张智健 逄宇 赵雁林 刘长庭
·综述·
脓肿分枝杆菌复合群的研究进展
张智健 逄宇 赵雁林 刘长庭
脓肿分枝杆菌复合群(Mycobacteriumabscessuscomplex,MABC)是可引起人体致病的重要非结核分枝杆菌(non-tuberculous Mycobacteria, NTM),它由脓肿分枝杆菌、马赛分枝杆菌和Mycobacteriumbolletii3个菌种组成。多靶位基因测序为MABC准确可靠的菌种鉴定方法。克拉霉素是MABC感染所致疾病治疗的基石,近年来,MABC研究较大的进展就是红霉素核糖体甲基化酶(41)[erythromycin ribosome methytransferase,erm(41)]基因的发现,erm(41)与克拉霉素诱导耐药相关。脓肿分枝杆菌和M.bolletii均携带完整的erm(41)基因,而马赛分枝杆菌erm(41)基因有2个片段缺失。脓肿分枝杆菌28位碱基具有多态性,T28序列型可诱导耐药,C28序列型不诱导耐药。为检测脓肿分枝杆菌是否对克拉霉素诱导耐药,建议培养时间由3 d 延长至14 d。另外,已有证据表明MABC可能在人与人之间传染,有必要研究MABC的基因分型技术。
分枝杆菌属; 非结核分枝杆菌; 抗药性, 细菌; 基因型
脓肿分枝杆菌复合群(Mycobacteriumabscessuscomplex,MABC)是由脓肿分枝杆菌、马赛分枝杆菌和Mycobacteriumbolletii3个菌种组成的复合群,是可引起人体致病的重要非结核分枝杆菌(non-tuberculous Mycobacteria, NTM)。在所有NTM中,MABC分离率占第二位,仅次于鸟分枝杆菌复合群[1]。在快生型NTM中分离率占第一位,65%~80%的快生型NTM肺病是由MABC引起[2]。MABC是致病性最高,耐药性最强的快生型NTM。
近年来,NTM感染患者明显增多,其中以MABC感染为多见[3]。MABC主要侵犯人体肺脏,引起MABC肺病,还可以侵犯肺外组织器官如皮肤和软组织、淋巴结、骨骼、关节等,甚至引起角膜炎、心内膜炎等,重症患者可引起全身播散性疾病、MABC菌血症[4-7]。MABC感染所致的疾病诊断困难,治疗棘手,所以引起各国学者的广泛关注。可以说,MABC是目前国际上NTM研究的重点和热点。关于MABC的研究成果和进展,也是如今NTM研究领域的一大亮点。
MABC的命名经历了较大的历史变化。最早并不是一个复合群,仅有脓肿分枝杆菌单一菌种,并且是归属于龟分枝杆菌的一个亚种,称为龟分枝杆菌。1953年Moore和Frerichs[8]报道1例由该菌引起膝关节脓肿样感染的患者,“脓肿”由此得名。随后将其命名为龟分枝杆菌脓肿亚种(Mycobacteriumchelonaesubsp.abscessus)。一直到1992年,美国胸科学会(American Thoracic Society, ATS)根据该菌的药物敏感性试验(简称“药敏试验”)及核酸序列分析将脓肿亚种从龟分枝杆菌中独立出来,成为一个单独的菌种,称为脓肿分枝杆菌[9]。
随着细菌分离培养及分子鉴定技术的发展,相继有新的与脓肿分枝杆菌亲缘关系密切的菌种被发现。2004年,法国马赛l例50岁女性肺炎患者痰液中分离出一株NTM,表型和脓肿分枝杆菌相似,16SrRNA测序显示和脓肿分枝杆菌标准株相似度达100%,但rpoB测序相似度仅为96%,系统进化分析显示其来源于脓肿分枝杆菌,因其发现于马赛故将其命名为“马赛分枝杆菌”[10]。随后马赛分枝杆菌相继在美国等其他国家被发现和报道[11-13]。2006年Adékambi等[14]又发现一株与脓肿分枝杆菌亲缘关系密切的菌种,并以其已故同事,一位叫Bollet的微生物家命名,称为“Mycobacteriumbolletii”。这样一来,广义的脓肿分枝杆菌不再是单一菌种,而是由3个菌种形成的一个复合群。