汪本福,黄金鹏,杨晓龙,程建平,赵锋,陈少愚
摘要:从叶绿体色素、叶绿素荧光动力学、光合酶、活性氧代谢等方面阐述了干旱胁迫降低作物光合作用的气孔限制和非气孔限制原因。现有的研究表明,在作物遭受轻度和中度干旱胁迫时,光合作用下降的主要原因是气孔限制,即气孔导度下降,导致胞间CO2浓度下降,进而降低光合速率;在重度胁迫时,光合作用下降的主要原因是非气孔限制,即光合器官的光合活性下降,非气孔限制影响因素较复杂。要深入了解干旱胁迫降低光合作用的机理,除了加强形态、生理水平的研究外,还要从分子生物技术水平研究干旱胁迫对光合作用的影响及各相关生理过程,利用基因工程手段,选育新的耐旱高光效品种。
关键词:干旱胁迫;光合作用;气孔限制;非气孔限制
中图分类号:S311;Q945.11 文献标识码:A 文章编号:0439-8114(2014)23-5628-05
DOI:10.14088/j.cnki.issn0439-8114.2014.23.003
干旱是农业生产中普遍存在的问题,中国每年因干旱造成作物减产达700亿~800亿kg,超过了其他逆境因素减产的总和[1]。干旱胁迫导致作物减产主要是通过影响作物叶片的光合功能,使光合作用受到抑制,进而使作物减产。干旱对光合作用的抑制机制前人已做了深入研究,但由于干旱胁迫的作物和胁迫环境的不同,目前的结论还存在一些争议,吕金印等[2]、严平等[3]通过研究干旱胁迫条件下小麦光合作用下降的机理,认为主要是由于气孔导度下降所致。但Boyer等[4]报道认为光合作用受抑制是来自光合器官光合活性的下降。随着对干旱胁迫研究的不断深入,有学者发现,在轻度胁迫时,光合速率降低的根本原因在于气孔导度的下降,导致胞间CO2浓度下降(Ci),光合作用随之下降,即光合作用的气孔限制;而在严重胁迫下,光合速率降低的根本原因在于光合器官的叶绿素解体[5]、光系统Ⅱ活性下降[6]、RuBP羧化酶活性受到抑制[7]等非气孔因素,即光合作用的非气孔限制[8-10],这一观点得到很多研究结果的支持[11,12]。但Büssis等[13]在研究转基因马铃薯时发现,干旱条件下转基因马铃薯细胞间隙CO2浓度(Ci)保持稳定的现象又对轻度胁迫的光合作用气孔限制作用提出质疑。所以,干旱胁迫对作物光合特性的机制仍然需要进一步研究。本文从气孔限制和非气孔限制方面阐述水分胁迫降低光合作用的机制,以期为作物水分逆境生理研究及抗旱选育种提供参考。
1 气孔限制下叶片光合特性的变化
气孔限制是指水分胁迫引起叶片水势下降,造成叶片气孔开度减小,CO2进入叶片受阻,导致植物由于光合底物(CO2)不足引起光合速率下降的现象。一般认为,随着叶片水分散失和叶片水势下降,气孔开度减小,气孔阻力增加,CO2进入叶片受阻,导致植物光合速率下降[14]。最初的研究者们认为,干旱使气孔关闭而导致光合作用下降。卢从明等[15]的研究表明,干旱胁迫初期,气孔导度的下降与光合速率降低相一致,继续干旱胁迫,气孔导度的下降幅度比光合速率大,持续干旱5 d后,光合速率的下降幅度反而较气孔导度大。结果表明,轻度干旱导致气孔阻力增大,光合速率降低。张文丽等[16]对玉米的研究也表明,干旱胁迫初期玉米光合速率略有提高,土壤相对含水量90%时达最大,随着干旱胁迫加重,玉米光合速率开始下降,且降势较为缓慢,达到70%时几乎呈直线下降,这是气孔限制和非气孔限制交替或综合调节所致。
在作物发生干旱胁迫的初期,因干旱造成气孔开度减少,使得气孔阻力增加,从而限制CO2吸收,细胞间隙 CO2浓度(Ci)下降, 光合作用随之下降;当胁迫解除后,气孔重新开放,光合作用很快就恢复到原来的水平, 所以将干旱胁迫初期光合作用下降的原因归结为气孔限制。
1.1 气孔限制对光合色素的影响
