吕 川,王 冠(综述),王秋月(审校)
(1.中国医科大学附属第一医院内分泌科,沈阳 110001; 2.中国医科大学七年制,沈阳 110001)
硫辛酸对糖尿病及其慢性并发症的作用机制研究进展
吕川1△,王冠2(综述),王秋月1※(审校)
(1.中国医科大学附属第一医院内分泌科,沈阳 110001; 2.中国医科大学七年制,沈阳 110001)
摘要:糖尿病及糖尿病肾病患病率的快速增长,给家庭及社会造成了极大的负担。由于缺乏有效的治疗方法,目前临床上只能防止糖尿病肾病的发生、进展,或肾脏替代治疗。硫辛酸具有强大的抗氧化效应,并通过下丘脑及外周组织腺苷酸活化蛋白激酶(AMPK)信号通路调节机体能量代谢,因而对糖尿病及其慢性并发症发挥保护作用。硫辛酸可通过增强组织细胞AMPK活性进而抑制雷帕霉素靶蛋白信号通路,对细胞生长和蛋白质合成发挥调节作用。该文就硫辛酸对糖尿病及其慢性并发症的作用机制研究进展予以综述。
关键词:糖尿病;糖尿病肾脏疾病;硫辛酸
硫辛酸是一种天然存在的化合物,又称为1,2-二硫戊环-3-戊酸;硫辛酸包含有2个氧化或还原的硫醇基团,其氧化形式被称为A硫辛酸或硫辛酸,而二氢硫辛酸是指还原形式的硫辛酸;2种形式的硫辛酸都是强效抗氧化剂,其功能包括:①减少活性氧产生;②再生外源和内源性抗氧化剂(如维生素C和E、谷胱甘肽);③螯合金属离子;④修复氧化的蛋白质;⑤调控基因转录;⑥抑制核因子κB的激活[1]。硫辛酸这一系列细胞和分子功能,使其在应用于营养保健和疾病治疗方面,被广泛关注。现就硫辛酸在改善糖尿病及其慢性并发症作用机制的研究进展予以综述。
1硫辛酸改善活性氧类诱导的血管内皮细胞功能紊乱
硫辛酸在糖尿病发病机制的多个方面都有潜在的防治意义。研究发现,活性氧类诱导的血管功能障碍是糖尿病的主要特点之一,活性氧类的积聚状态与一氧化氮介导的内皮依赖性血管舒张功能受损密切相关[2]。糖尿病时氧化应激导致蛋白激酶C激活,对基因表达产生多种影响,包括内皮型一氧化氮合酶表达下降和内皮素、血管内皮生长因子、纤溶酶原激活物抑制剂1、转化生长因子β、烟酰胺腺嘌呤二核苷酸氧化酶、核因子κB等表达增强,其中,核因子κB表达增加又导致脉管系统中的促炎基因活化[3]。硫辛酸可以改善血浆的氧化还原状态,并且能改善内皮依赖性血管舒张功能[4]。胰岛素受体酪氨酸激酶、磷脂酰肌醇3-激酶、蛋白激酶B(protein kinase B,PKB/Akt)是胰岛素信号通路关键组分,与血管内皮细胞一氧化氮合成相关;Akt诱导的内皮型一氧化氮合酶磷酸化,对于胰岛素激活Akt信号通路十分必要[5]。在一项应用挪威大鼠的老化研究中,硫辛酸通过激活Akt,在一定程度上恢复了老化大鼠内皮依赖性一氧化氮合酶的活性[6]。硫辛酸还可增加缺血再灌注损伤小鼠脑血管内皮细胞Akt磷酸化[7]。这些研究表明,硫辛酸对血管内皮功能的保护作用,与其提高一氧化氮合酶活性和增加一氧化氮的生物利用度有关。
非对称二甲基精氨酸(asymmetric dimethylarginine,ADMA)是一种内源性一氧化氮合酶抑制剂,由蛋白质与L-精氨酸在蛋白质精氨酸甲基转移酶催化作用下发生甲基化反应而生成;ADMA通过二甲基精氨酸二甲基氨基水解酶(dimethylarginine dimethylaminohydrolase,DDAH)代谢后经肾脏排泄,该酶对氧化应激敏感[8]。DDAH在肾脏、胰腺、脑、肝、肺,血管内皮中均有表达,而ADMA可导致内皮细胞功能紊乱[9]、增加全身血管阻力和动脉血压[10]。