目前多数文献认同,广义的脓肿分枝杆菌改称为脓肿分枝杆菌复合群(MABC),它由脓肿分枝杆菌、马赛分枝杆菌和M.bolletii3个菌种组成[15]。少数文献不改变脓肿分枝杆菌的称谓,将其所属3个菌种称为其亚种:分别为:脓肿分枝杆菌脓肿亚种(Mycobacteriumabscessussubsp.abscessus)、脓肿分枝杆菌马赛亚种(Mycobacteriumabscessussubsp.massiliense) 和脓肿分枝杆菌bolletii亚种(Mycobacteriumabscessussubsp.bolletii)。
也有学者对上述三分类法持异议,他们根据多靶位基因的系统进化树中马赛分枝杆菌和M.bolletii位置接近,认为两者应该合二为一,统称为脓肿分枝杆菌bolletii亚种[16]。这样,脓肿分枝杆菌就只包含2个亚种:脓肿分枝杆菌脓肿亚种和脓肿分枝杆菌bolletii亚种。
所以,到底是三分类还是二分类,目前争议较大,各方观点见仁见智,多数人倾向于三分类。考虑到马赛分枝杆菌在对克拉霉素敏感性上优于M.bolletii,我们认同三分类法。最新有研究支持我们的观点,该研究根据全基因组单核苷酸多态性位点建立的进化树显示:MABC明确包含3个进化支,这3个进化支分别为脓肿分枝杆菌、马赛分枝杆菌和M.bolletii;有意思的是,M.bolletii位置和脓肿分枝杆菌还更为邻近,而不是和马赛分枝杆菌更为邻近[17]。
现有研究资料统计发现,MABC的菌种构成中不同国家地区有不同的分布。脓肿分枝杆菌占71%~43%;马赛分枝杆菌占21%~56%;M.bolletii较为少见,占1%~18%[18-25]。
我国对MABC的研究较少,大多还停留在“龟-脓肿分枝杆菌复合群”或者“脓肿分枝杆菌” 的概念,文献中的称谓比较混乱,对国际上的研究热点马赛分枝杆菌,仅有个别文献的个案报道,M.bolletii在我国更是还未见报道[26]。
准确的菌种鉴定是临床正确诊断、有效治疗的前提。并且,现有研究发现,脓肿分枝杆菌、马赛分枝杆菌及M.bolletii对克拉霉素具有不同的药敏特性,脓肿分枝杆菌及M.bolletii大多对克拉霉素耐药,而马赛分枝杆菌大多对克拉霉素敏感[27]。所以临床上观察到,同样的治疗药物,对MABC有不同的治疗效果。对于MABC这一异质性种群来说,仅局限于菌群鉴定远远不能满足临床的需要,准确的菌种鉴定显得尤为重要。
传统表型鉴定方法,如生化法及对硝基苯甲酸和(或)噻吩-2-羧酸肼鉴别培养基,由于耗时费力,鉴定结果可靠性差[28-29]。最主要的问题是不能准确鉴定到种。所以,在MABC的鉴定中已没有地位。
以靶位基因PCR为基础的分子鉴定为目前分枝杆菌主流的菌种鉴定方法。具体包括核酸探针、基因芯片、PCR-限制性片段长度多态性(restriction fragment length polymorphism,RFLP)、PCR-直接测序法等。对于MABC来说,由于脓肿分枝杆菌、马赛分枝杆菌及M.bolletii亲缘关系密切,以16s rRNA为靶位基因的任何鉴定方法都无法对它们鉴别。
于是,核酸探针、基因芯片等多以16s rRNA为靶位基因的商品化的鉴定试剂盒对于MABC的鉴定就显得无能为力。PCR-RFLP(PRA)作为较为成熟的NTM鉴定方法,已得到了广泛应用。最常用的靶位基因为rpoB、hsp65。但具体对于MABC来说, PRA-hsp65有两种酶切图谱[30],文献最初称为hsp65 Ⅰ型和hsp65 Ⅱ型,后来研究发现,hsp65 Ⅰ型为脓肿分枝杆菌,hsp65 Ⅱ型为马赛分枝杆菌和M.bolletii[31]。所以PRA-hsp65只能鉴定出脓肿分枝杆菌,不能鉴定马赛分枝杆菌和M.bolletii。PRA-rpoB对MABC更是只有一种酶切图谱,只能鉴定到菌群,不能准确鉴定到菌种[32]。PRA在MABC的鉴定中也受到限制。