作物中最重要的光合色素包括叶绿素a(Chla)、叶绿素b(Chl b)、类胡萝卜素(Car)和叶黄素(Lutein),干旱胁迫对光合色素有显著影响,可以造成叶绿素分解速率大于合成速率、类胡萝卜素含量减少、Chl a/Chl b比值发生改变,进而影响原初反应和激发能的传递,导致光能吸收效率下降[17]。孙骏威等[18]在水稻上利用聚乙二醇(PEG)模拟干旱胁迫结果表明,随着PEG浓度加大(胁迫程度加大),叶绿素总量和Chl a、Chl b含量均开始下降,并使光合机构吸收和传递光能效率下降。魏孝荣等[19]研究干旱条件下锌肥对玉米生长和光合色素的影响表明,干旱条件下叶片Chl a、Chl b的含量下降较快,光合色素含量的降低明显影响了光合作用的进行,最终导致产量的下降。詹妍妮等[20]的研究表明,水分胁迫条件下造成叶绿素降解和胡萝卜素含量减少,同时,Chl b较Chl a对干旱敏感程度高。但也有研究表明,干旱胁迫可以提高叶绿素的含量,张丽军等[21]对干旱后苹果的光合特性研究表明,中度干旱胁迫下光合色素中叶绿素和类胡萝卜素含量均有不同程度的增加。郝树荣等[22]在水稻上的研究结果表明,在短时胁迫下,无论重旱还是轻旱,叶绿体色素质量分数均会升高,在长时胁迫下,无论重旱还是轻旱,叶绿体色素质量分数均会降低。分析其原因为短时胁迫时叶绿素含量升高可能是由于叶片失水,叶片扩展生长受阻,产生浓缩效应所致,长时胁迫叶绿素含量下降是由于活性氧在作物体内的累积导致叶绿素的分解加速。
因此,在轻度水分胁迫条件下,叶绿体光合色素已经受到影响,其分解速率大于合成速率,叶绿素含量的变化受干旱胁迫时间影响,在四种主要光合色素中以Chl b含量受水分变化最敏感,而Chl a和类胡萝卜素受到的影响较小。抗旱性越强的植物其光合色素含量在水分胁迫下变化幅度越小,因此光合色素含量可作为筛选抗旱性植物的指标之一。
1.2 气孔限制对叶绿素荧光动力学的影响
叶绿素荧光动力学技术在测定叶片光合作用过程中光系统对光能的吸收、传递、耗散、分配等方面具有独特的作用,叶绿素荧光参数具有反应“内在性”的特点,被认为是测定叶片光合功能的快速、无损伤探针,因而在作物各种抗性生理、作物育种、植物生态中得到不同程度的应用,显示出多方面的应用前景[23]。近些年来关于干旱胁迫下叶片叶绿素荧光动力学参数的研究较多。蒋花等[24]在大麦上的PEG渗透胁迫试验结果表明,随着PEG渗透胁迫的增加,大麦叶片最大荧光(Fm)、最大光化学效率(Fv/Fm)、实际光化学效率(PSⅡ)都有不同程度的降低,初始荧光(F0)、表观光合量子传递速率(ETR)、光化学淬灭系数(qP)、非光化学淬灭系数(NPQ)等则表现出增加的趋势。张永强等[25]对小麦干旱胁迫的荧光特性试验结果表明,干旱胁迫使冬小麦可变荧光与最大荧光比(Fv/Fm)、可变荧光与最小荧光比(Fv/F0)、稳态荧光(Ft)均明显降低,光系统Ⅱ(PSⅡ)质子醌库(PQ库)容量变小,光系统Ⅱ原初光能转化效率、光系统Ⅱ潜在活性受到抑制,可见干旱胁迫直接影响了光合作用的电子传递和CO2同化过程。赵丽英等[26]对大田条件下的小麦干旱试验结果表明,干旱胁迫使F0和qNp值增加,Fv、Fm、Fv/Fm、Fv/F0、qP、ETR值降低,但在拔节期和灌浆期干旱或复水处理条件下与干旱处理相反,这说明干旱可引起PSⅡ反应中心的破坏。
通过上述众多研究结果可知,在干旱初期或轻度、中度干旱时,气孔限制在光合作用抑制中起主要作用,主要表现为光合速率下降,气孔导度和胞间CO2浓度下降;叶绿素含量受影响,其受影响程度与胁迫时间相关,叶绿素b对水分胁迫较为敏感;荧光动力学参数Fv/Fm、qP、NPQ呈下降趋势,干旱胁迫直接影响了光合作用的电子传递和CO2同化过程,进而影响作物光合作用。
2 非气孔限制下叶片光合特性的变化
在干旱胁迫初期或轻度干旱胁迫下,气孔处在关闭或半关闭状态,胞间CO2浓度下降,气孔导度增加,光合作用受阻;随着胁迫的加重,胞间CO2浓度保持不变,甚至有所增加,表明此时干旱胁迫对光合作用的抑制不是气孔关闭所致,而是由其他原因所致。有些研究[27-29]表明,当持续干旱或重度干旱胁迫时,因干旱致使叶绿素结构发生变化,植物膜系统受损伤,膜脂过氧化加剧而产生超氧自由基,光合色素严重降解,光合电子系统遭破坏,从而导致光合作用受损,即所谓的光合作用的非气孔限制。