ADMA水平升高是包括2型糖尿病在内不同人群心脑血管疾病的预测因子,也是不良心脑血管事件的病因之一[11-12]。DDAH活性下降导致ADMA分解减少,是糖尿病内皮依赖性血管舒张功能障碍的重要机制之一[13]。在肾功能正常或终末期肾脏病的糖尿病患者,硫辛酸均能有效降低ADMA水平[8,14]。另外,在培养的内皮细胞,硫辛酸通过增加内皮细胞DDAH的表达及活性,并通过促进信号转导及转录活化子3(signal transducer and activator of transcription 3,STAT3)磷酸化,降低培养上清液中ADMA的水平[15]。
2硫辛酸调节组织腺苷酸活化蛋白激酶和过氧化物酶体增殖物激活受体α/γ表达活性
2.1硫辛酸通过AMPK信号调节中枢及外周组织细胞代谢及功能硫辛酸可应用于糖尿病的防治,另一个重要原因是其可通过激活外周组织细胞腺苷酸活化蛋白激酶(adenosine 5′-monophosphate-activated protein kinase,AMPK)活性,调节机体代谢。AMPK是一个高度保守的丝氨酸/苏氨酸蛋白激酶,作为细胞的能量传感器,在细胞能量供应不足或细胞内腺苷单磷酸(adenosine monophosphate,AMP)/腺苷二磷酸(adenosine diphosphate,ADP)比例升高时被激活;某些细胞应激(如缺氧、氧化应激、低血糖、运动)以及营养匮乏,可导致AMP/ATP比值升高,使AMPK磷酸化增加,抑制耗能的生物合成通路并促进分解代谢[16]。AMPK还能调节与能量代谢有关特定基因的转录,进而持久控制代谢反应[17]。硫辛酸可增强肝脏AMPK活性,研究表明,增强肝脏AMPK活性可防止糖尿病小鼠的高血糖;AMPK激活的降糖作用可能与下调糖异生基因(如磷酸烯醇式丙酮酸激酶和葡萄糖-6-磷酸酶)表达、减少肝细胞葡萄糖输出有关[18]。骨骼肌是细胞能量代谢的主要调节器官,骨骼肌AMPK激活可增加葡萄糖的摄取和脂肪酸氧化;激活的AMPK可刺激葡萄糖转运体4以胰岛素依赖性的方式易位到质膜,并通过促进肌细胞增强因子2(myocyte enhancer factor-2,MEF-2)与葡萄糖转运体4基因启动子结合以增加葡萄糖转运体4的表达[19]。AMPK磷酸化激活和乙酰辅酶A羧化酶失活使丙二酰辅酶A下降、骨骼肌内三酰甘油积聚减少,从而改善胰岛素敏感性;乙酰辅酶A羧化酶是丙二酰辅酶A生物合成过程中一个重要的限速酶,而丙二酰辅酶A又是脂肪酸生物合成的重要前体和线粒体脂肪酸氧化的有效抑制剂,丙二酰辅酶A的水平下降使脂肪酸合成减少和氧化增加[20]。骨骼肌三酰甘油积聚可引起肥胖和2型糖尿病相关的胰岛素抵抗[21]。易患糖尿病的Long Evans Tokushima肥胖大鼠肌肉AMPK活性下降,硫辛酸治疗增加了大鼠和胰岛素刺激条件下肌肉的葡萄糖利用,同时硫辛酸增加了骨骼肌AMPK活性和脂肪酸的氧化,骨骼肌AMPK基因沉默可以抵消硫辛酸的这一作用[22]。这些结果表明,硫辛酸可通过激活骨骼肌AMPK和减少三酰甘油积聚,而提高胰岛素敏感性。AMPK在下丘脑组织也有表达,并且参与调节食欲[23]。下丘脑AMPK激活导致摄食和体质量增加,而下丘脑AMPK活性的降低有利于瘦素对食欲的抑制;研究证实,应用硫辛酸治疗的肥胖大鼠下丘脑AMPK活性下降、摄食减少、能量消耗增加,体质量明显下降,血清脂联素和瘦素水平均明显降低[24]。这说明下丘脑AMPK参与调节食欲,硫辛酸可通过抑制下丘脑AMPK活性,发挥抑制食欲、抗肥胖作用。