所以,PCR-直接测序法为目前MABC鉴定的主要方法, 靶基因包括间隔区序列(internal transcribed spacer,ITS)、rpoB、hsp65、sodA、recA等。但研究发现,单靶位基因测序鉴定MABC有时可能得到错误的结果[33]。所以,目前多采用多靶位基因测序,测序结果相互验证[33-34]。对于多靶位基因测序鉴定结果不一致的现象,文献称之为“菌种间复合模式”, 处理原则为取多数靶位基因鉴定一致的结果[31]。多靶位基因联合测序鉴定快速,结果可靠,值得在MABC的菌种鉴定中推广应用;缺点是费用成本较高。
以克拉霉素和阿奇霉素为代表的大环内酯类抗生素是MABC感染所致疾病治疗的基石。克拉霉素的地位尤其突出,它在所有的大环内酯类抗生素中抗分枝杆菌的活力最强[35]。 MABC对克拉霉素的耐药机制成为了近年来人们关注的焦点。
克拉霉素作用靶位为细菌核糖体50S大亚基中23S rRNA 结构域Ⅴ区,该区具有肽酰转移酶活性,克拉霉素与其结合后阻碍肽链延伸,阻止蛋白的翻译合成[36]。MABC对克拉霉素的耐药机制主要有两种情况:一种是获得性耐药,为编码 23S rRNA 的rrl基因2058或者2059位点A碱基的点突变,导致克拉霉素失去作用靶位而耐药[37]。rrl的突变是由于长期的克拉霉素治疗引起,细菌在抗生素的选择压力下发生的自发点突变。rrl突变率早期较低, 1996年Wallace等[38]报道,在800例MABC肺病及全身性感染的患者中,仅有18例,占2.3%。近年来有增高趋势,韩国报道突变率在7%~23%[25,39]。
MABC对克拉霉素的另外一种耐药机制为诱导耐药。MABC的诱导耐药为近年来研究的热点。最早于1992年,Brown等[35]观察到,在MABC的体外药敏试验中,随着培养时间的延长,最低抑菌浓度(minimum inhibitory concentration,MIC)有逐渐增高的现象,这种情况一时找不到合理的解释。后来,人们在结核分枝杆菌[40]、耻垢分枝杆菌[41]、偶发分枝杆菌[42]中相继发现红霉素核糖体甲基化酶(erythromycin ribosome methytransferase,erm)基因,分别命名为erm(37)、erm(38)、erm(39),这种基因编码的erm能使克拉霉素的作用位点2058或2059位点腺嘌呤的甲基化,导致克拉霉素失去作用靶位而失活。2009年,Nash等[43]从上述分枝杆菌中存在erm基因得到启示,是否MABC中也存在erm基因?通过基因重组及转化,最终证实erm基因在MABC中的存在,将其命名为erm(41)。
erm(41) 可被克拉霉素诱导表达,有活性的erm(41)能催化23S rRNA 2058或2059位腺嘌呤甲基化,导致常规培养3 d药敏试验结果为敏感的MABC,在延长培养至14 d后,对克拉霉素表现出耐药。但不是所有MABC都会产生诱导耐药。不少文献详细研究并总结了erm(41)基因在脓肿分枝杆菌、马赛分枝杆菌及M.bolletii之间的结构差异和它们相应的在诱导耐药方面的特点,结果发现:结构上,脓肿分枝杆菌和M.bolletii均携带完整的erm(41)基因,而马赛分枝杆菌erm(41)基因有2个片段缺失,分别为276 bp长片段和2 bp短片段缺失[43-45]。另外,基因序列第28位碱基存在多态性,脓肿分枝杆菌有T28序列型或C28序列型,马赛分枝杆菌和M.bolletii只有T28序列型。诱导耐药表型上,只有T28序列型的脓肿分枝杆菌和M.bolletii可表现为诱导耐药。C28序列型的脓肿分枝杆菌和马赛分枝杆菌没有诱导耐药。