2.1 非气孔限制对叶绿体色素的影响
叶绿体是植物细胞进行光合作用的结构,其主要作用是进行光合作用,因此,研究水分胁迫下叶绿体色素变化规律是研究干旱胁迫条件下光合作用的基础。Mann等[30]发现水分胁迫使叶绿体活性降低与整片叶子光合下降密切相关,严重水分胁迫下叶绿体变形且片层结构破坏。关义新等[31]的研究也表明作物叶绿体在干旱胁迫下出现膨胀,排列紊乱,基质片层模糊,光合器官的超微结构遭到破坏,从而导致光合作用下降。史吉平等[11]、王华田等[32]在小麦和银杏上也取得了类似的结果。
叶绿体色素在作物体内不断更新,水分、光照等因素均能影响叶绿体色素的含量,张明生等[33]、赵天宏等[34]、关义新等[35]研究认为,水分胁迫能降低叶绿素含量,重度胁迫降低幅度大于轻度胁迫。但也有与此不一致的结果,房江育等[36]的研究结果显示,中度胁迫下叶绿素质量分数无显著变化,重度胁迫下呈极显著变化。程智慧等[37]在番茄上的研究结果显示干旱胁迫下Chl a、Chl b及类胡萝卜素均有不同程度的增加。关于Chl a和Chl b比值变化,在不同的作物上取得的结果也不一致,鲍思伟等[38]在蚕豆上的研究表明,干旱条件下Chl a/Chl b比值下降,而牟筱玲等[39]在对棉花的研究中发现,Chl a/Chl b比值基本不变。可见,不同作物或不同环境会导致作物对干旱胁迫的不同反应,应加强不同作物间的关联研究,寻找有效的叶绿体色素变化规律,为抗旱生理研究和选育品种提供参考。
2.2 非气孔限制对光合酶活性的影响
非气孔限制条件下,作物光合能力下降的原因很复杂,如RuBP羧化酶活性的降低、光合磷酸化活性的降低、Rubisco及PEP羧化酶活性的降低等,而作物的光合速率依靠酶的活性,RuBP羧化酶作为光合碳同化的关键酶,其活性降低通常被认为是光合速率下降的非气孔限制因素之一[40-42]。早在1992年,Gimenez等[43]在研究干旱胁迫下向日葵的叶片就发现光合速率和RuBP之间存在明显的S形曲线,表明光合速率的降低在某种程度上受到RuBP含量的制约;Gunasekera等[44]也发现RuBP合成在水分胁迫下受到限制。PEP羧化酶活性在干旱胁迫下同RuBP羧化酶活性一样受到限制,轻度胁迫时略有上升,重度胁迫时显著下降[31]。
2.3 非气孔限制对光系统Ⅱ的影响
光系统Ⅱ对外界胁迫十分敏感,胁迫会改变甚至损坏光系统Ⅱ的结构和功能,因此,在发生干旱胁迫时叶片叶绿素荧光的变化可以在一定程度上反映外界胁迫对植物的影响,因而越来越多的国内外学者将它作为植物各种抗逆性的理想指标和技术[45]。在小麦和水稻上的研究结果表明,干旱胁迫下,作物叶绿体光系统Ⅱ光化学效率(Fv/Fm)、光化学猝灭系数(qP)均显著下降,而非光呼吸猝灭系数(qN)升高,表明叶绿体光系统Ⅱ原初光化学活性受到抑制,光系统Ⅱ中心受到损伤[46-48]。冯胜利等[49]在番茄上的研究也表明干旱胁迫下番茄叶片光系统Ⅱ的受体受到伤害,光系统Ⅱ反应中心降解或失活。
2.4 非气孔限制对活性氧的影响
活性氧是植物在光合、呼吸、固氮等正常代谢过程中产生的超氧阴离子自由基(O2-)、过氧化氢(H2O2)和单线态氧(1O2)等一类物质的总称,其能使植物维持正常的代谢水平而免于伤害。当植物遭受干旱胁迫时,植物体内活性氧便会过量产生、积累而打破活性氧的产生和清除之间的平衡,使植物直接或间接地遭受氧化胁迫而引发细胞膜脂过氧化,导致植物体发生一系列的生理生化变化,严重时可引起细胞代谢紊乱[50-52]。Dhindsa[53]、Bowler等[54]、孙骏威等[55]在水稻和小麦上的研究结果表明,在遭受轻度和中度干旱胁迫时,O2-产生速率和H2O2含量增加,但叶绿体能维持较高的SOD和ASP活性,使活性氧的积累与清除达到平衡,因此叶绿体仍能维持较高的光合活性,随着胁迫程度的加深,破坏了以SOD为主导的细胞保护系统和抗氧化还原剂的含量,进而造成活性氧累积,使得细胞膜脂组分和膜结构受损,叶绿体正常功能受到破坏。O2-累积速率、H2O2含量及保护酶活性的变化幅度与品种的抗旱性密切相关[56]。