基于不同的病理生理状态或药物浓度,硫辛酸对胰岛β细胞具有双重作用,在2型糖尿病,氧化应激促进胰岛β细胞凋亡,进而减少胰岛β细胞的数量,硫辛酸持续激活AMPK可导致线粒体氧自由基产生增加,并且激活线粒体凋亡通路[25]。但是,硫辛酸的作用呈剂量依赖性,在胰岛细胞,硫辛酸浓度至少达到500 μmol/L才能明显激活AMPK,明显高于糖尿病神经病变的治疗浓度[26];在氧化应激状态(如糖尿病)下,硫辛酸对胰岛细胞发挥保护作用[27]。Lee等[28]研究发现,硫辛酸剂量依赖性地促进大鼠胰岛素瘤细胞凋亡;另一项相关的研究中,他们发现硫辛酸预处理降低了胰岛β细胞活性氧的产生,线粒体膜去极化,抑制了c-Jun氨基端激酶激活。因此,虽然高浓度硫辛酸对胰岛β细胞不利,但临床治疗剂量的硫辛酸对β细胞有保护作用。
2.2硫辛酸通过激活过氧化物酶体增殖物激活受体(peroxisome proliferator activated receptor,PPAR)α/γ对糖尿病发挥保护作用硫辛酸还能通过PPARα/γ调节机体代谢,对糖尿病发挥保护作用。骨骼肌PPAR共激活蛋白1α过表达可增加线粒体呼吸和葡萄糖转运[29];硫辛酸可通过增加PPAR共激活蛋白1α信使RNA的表达水平,改善葡萄糖稳态[30]。研究表明,硫辛酸还可避免高糖诱导的PPAR-γ下降、高胰岛素血症、胰岛素抵抗、收缩性高血压和超氧化物的产生[31]。
3硫辛酸抑制糖化反应
硫辛酸能应用于糖尿病的治疗,还与其抑制糖基化反应有关。研究证实,糖尿病慢性并发症的发生、发展涉及多种病理生理机制,包括蛋白质糖化作用[32-33];而硫辛酸能改善糖尿病相关的糖化作用[34]。这一保护作用并不依赖于其氧化还原状态,硫辛酸和二氢硫辛酸均能有效防止血清白蛋白糖化,这可能与硫辛酸与血清白蛋白的非共价键疏水性结合有关[35]。
4硫辛酸与糖尿病神经病变
目前,已知多种发病机制与糖尿病神经病变有关,并且这些发病机制相互联系,促进糖尿病神经病变的发生、发展。糖尿病神经病变涉及的发病机制主要有:①通过多元醇通路导致山梨醇和果糖积累增加,山梨醇的合成过程会消耗肌醇和牛磺酸,而牛磺酸是一种内源性抗氧化剂,其减少可导致机体氧化防御能力下降;肌醇消耗则可能导致Na+-K+-ATP酶活性下降;②一氧化氮失活导致神经内膜微血管损伤和缺氧;③糖基化终产物积聚导致核因子κB激活;④同型半胱氨酸血症;⑤神经脂质过氧化;⑥调节丝裂原活化蛋白激酶信号通路;⑦钙稳态失衡;⑧神经营养因子表达水平下降(如神经生长因子、神经营养素、胰岛素样生长因子等)[36]。硫辛酸对上述机制均有直接或间接的调节作用。
5硫辛酸与糖尿病肾病
硫辛酸在糖尿病肾病中的应用仍处于实验阶段,这些研究所涉及的机制有:①改善氧化应激、抑制炎症反应[37-38];②降低ADMA水平[14];③保护线粒体功能和电压依赖性阴离子通道[39];④降低转化生长因子β、纤连蛋白的表达[40];⑤抑制细胞外基质积聚[41]。糖尿病时肾脏Akt活性增加,AMPK表达及活性下降,间接激活雷帕霉素靶蛋白复合物1(mammalian target of rapamycin complex 1,mTORC1);mTORC1激活与糖尿病肾病肾小球肥大、细胞外基质合成增加关系密切;应用AMPK激活剂AICAR可显著增加AMPK的活性,抑制高糖诱导的肾小球上皮细胞mTOR信号通路激活、细胞和肾脏肥大[42]。另外,硫辛酸通过增加大鼠骨骼肌钙离子/钙调素依赖的蛋白激酶β活性,使AMPK磷酸化激活,继而抑制mTOR信号通路,有效防止了高糖诱导的骨骼肌蛋白质合成增加和胰岛素抵抗[43]。