erm(41)的发现解释了临床困扰已久的MABC对克拉霉素治疗反应的异质性问题。现在明白,这种情况是由于不同的菌种,或者是脓肿分枝杆菌不同的28位碱基序列型引起。治疗反应好的菌株为没有诱导耐药表型的马赛分枝杆菌或C28序列型的脓肿分枝杆菌;相应地,治疗反应差的为有诱导耐药表型的M.bolletii或者T28序列型的脓肿分枝杆菌。
对于克拉霉素的耐药表型和基因型的对应关系,不同的研究的有不同的结论。多数研究认为,培养3 d的耐药菌株对应的改变为rrl基因突变,培养14 d的诱导耐药株对应的erm(41)的基因型为T28序列型[38]。也有研究持不同看法,有研究发现培养3 d的耐药菌株并不都存在rrl基因突变,可能还有其他机制[27]。还有研究发现,并不是所有的T28序列型脓肿分支杆菌都能够诱导耐药[46]。另外,erm(41)和rrl一般认为属于两个独立的机制,两者可以在一株菌中共存;但有的研究认为,erm(41)和rrl两种机制只存在二选一的问题,不可能共存[47]。上述争议还有待于进一步深入地进行研究。
体外药敏试验是帮助克服盲目经验性用药、促进治疗有的放矢的有力工具和最佳途径。为此,国内外指南对NTM的体外药敏试验作了纲领性规定。2007版ATS的NTM诊治指南及我国2012版《非结核分枝杆菌病诊断与治疗专家共识》都建议,有条件应尽可能做体外药敏试验,然后根据药敏试验结果选择相应敏感的治疗药物[2,48]。并且,ATS指南推荐,对于快生型NTM,常规药敏试验应包括九种药物:克拉霉素、阿米卡星、头孢西汀、亚胺培南、氟喹诺酮类、多西环素、复方新诺明、妥布霉素、利奈唑胺。指南还明确规定了NTM体外药敏试验的方法:肉汤微量稀释法测定MIC。美国临床与实验室标准委员会(Clinical and Laboratory Stan-dards Institute, CLSI)也更新了NTM体外药敏试验指南(CLSI 2011版M24-A2)[49],为各种类型NTM的肉汤微量稀释法提供了标准化的操作方法步骤。这些指南有力地推动和规范了NTM体外药敏试验的开展。
对MABC的体外药敏试验,进展最大的是:由于MABC对克拉霉素可能产生诱导耐药,所以培养时间由常规培养3 d,要求进一步延长至14 d,以检测诱导耐药的现象。以前仅仅培养3 d的体外药敏试验结果只反映MABC的获得性耐药情况,没有体现出诱导耐药的情况。
相对于结核分枝杆菌的基因分型技术的成熟,NTM的基因分型刚刚起步。以前人们一直乐观预期NTM不会在人与人之间传染,但最新的多个研究表明NTM可能在人与人之间传染[50-52]。较多文献报道MABC在医院内暴发和流行[6, 53-54],所以对于MABC的基因分型,目前已提上研究日程。
随着各种NTM标准株全基因测序的完成,可变数量串联重复序列(variable number of tandem repeats,VNTR)分型技术在NTM检测中逐渐兴起,先后有胞内分枝杆菌[55]、鸟分枝杆菌[56]、MABC[57]根据自身标准株的全基因序列建立了相应的VNTR分型技术。这些分型技术有力地推动了NTM院内暴发感染传播机制的研究。不仅如此,有文献还发现了VNTR分型的基因型和体外药敏试验结果,以及临床表型和临床预后之间有一定内在联系[58]。这无疑拓宽了VNTR的应用范围,为预测NTM患者的药物治疗反应及最终预后提供了新的视角。
总之,近年来有关MBAC的研究成果颇为丰富。即便如此,我国MABC感染所致疾病的防治形势依然严峻。要攻克和解决MABC感染所致疾病的诊治困境和难题,我们还任重道远。
[1] Simons S, van Ingen J, Hsueh PR, et al. Nontuberculous mycobacteria in respiratory tract infections, eastern Asia. Emerg Infect Dis, 2011, 17(3): 343-349.