3 问题与展望
目前已发现多个转入植物中可增强光合作用的基因,如Rubisco基因、PEPC基因、SPS基因等,这些基因转入烟草和水稻中的过表达可以增强植株的光合能力,已有研究发现转入这些基因的水稻在干旱胁迫下有更高的光合速率[57-59]。研究转光合相关基因的转基因植物在干旱胁迫下的光合作用特点来更清楚地研究干旱胁迫下光合作用机理,并作为节水抗旱下提高光效的手段是今后研究的热点之一。
由于土壤环境的复杂性和研究手段的限制,目前节水和干旱条件下根系吸水过程、根系水力学参数与地上部生长过程的关系是地下部分生长研究的薄弱环节,加强此方面的深入研究将有助于作物节水增产机理的阐明和干旱地区作物生产力的提高。
综上所述,干旱对植物光合作用的影响是多方面的,错综复杂的,因为植物体内的生理反应都是关联的,可以相互影响。对干旱胁迫下光合作用的研究应将相关方面综合考虑,如保护酶的活力、膜系统的伤害、各种酶的调控等对光合作用的影响,特别是荧光特性的研究以及抗旱基因的研究。随着有关干旱对光合作用影响研究的深入及分子生物技术水平的提高,研究干旱胁迫对植物光合作用的影响及各个相关的生理过程,选育在干旱胁迫下高光效的品种,寻找高光效基因,利用传统的遗传杂交或转基因方法得到新的耐旱高光效品种将是未来研究的主要方向。
参考文献:
[1] CHEN L S, LIU X H. Effect of water stress on some enzyme activities related to respiration metabolism in Liatchi chinensis leaves[J]. Sci Silv Sin, 2003,39(2):39-43.
[2] 吕金印,山 仑,高俊风,等.干旱对小麦灌浆期旗叶光合等生理特性的影响[J].干旱地区农业研究,2003,21(2):77-81.
[3] 严 平,韦朝领,蒋跃林,等.土壤水分对小麦光合作用的研究[J].作物杂志,2000,74(1):13-14.
[4] BOYER J S, RAO I M. Magnesium and acclimation of photosynthesis to low water potentials[J]. Planta,1987,170:147-151.
[5] 曹 慧,兰彦平,刘会超.水分胁迫下短枝型苹果幼树活性氧代谢失调对光合作用的影响[J].内蒙古农业大学学报,2000, 21(3):22-25.
[6] 陈培元.作物干旱逆境的适应性和反应[J].山西农业科学,1990(9):29-32.
[7] 王泽港,梁建生,曹显祖.半根干旱胁迫处理对水稻叶片光合特性和糖代谢的影响[J].江苏农业研究,1999,20(3):21-26.
[8] 张永强,姜 杰.水分胁迫对冬小麦叶片水分生理生态过程的影响[J].干旱区研究,2001,18(1):57-61.
[9] EARL H J. Stomatal and non-stomatal restrictions to carbon assimilation in soybean (Glycinemax) lines differing in water use efficiency[J]. Environmental and Experimental Botany, 2002,48(3):237-246.
[10] FARQUHAR G D, SHARKEY T D. Stomatal conductance and photosynthesis[J]. Annual Review of Plant Physiology, 1982,33(3):317-345.
[11] 史吉平,董永华.水分胁迫对小麦光合作用的影响[J].麦类作物学报,1995(5):49-51.