糖尿病肾病典型病理改变是肾小球硬化,其中系膜细胞增殖及过多的细胞外基质积聚是肾小球硬化的使动机制[44]。钙离子/钙调素依赖性蛋白激酶β作为AMPK的上游信号分子,在肾小球系膜细胞表达丰富,而mTORC1可通过其下游信号分子P70S6K调节细胞生长,并通过4E-BPs调节细胞增殖[45]。由此推测,硫辛酸也可能在钙离子/钙调素依赖性蛋白激酶β介导下,通过增加肾小球系膜细胞AMPK活性,抑制mTORC1信号通路,改善高糖诱导的肾小球系膜细胞增殖,从而对早期糖尿病肾病发挥保护作用。
6硫辛酸与糖尿病视网膜病变
糖尿病视网膜病变作为糖尿病高度特异的严重并发症,是导致成人失明的主要原因。最近的研究报告估计,大约30%初次确诊为糖尿病的患者遭受视网膜病变困扰[46]。眼部各组织结构均可受糖尿病影响,视网膜因富含毛细血管而更易受损。视网膜由多种细胞构成,包括血管细胞、周细胞、内皮细胞;小胶质细胞、星形胶质细胞、放射状胶质细胞;神经元、感光细胞、双极细胞、无长突和神经节细胞;巨噬细胞等。上述细胞结构和功能异常可导致不同程度视网膜病变。高血糖诱发氧化应激,促进蛋白质糖基化终产物和脂质过氧化终产物生成,增加血管内皮生长因子表达,并激活多元醇通路、二酰甘油-蛋白激酶C、肾素-血管紧张素-醛固酮系统以及己糖胺通路,进而损伤视网膜细胞结构及功能[47]。硫辛酸可通过减少活性氧自由基的产生,改善氧化应激,保护视网膜毛细血管的功能[48]。硫辛酸亦可通过减少糖尿病视网膜病变早期视网膜毛细血管细胞凋亡,防止糖尿病视网膜病变的进展[49]。硫辛酸还能降低血管内皮细胞生长因子、血管紧张素Ⅱ的表达,抑制结缔组织生长因子和转化生长因子β的作用,防止糖尿病视网膜新生血管形成和增生性病变[50]。
7小结
大量研究表明,硫辛酸对缺血再灌注损伤和神经退行性疾病、代谢综合征、糖尿病及其各种慢性并发症等多种疾病有治疗作用。随机、双盲、安慰剂对照试验均证明,硫辛酸可显著改善糖尿病神经病变的进展。但是,硫辛酸对糖尿病肾病、糖尿病视网膜病变的治疗作用仍缺乏足够证据。mTOR信号通路激活与糖尿病肾脏肥大密切相关,近年来研究发现,硫辛酸对mTOR信号通路有调节作用。因此,针对糖尿病肾病这一病理生理机制,对恰当的硫辛酸治疗剂量和时间展开研究,可能为硫辛酸应用于糖尿病肾病防治提供新的依据。
参考文献
[1]Park SJ,Lee KS,Lee SJ,etal.L-2-Oxothiazolidine-4-Carboxylic acid or α-Lipoic Acid Attenuates Airway Remodeling:Involvement of Nuclear Factor-κB(NF-κB),Nuclear Factor Erythroid 2p45-Related factor-2 (Nrf2),and Hypoxia-inducible Factor (HIF)[J].Int J Mol Sci,2012,13(7):7915-7937.
[2]Tousoulis D,Papageorgiou N,Androulakis E,etal.Diabetes mellitus-associated vascular impairment:novel circulating biomarkers and therapeutic approaches[J].J Am Coll Cardiol,2013,62(8):667-676.