[2] Griffith DE, Aksamit T, Brown-Elliott BA, et al. An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am J Respir Crit Care Med, 2007, 175(4): 367-416.
[3] Chen CY, Chen HY, Chou CH, et al. Pulmonary infection caused by nontuberculous mycobacteria in a medical center in Taiwan, 2005—2008. Diagn Microbiol Infect Dis, 2012, 72(1): 47-51.
[4] Tsai WC, Hsieh HC, Su HM, et al.Mycobacteriumabscessusendocarditis: a case report and literature review. Kaohsiung J Med Sci, 2008, 24(9): 481-486.
[5] Toy BR, Frank PJ. Outbreak ofMycobacteriumabscessusinfection after soft tissue augmentation. Dermatol Surg, 2003, 29(9): 971-973.
[6] Kim HY, Yun YJ, Park CG, et al. Outbreak ofMycobacteriummassilienseinfection associated with intramuscular injections. J Clin Microbiol, 2007, 45(9): 3127-3130.
[7] Hamamoto T, Yuki A, Naoi K, et al. Bacteremia due toMycobacteriummassiliensein a patient with chronic myelogenous leukemia: case report. Diagn Microbiol Infect Dis, 2012, 74(2): 183-185.
[8] Moore M, Frerichs JB. An unusual acid-fast infection of the knee with subcutaneous, abscess-like lesions of the gluteal region; report of a case with a study of the organism,Mycobacteriumabscessus, n. sp. J Invest Dermatol, 1953, 20(2): 133-169.
[9] Kusunoki S, Ezaki T. Proposal ofMycobacteriumperegrinumsp. nov., nom. rev., and elevation ofMycobacteriumchelonaesubsp. abscessus (Kubica et al.) to species status:Mycobacteriumabscessuscomb. nov. Int J Syst Bacteriol, 1992, 42(2): 240-245.
[10] Adékambi T, Reynaud-Gaubert M, Greub G, et al. Amoebal coculture of “Mycobacteriummassiliense” sp. nov. from the sputum of a patient with hemoptoic pneumonia. J Clin Microbiol, 2004, 42(12): 5493-5501.
[11] Simmon KE, Pounder JI, Greene JN, et al. Identification of an emerging pathogen,Mycobacteriummassiliense, byrpoBsequencing of clinical isolates collected in the United States. J Clin Microbiol, 2007, 45(6): 1978-1980.
[12] Nakanaga K, Hoshino Y, Era Y, et al. Multiple cases of cutaneousMycobacteriummassilienseinfection in a “hot spa” in Japan. J Clin Microbiol, 2011, 49(2): 613-617.
[13] Mitra S, Tapadar SR, Banerjee D, et al. Pulmonary disease due toMycobacteriummassiliense. Indian J Chest Dis Allied Sci, 2012, 54(1): 53-57.
[14] Adékambi T, Berger P, Raoult D, et al.rpoBgene sequence-based characterization of emerging non-tuberculous mycobacteria with descriptions of Mycobacterium bolletii sp. nov.,Mycobacteriumphocaicumsp. nov. andMycobacteriumaubagnensesp. nov. Int J Syst Evol Microbiol, 2006, 56(Pt 1): 133-143.