[12] 王孝威,段艳红,曹 慧,等.水分胁迫对短枝型果树光合作用的非气孔限制[J].西北植物学报,2003,23(9):1609-1613.
[13] B?譈SSIS D, KAUDER F, HEINEKE D. Acclimation of potato plants to polyethylene glycol induced water deficit I. Photosynthesis and metabolism[J]. J Exp Bot,1998,49(325):1349-1360.
[14] 姚庆群,谢贵水.干旱胁迫下光合作用的气孔与非气孔限制[J].热带农业科学,2005,25(4):80-86.
[15] 卢从明,张其德,匡廷云,等.水分胁迫抑制水稻光合作用机理[J].作物学报,1994,20(5):601-606.
[16] 张文丽,张岁歧,山 仑,等.土壤逐渐干旱下玉米幼苗光合速率与蒸腾速率变化的研究[J].中国生态农业学报,2006,14(2):72-75.
[17] 薛 崧,汪沛洪,许大全,等.水分胁迫对冬小麦C02同化作用的影响[J].植物生理学报,1991,18(1):1-7.
[18] 孙骏威,杨 勇,黄宗安,等.聚乙二醇诱导水分胁迫引起水稻光合下降的原因探讨[J].中国水稻科学,2004,8(6):539-543.
[19] 魏孝荣,郝明德,邱莉萍,等.干旱条件下锌肥对玉米生长和光合色素的影响[J].西北农林科技大学学报(自然科学版),2004,32(9):111-114.
[20] 詹妍妮,郁松林,陈培琴.果树水分胁迫反应研究进展[J].中国农学通报,2006,22(4):239-243.
[21] 张丽军,赵领军,赵善仓.水分胁迫对苹果光合特性的影响[J].河北果树,2007(4):115-117.
[22] 郝树荣,郭相平,王为木,等.水稻拔节期水分胁迫及复水对叶片叶绿体色素的影响[J].河海大学学报(自然科学版),2006,34(4):397-406.
[23] ZHU L H, XING Y X, YANG L T, et al. Effects of water stress on leaf water and chlorophyll fluorescence parameters of sugarcane seedling[J]. Agricultural Science & Technology, 2010,11(5):17-21.
[24] 蒋 花,张小燕,张跃进.PEG渗透胁迫对不同品种大麦荧光参数的研究[J].西南农业学报,2012,25(3):842-847.
[25] 张永强,毛学森,孙宏勇,等.干旱胁迫对冬小麦叶绿素荧光的影响[J].中国农业生态学报,2002,10(4):13-15.
[26] 赵丽英,邓西平,山 仑.不同水分处理下冬小麦旗叶叶绿素荧光参数的变化研究[J].中国生态农业学报,2007,15(1):63-66.
[27] SMIMOFF N, COLOMBE S V. Drought influences the activity of enzymes of the chloroplast peroxide scavenging system[J]. Journal of Experimental Botany, 1988(38):1097-1108.
[28] 杨凤云.土壤水分胁迫对梨树生理特性的影响[J].安徽农业,2004(6):11-12.
[29] 冀宪领,盖英萍,牟志美,等.干旱胁迫对桑树生理生化特性的影响[J].蚕业科学,2004,30(2):117-122.
[30] MANN C J, WETZEL R G. Photosynthesis and stomatal conductance of Juncus effuses in a temperate wetland ecosystem[J]. Aquatic Botany, 1999,63:127-144.
[31] 关义新,戴俊英,林 艳,等.水分胁迫下植物叶片光合的气孔和非气孔限制[J].植物生理学通讯,1995,31(4):293-297.
[32] 王华田,孙明高,崔明刚,等.土壤水分状况对苗期银杏生长及生理特性影响的研究[J].山东农业大学学报(自然科学版),2000,31(1):74-78.
[33] 张明生,谢 波,谈 锋,等.甘薯可溶性蛋白、叶绿素及ATP 含量变化与品种抗旱性关系的研究[J].中国农业科学,2003,36(1):13-16.
[34] 赵天宏,沈秀瑛,杨德光,等.水分胁迫及复水对玉米叶片叶绿素含量和光合作用的影响[J].杂粮作物,2003,23(1):33-35.
[35] 关义新,徐世昌,陈 军,等.土壤干旱下喷施乙醇胺对玉米生理特性及产量的影响[J].作物学报,1995,21(4):425-428.
[36] 房江育,张仁陟.无机营养和水分胁迫对春小麦叶绿素、丙二醛含量等的影响及其相关性[J].甘肃农业大学学报,2001, 36(1):89-94.