[3]Golbidi S,Alireza Ebadi S,Laher I.Antioxidants in the treatment of diabetes[J].Curr Diabetes Rev,2011,7(2):106-125.
[4]Zhao L,Wang Y,Ma X,etal.Oxidative stress impairs IKCa-and SKCa-mediated vasodilatation in mesenteric arteries from diabetic rats[J].J South Med Univ,2013,33(7):939-944.
[5]Montagnani M,Ravichandran LV,Chen H,etal.Insulin receptor substrate-1 and phosphoinositide-dependent kinase-1 are required for insulin-stimulated production of nitric oxide in endothelial cells[J].Mol Endocrinol,2002,16(8):1931-1942.
[6]Smith AR,Visioli F,Frei B,etal.Lipoic acid significantly restores,in rats,the age-related decline in vasomotion[J].Br J Pharmacol,2008,153(8):1615-1622.
[7]Xie R,Li X,Ling Y,etal.Alpha-lipoic acid pre-and post-treatments provide protection against in vitro ischemia-reperfusion injury in cerebral endothelial cells via Akt/mTOR signaling[J].Brain Res,2012,1482:81-90.
[8]Mittermayer F,Pleiner J,Francesconi M,etal.Treatment with α-lipoic acid reduces asymmetric dimethylarginine in patients with type 2 diabetes mellitus[J].Transl Res,2010,155(1):6-9.
[9]Bouras G,Deftereos S,Tousoulis D,etal.Asymmetric dimethy-larginine (ADMA):a promising biomarker for cardiovascular dis-ease?[J].Curr Top Med Chem,2013,13(2):180-200.
[10]Fan NC,Tsai CM,Hsu CN,etal.N-Acetylcysteine prevents hypertension via regulation of the ADMA-DDAH pathway in young spontaneously hypertensive rats[J].Biomed Res Int,2013,2013:
696317.
[11]Krzyzanowska K,Mittermayer F,Wolzt M,etal.ADMA,cardiovascular disease and diabetes[J].Diabetes Res Clin Pract,2008,82(Suppl 2):122-126.
[12]Chen S,Li N,Deb-Chatterji M,etal.Asymmetric dimethyarginine as marker and mediator in ischemic stroke[J].Int J Mol Sci,2012,13(12):15983-16004.
[13]Marra M,Marchegiani F,Ceriello A,etal.Chronic renal impairment and DDAH2-1151 A/C polymorphism determine ADMA levels in type 2 diabetic subjects[J].Nephrol Dial Transplant,2013,28(4):964-971.
[14]Chang JW,Lee EK,Kim TH,etal.Effects of α-lipoic acid on the plasma levels of asymmetric dimethylarginine in diabetic end-stage renal disease patients on hemodialysis:a pilot study[J].Am J Nephro,2007,27(1):70-74.
[15]Lee WJ,Kim SH,Kim GH,etal.α-Lipoic acid activates dimethylarginine dimethylaminohydrolase in cultured endothelial cells[J].Biochem Biophys Res Commun,2010,398(4):653-658.
[16]Kola B,Boscaro M,Rutter GA,etal.Expanding role of AMPK in endocrinology[J].Trends Endocrinol Metab,2006,17(5):205-
215.
[17]Hardie DG.Energy sensing by the AMP-activated protein kinase and its effects on muscle metabolism[J].Proc Nutr Soc,2011,70(1):92-99.
[18]Viana AYI,Sakoda H,Anai M,etal.Role of hepatic AMPK activation in glucose metabolism and dexamethasone-induced regulation of AMPK expression[J].Diabetes Res Clin Pract,2006,73(2):135-142.
[19]Konrad D,Somwar R,Sweeney G,etal.The antihyperglycemic drug alpha-lipoic acid stimulates glucose uptake via both GLUT4 translocation and GLUT4 activation:potential role of p38 mitogen-activated protein kinase in GLUT4 activation[J].Diabetes,2001,50(6):1464-1471.
[20]Chen WL,Kang CH,Wang SG,etal.α-Lipoic acid regulates lipid metabolism through induction of sirtuin 1 (SIRT1) and activation of AMP-activated protein kinase[J].Diabetologia,2012,55(6):1824-1835.