[15] Griffith DE, Brown-Elliott BA, Benwill J, et al.Mycobacteriumabscessus. “Pleased to Meet You, Hope You Guess My Name...”. Ann Am Thorac Soc, 2015, 12(3):436-439.
[16] Leao SC, Tortoli E, Euzéby JP, et al. Proposal thatMycobacteriummassilienseandMycobacteriumbolletiibe united and reclassified asMycobacteriumabscessussubsp. bolletii comb. nov., designation ofMycobacteriumabscessussubsp. abscessus subsp. nov. and emended description ofMycobacteriumabscessus. Int J Syst Evol Microbiol, 2011, 61(Pt 9): 2311-2313.
[17] Davidson RM, Hasan NA, de Moura VC, et al. Phylogeno-mics of Brazilian epidemic isolates ofMycobacteriumabscessussubsp. bolletii reveals relationships of global outbreak strains. Infect Genet Evol, 2013, 20: 292-297.
[18] Roux AL, Catherinot E, Ripoll F, et al. Multicenter study of prevalence of nontuberculous mycobacteria in patients with cystic fibrosis in france. J Clin Microbiol, 2009, 47(12): 4124-4128.
[19] Zelazny AM, Root JM, Shea YR, et al. Cohort study of molecular identification and typing ofMycobacteriumabscessus,Mycobacteriummassiliense, andMycobacteriumbolletii. J Clin Microbiol, 2009, 47(7): 1985-1995.
[20] van Ingen J, de Zwaan R, Dekhuijzen RP, et al. Clinical relevance ofMycobacteriumchelonae-abscessus group isolation in 95 patients. J Infect, 2009, 59(5): 324-331.
[21] Harada T, Akiyama Y, Kurashima A, et al. Clinical and microbiological differences betweenMycobacteriumabscessusandMycobacteriummassilienselung diseases. J Clin Microbiol, 2012, 50(11): 3556-3561.
[22] Yoshida S, Tsuyuguchi K, Suzuki K, et al. Further isolation ofMycobacteriumabscessussubsp. abscessus and subsp. bolletii in different regions of Japan and susceptibility of these isolates to antimicrobial agents. Int J Antimicrob Agents, 2013, 42(3):226-231.
[23] Huang CW, Chen JH, Hu ST, et al. Synergistic activities of tigecycline with clarithromycin or amikacin against rapidly growing mycobacteria in Taiwan. Int J Antimicrob Agents, 2013, 41(3): 218-223.
[24] Koh WJ, Jeon K, Lee NY, et al. Clinical significance of differe-ntiation ofMycobacteriummassiliensefromMycobacteriumabscessus. Am J Respir Crit Care Med, 2011, 183(3): 405-410.
[25] Lee SH, Yoo HK, Kim SH, et al. The drug resistance profile ofMycobacteriumabscessusgroup strains from Korea. Ann Lab Med, 2014, 34(1): 31-37.
[26] 王涛,张媛媛,秦雪冰,等. 马赛分枝杆菌肺病一例并文献复习.中华结核和呼吸杂志,2011,34(8):571-574.
[27] Nie W, Duan H, Huang H, et al. Species identification ofMycobacteriumabscessussubsp. abscessus andMycobacteriumabscessussubsp. bolletii usingrpoBandhsp65, and susceptibility testing to eight antibiotics. Int J Infect Dis, 2014, 25: 170-174.
[28] 李国利, 张灵霞, 陈澎. 对硝基苯甲酸生长试验鉴别结核与非结核分枝杆菌应用评价. 临床肺科杂志, 2009, 14(12): 1648-1649.
[29] Shao Y, Chen C, Song H, et al. The epidemiology and geographic distribution of nontuberculous mycobacteria clinical isolates from sputum samples in the eastern region of China. PLoS Negl Trop Dis, 2015, 9(3): e0003623.
[30] Devallois A, Goh KS, Rastogi N. Rapid identification of mycobacteria to species level by PCR-restriction fragment length polymorphism analysis of thehsp65 gene and proposition of an algorithm to differentiate 34 mycobacterial species. J Clin Microbiol, 1997, 35(11): 2969-2973.
