment had an influence on enzyme activities of protoscolices. In conclusion, SAR could increase HIFU irradiation on the acute cytotoxicity and has certain delayed effect on protoscoleces, and the effect of HIFU on G-6-P and SDH inE.granulosusprotoscolices was significantly low.

protoscoleces; super absorbent resin; high intensity focused ultrasound; adenosine triphos-phate; glucose-6-phosphatase; succinate dehydrogenase

Ye Bin, Email: yebina@sohu.com

国家自然科学基金(No.30972567)和重庆市科学技术委员会(cstc2012jjA0032)资助

叶彬,Email:yebina@sohu.com

1.重庆医科大学病原生物学教研室,重庆 400016; 2.重庆医科大学分子与肿瘤研究中心,重庆 400016; 3.青海大学医学院附属第一医院,西宁 810001; 4.青海省地方病预防控制所, 西宁 811602 5.省部共建超声医学工程国家重点实验室,重庆 400016

10.3969/j.issn.1002-2694.2015.11.001

R383

A

1002-2694(2015)11-0987-07

2014-12-11;

2015-04-26

Supported by the National Natural Scientific Foundation of China (No. 30972567) and the Project from Chongqing Science and Technology Commission (No. cstc2012jjA0032)

猜你喜欢
棘球细粒悬液
外在水分对潮湿细粒煤风力分级效果影响的研究
细粒级尾砂高浓度胶结充填试验研究与工业应用
穴位贴敷联合布洛芬混悬液治疗小儿外感发热
青海地区野生狐狸棘球绦虫感染情况调查研究
间充质干细胞与细粒棘球绦虫原头节共培养对细粒棘球绦虫原头节活性的影响
布地奈德混悬液雾化吸入治疗急性咽喉炎的临床疗效观察分析
白云凹陷SQ13.8层序细粒深水扇沉积模式
棘球属绦虫线粒体基因组全序列生物信息学分析
薯蓣皂苷元纳米混悬液的制备
都兰县家牧犬细粒棘球绦虫感染情况调查