[21]Goodpaster BH,Kelley DE.Skeletal muscle triglyceride:marker or resistance in type 2 diabetes mellitus?[J].Curr Diab Rep,2002,2(3):216-222.
[22]Lee WJ,Song KH,Koh EH,etal.α-Lipoic acid increases insulin sensitivity by activating AMPK in skeletal muscle[J].Biochem Biophys Res Commun,2005,332(3):885-891.
[23]Stevanovic D,Janjetovic K,Misirkic M,etal.Intracerebroventricular administration of metformin inhibits ghrelin-induced hypothalamic AMP-kinase signalling and food intake[J].Neuroendocrinology,2012,96(1):24-31.
[24]Cheng PY,Lee YM,Yen MH,etal.Reciprocal effects of α-lipoic acid on adenosine monophosphate-activated protein kinase activity in obesity induced by ovariectomy in rats[J].Menopause,2011,18(9):1010-1017.
[25]Cai Y,Martens GA,Hinke SA,etal.Increased oxygen radical formation and mitochondrial dysfunction mediate beta cell apoptosis under conditions of AMP-activated protein kinase stimulation[J].Free Radic Biol Med,2007,42(1):64-78.
[26]Targonsky ED,Dai F,Koshkin V,etal.α-Lipoic acid regulates AMP-activated protein kinase and inhibits insulin secretion from beta cells[J].Diabetologia,2006,9(7):1587-1598.
[27]Chen J,Jiang W,Cai J,etal.Quantification of lipoic acid in plasma by high-performance liquid chromatography-electrospray ionization mass spectrometry [J].J Chromatogr B Analyt Technol Biomed Life Sci,2005,824(1):249-257.
[28]Lee BW,Kwon SJ,Chae HY,etal.Dose-related cytoprotective effect of α-lipoic acid on hydrogen peroxide-induced oxidative stress to pancreatic beta cells[J].Free Radic Res,2009,43(1):68-77.
[29]Michael LF,Wu Z,Cheatham RB,etal.Restoration of insulin-sensitive glucose transporter (GLUT4) gene expression in muscle cells by the transcriptional coactivator PGC-1[J].Proc Natl Acad Sci U S A,2001,98(7):3820-3825.
[30]Wang Y,Li X,Guo Y,etal.Alpha-Lipoic acid increases energy expenditure by enhancing adenosine monophosphate-activated protein kinase-peroxisome proliferator-activated receptor-gamma coactivator-1alpha signaling in the skeletal muscle of aged mice[J].Metabolism,2010,59(7):967-976.
[31]EI Midaoui A,Wu L,Wang R,etal.Modulation of cardiac and aortic peroxisome proliferator-activated receptor-gamma expression by oxidative stress in chronically glucose-fed rats[J].Am J Hypertens,2006,19(4):407-412.
[32]Beisswenger PJ,Howell SK,Russell GB,etal.Early progression of diabetic nephropathy correlates with methylglyoxal-derived advanced glycation end products[J].Diabetes Care,2013,36(10):3234-
3239.
[33]Singh VP,Bali A,Singh N,etal.Advanced glycation end products and diabetic complications[J].Korean J Physiol Pharmacol,2014,18(1):1-14.
[34]Thirunavukkarasu V,Anitha Nandhini AT,Anuradha CV.Lipoic acid improves glucose utilisation and prevents protein glycation and AGE formation[J].Pharmazie,2005,60(10):772-775.
[35]Kawabata T,Packer L.Alpha-lipoate can protect against glycation of serum albumin,but not low density lipoprotein[J].Biochem Biophys Res Commun,1994,203(1):99-104.
[36]Várkonyi T,Putz Z,Keresztes K,etal.Current options and perspectives in the treatment of diabetic neuropathy[J].Curr Pharm Des,2013,19(27):4981-5007.
[37]Feng B,Yan XF,Xue JL,etal.The Protective Effects of α-lipoic acid on kidneys in type 2 diabetic Goto-kakisaki rats via reducing oxidative stress[J].Int J Mol Sci,2013,14(4):6746-6756.
[38]Bao XH,Xu J,Chen Y,etal.Alleviation of podocyte injury:the possible pathway implicated in anti-inflammation of alpha-lipoic acid in type 2 diabetics[J].Aging Clin Exp Res,2014,26(5):483-489.