[31] Kim HY, Kook Y, Yun YJ, et al. Proportions ofMycobacteriummassilienseandMycobacteriumbolletiistrains among KoreanMycobacteriumchelonae-Mycobacteriumabscessusgroup isolates. J Clin Microbiol, 2008, 46(10): 3384-3390.
[32] 李艳冰, 张媛媛, 李晓亮, 等. PCR-RFLP技术用于脓肿分枝杆菌群鉴定的初步研究. 中华检验医学杂志, 2011, 34(11): 1017-1022.
[33] Macheras E, Roux AL, Ripoll F, et al. Inaccuracy of single-target sequencing for discriminating species of theMycobacteriumabscessusgroup. J Clin Microbiol, 2009, 47(8): 2596-2600.
[34] Slany M, Pavlik I. Molecular detection of nontuberculous mycobacteria: advantages and limits of a broad-range sequencing approach. J Mol Microbiol Biotechnol, 2012, 22(4): 268-276.
[35] Brown BA, Wallace RJ Jr, Onyi GO, et al. Activities of four macrolides, including clarithromycin, againstMycobacteriumfortuitum,Mycobacteriumchelonae, andM.chelonae-like organisms. Antimicrob Agents Chemother, 1992, 36(1): 180-184.
[36] Poehlsgaard J, Douthwaite S. The bacterial ribosome as a target for antibiotics. Nat Rev Microbiol, 2005, 3(11): 870-881.
[37] Meier A, Kirschner P, Springer B, et al. Identification of mutations in 23SrRNAgene of clarithromycin-resistantMycobacteriumintracellulare. Antimicrob Agents Chemother, 1994, 38(2): 381-384.
[38] Wallace RJ Jr, Meier A, Brown BA, et al. Genetic basis for clarithromycin resistance among isolates ofMycobacteriumchelonaeandMycobacteriumabscessus. Antimicrob Agents Chemother, 1996, 40(7): 1676-1681.
[39] Kim HY, Kim BJ, Kook Y, et al.Mycobacteriummassilienseis differentiated fromMycobacteriumabscessusandMycobacteriumbolletiiby erythromycin ribosome methyltransferase gene (erm) and clarithromycin susceptibility patterns. Microbiol Immunol, 2010, 54(6): 347-353.
[40] Andini N, Nash KA. Intrinsic macrolide resistance of theMycobacteriumtuberculosiscomplex is inducible. Antimicrob Agents Chemother, 2006, 50(7): 2560-2562.
[41] Nash KA. Intrinsic macrolide resistance inMycobacteriumsmegmatisis conferred by a novelermgene,erm(38). Antimicrob Agents Chemother, 2003, 47(10): 3053-3060.
[42] Nash KA, Zhang Y, Brown-Elliott BA, et al. Molecular basis of intrinsic macrolide resistance in clinical isolates ofMycobacteriumfortuitum. J Antimicrob Chemother, 2005, 55(2): 170-177.
[43] Nash KA, Brown-Elliott BA, Wallace RJ Jr. A novel gene,erm(41), confers inducible macrolide resistance to clinical isolates ofMycobacteriumabscessusbut is absent fromMycobacteriumchelonae. Antimicrob Agents Chemother, 2009, 53(4): 1367-1376.
[44] Yoshida S, Tsuyuguchi K, Suzuki K, et al. Further isolation ofMycobacteriumabscessussubsp. abscessus and subsp. bolletii in different regions of Japan and susceptibility of these isolates to antimicrobial agents. Int J Antimicrob Agents, 2013, 42(3):226-231.
[45] Maurer FP, Rüegger V, Ritter C, et al. Acquisition of clari-thromycin resistance mutations in the 23S rRNA gene ofMycobacteriumabscessusin the presence of inducibleerm(41). J Antimicrob Chemother, 2012, 67(11): 2606-2611.