[37] 程智慧,孟焕文,STEPHEN A R,等.水分胁迫对番茄叶片气孔传导及光合色素的影响[J].西北农林科技大学学报(自然科学版),2002,30(6):93-96.
[38] 鲍思伟,谈 锋,廖志华.蚕豆(Vicia faba L.)对不同水分胁迫的光合适应性研究[J].西南师范大学学报(自然科学版),2001,26(4):448-451.
[39] 牟筱玲,鲍 啸.土壤水分胁迫对棉花叶片水分状况及光合作用的影响[J].中国棉花,2003,30(9):9-10.
[40] PARRY M A, ANDRALOJIC P J, RHAN S, et al. Rubisco activity: Effects of drought stress[J]. Annals of Botany, 2002, 89(S):833-901.
[41] LOWLOR D W, CORNIC G. Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants[J]. Plant, Cell and Environment, 2002,25(2):275-294.
[42] TEZARA W, MITCHELL V J, DRISCOII S P, et al. Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP[J]. Nature,1999,401:914-917.
[43] GIMENEZ C, MITCHEI V J, AWORDW. Regulation of photosynthetic rate of two sunflower hybrids under water stress[J]. Plant Physiol, 1992,98:516-524.
[44] GUNASEKERA D, BERKOW G A. Use of transgenic plants with ribulose 1,5-bisphosphate carboxylic oxygenize antisepses DNA to evaluate the rate limitation of photosynthesis under water stress[J]. Plant Physiol,1993,103:629-635.
[45] KRAUSE G H, WEIS E. Chlorophyll fluorescence and Photosynthesis: The basis[J]. Ann Rev Plant Physiol Molbiol, 1991,42:313-349.
[46] 卢从明,张其德,匡延云.水分胁迫对小麦光系统Ⅱ的影响[J].植物学报,1994,36(2):93-98.
[47] 史正军,樊小林.干旱胁迫对不同基因型水稻光合特性的影响[J].干旱地区农业研究,2003,21(3):123-126.
[48] 杨晓青,张岁岐,梁宗锁,等.水分胁迫对不同抗旱类型冬小麦幼苗叶绿素荧光参数的影响[J].西北植物学报,2004,24(5):812-816.
[49] 冯胜利,马富裕,方志刚,等.水分胁迫对加工番茄光系统Ⅱ的影响[J]. 干旱地区农业研究,2009,27(1):163-167.
[50] JONALIZA C L, GRENGGRAI P, BOONRAT J, et al.Quantitative trait loci associated with drought tolerance at reproductive stage in rice[J].Plant Physiology, 2004,135:384-399.
[51] CHAVES M M, OLIVEIRA M M. Mechanisms underlying plant resilience to water deficits: Prospects for water-saving agriculture[J]. Journal of Experimental Botany, 2004,55:2365-2384.
[52] 魏爱丽,王志敏,陈 斌,等.土壤干旱对小麦绿色器官光合电子传递和光合磷酸化活力的影响[J].作物学报,2004,30:487-490.
[53] DHINDSA R S. Protein synthesis during rehydration of rapidly dried Tortula ruralis: Evidence for oxidation injury[J]. Plant Physiology, 1987,85:1094-1098.
[54] BOWLER C, MONTAGU M V, INZE D. Superoxide dismutase and stress tolerance[J]. Ann Rev Plant Physiol Plant Mol Biol, 1992(43):83-116.
[55] 孙骏威,杨 勇,蒋德安.水分亏缺下水稻的光化学和抗氧化应答[J].浙江大学学报,2004,30(3):278-284.
[56] 王贺正,马 均,李旭毅,等.水分胁迫对水稻结实期活性氧产生和保护系统的影响[J].中国农业科学,2007,40(7):1379-1387.
[57] WANG D, LI X F, ZHOU Z J. Two Rubisco activase isoforms may play different roles in photosynthetic heat acclimation in the rice plant[J]. Physiologia Plantarum, 2010,139:55-67.
[58] DENG Y, YE J Y, MI H L. Effects of low CO2 on NAD (P)H dehydrogenase, a mediator of cyclic electron transport around photosystem I in the cyanobacterium Synechocystis PCC 6803[J]. Plant Cell Physiology, 2003,44:534-540.
[59] 周宝元,丁在松,赵 明. PEPC过表达可以减轻干旱胁迫对水稻光合的抑制作用[J].作物学报,2011,37(1):112-118.