[39]Wang L,Wu CG,Fang CQ,etal.The protective effect of α-lipoic acid on mitochondria in the kidney of diabetic rats[J].Int J Clin Exp Med,2013,6(2):90-97.
[40]Lee SJ,Kang JG,Ryu OH,etal.Effects of α-lipoic acid on transforming growth factor β1-p38 mitogen-activated protein kinase-fibronectin pathway in diabetic nephropathy[J].Metabolism,2009,58(5):616-623.
[41]Catherwood MA,Powell LA,Anderson P,etal.Glucose-induced oxidative stress in mesangial cells[J].Kidney Int,2002,61(2):599-608.
[42]Lee MJ,Feliers D,Mariappan MM,etal.A role for AMP-activated protein kinase in diabetes-induced renal hypertrophy[J].Am J Physiol Renal Physiol,2007,292(2):617-627.
[43]Saha AK,Xu XJ,Lawson E,etal.Downregulation of AMPK accompanies leucine-and glucose-induced increases in protein synthesis and insulin resistance in rat skeletal muscle[J].Diabetes,2010,59(10):2426-2434.
[44]Arnoni CP,Lima C,Cristovam PC,etal.Regulation of glucose uptake in mesangial cells stimulated by high glucose:role of angiotensin II and insulin[J].Exp Biol Med (Maywood)[J].2009,234(9):1095-1101.
[45]Laplante M,Sabatini DM.mTOR signaling in growth control and disease[J].Cell,2012,149(2):274-293.
[46]Martín-Merino E,Fortuny J,Rivero-Ferrer E,etal.Incidence of retinal complications in a cohort of newly diagnosed diabetic patients[J].PLoS One,2014,9(6):100283.
[47]Tarr JM,Kaul K,Chopra M,etal.Pathophysiology of diabetic retinopathy[J].ISRN Ophthalmol,2013,2013:343560.
[48]Nebbioso M,Pranno F,Pescosolido N.Lipoic acid in animal models and clinical use in diabetic retinopathy[J].Expert Opin Pharmacother,2013,14(13):1829-1838.
[49]Kowluru RA,Zhong Q,Santos JM,etal.Beneficial effects of the nutritional supplements on the development of diabetic retino-pathy[J].Nutr Metab (Lond),2014,11(1):8.
[50]Lee SG,Lee CG,Yun IH,etal.Effect of lipoic acid on expression of angiogenic factors in diabetic rat retina[J].Clin Experiment Ophthalmol,2012,40(1):47-57.
Research Progress on the Effects and Mechanism of Lipoic Acid against Diabetes and Chronic Diabetic Complications
LVChuan1,WANGGuan2,WANGQiu-yue1.(1.DepartmentofEndocrinologyandMetabolism,theFirstAffiliatedHospital,ChinaMedicalUniversity,Shenyang110001,China; 2.ClinicalMedicineofSeven-yearEducation,ChinaMedicalUniversity,Shenyang110001,China)
Abstract:Rapid growth of diabetes and diabetic kidney disease exerts a great burden on family and society.Due to the lack of effective treatments for diabetic kidney disease,treatment relies on drugs that either reduces its progression or involves renal replacement therapies.Lipoic acid is a powerful antioxidant,which can regulate energy metabolism via adenosine 5′-monophosphate-activated protein kinase (AMPK) signaling in hypothalamus and peripheral tissues.Thus,lipoic acid has protective effects against diabetes and chronic diabetic complications by these diverse actions.Recently, lipoic acid has been shown to suppress mammalian target of rapamycin signaling in various tissues and cells by activating AMPK,thereby regulates cell growth and protein synthesis.Here is to make a review of the role and mechanisms of lipoic acid against diabetes and diabetic chronic complications.
Key words:Diabetes; Diabetic kidney disease; Lipoic acid
收稿日期:2014-07-17修回日期:2014-10-14编辑:郑雪
基金项目:辽宁省科技攻关计划项目(2011225017);沈阳市科技攻关计划项目(F11-262-9-06);辽宁省“百千万人才工程”资助项目(2011921037)
doi:10.3969/j.issn.1006-2084.2015.10.037
中图分类号:R587.1
文献标识码:A
文章编号:1006-2084(2015)10-1828-04