[46] Brown-Elliott BA, Vasireddy S, Vasireddy R, et al. Utility of Sequencing theerm(41) Gene in Isolates ofMycobacteriumabscessussubsp. abscessus with Low and Intermediate Clarithromycin MICs. J Clin Microbiol, 2015, 53(4):1211-1215.
[47] Bastian S, Veziris N, Roux AL, et al. Assessment of clari-thromycin susceptibility in strains belonging to theMycobacteriumabscessusgroup byerm(41) andrrlsequencing. Antimicrob Agents Chemother, 2011, 55(2): 775-781.
[48] 中华医学会结核病学分会, 《中华结核和呼吸杂志》编辑委员会. 非结核分枝杆菌病诊断与治疗专家共识. 中华结核和呼吸杂志, 2012, 35(8): 572-580.
[49] Woods GL, Brown-Elliott BA, Conville PS, et al. Susceptibi-lity testing of mycobacteria, nocardiae, and other aerobic actinomycetes; approbed standard-secone edition.Wayne:Clinical and Laboratory Standards Institute,2011.
[50] Aitken ML, Limaye A, Pottinger P, et al. Respiratory outbreak ofMycobacteriumabscessussubspecies massiliense in a lung transplant and cystic fibrosis center. Am J Respir Crit Care Med, 2012, 185(2): 231-232.
[51] Huang WC, Chiou CS, Chen JH, et al. Molecular epidemiology ofMycobacteriumabscessusinfections in a subtropical chronic ventilatory setting. J Med Microbiol, 2010, 59(Pt 10): 1203-1211.
[52] Bryant JM, Grogono DM, Greaves D, et al. Whole-genome sequencing to identify transmission ofMycobacteriumabscessusbetween patients with cystic fibrosis: a retrospective cohort study. Lancet, 2013, 381(9877): 1551-1560.
[53] Song JY, Sohn JW, Jeong HW, et al. An outbreak of post-acu-puncture cutaneous infection due toMycobacteriumabscessus. BMC Infect Dis, 2006, 6: 6.
[54] Viana-Niero C, Lima KV, Lopes ML, et al. Molecular characterization ofMycobacteriummassilienseandMycobacteriumbolletiiin isolates collected from outbreaks of infections after laparoscopic surgeries and cosmetic procedures. J Clin Microbiol, 2008, 46(3): 850-855.
[55] Ichikawa K, Yagi T, Inagaki T, et al. Molecular typing ofMycobacteriumintracellulareusing multilocus variable-number of tandem-repeat analysis: identification of loci and analysis of clinical isolates. Microbiology, 2010, 156(Pt 2): 496-504.
[56] Inagaki T, Nishimori K, Yagi T, et al. Comparison of a variable-number tandem-repeat (VNTR) method for typingMycobacteriumaviumwith mycobacterial interspersed repetitive-unit-VNTR and IS1245 restriction fragment length polymorphism typing. J Clin Microbiol, 2009, 47(7): 2156-2164.
[57] Wong YL, Ong CS, Ngeow YF. Molecular typing ofMycobacteriumabscessusbased on tandem-repeat polymorphism. J Clin Microbiol, 2012, 50(9): 3084-3088.
[58] Tatano Y, Sano C, Yasumoto K, et al. Correlation between variable-number tandem-repeat-based genotypes and drug susceptibility inMycobacteriumaviumisolates. Eur J Clin Microbiol Infect Dis, 2012, 31(4): 445-454.
(本文编辑:薛爱华)
Research progress ofMycobacteriumabscessuscomplex
ZHANGZhi-jian*,PANGYu,ZHAOYan-lin,LIUChang-ting.
*RespiratoryDiseasesDepartmentofNanlou,ChinesePeople’sLiberationArmyGeneralHospital,Beijing100853,China
s:LIUChang-ting,Email:liuchangting301@163.com;ZHAOYan-lin,Email:zhaoyanlin@chinatb.org
Mycobacteriumabscessuscomplex (MABC), an important non-tuberculous mycobacteria (NTM) that can cause human diseases, consistes ofMycobacteriumabscessus,MycobacteriummassilienseandMycobacteriumbolletii. Multi target gene sequencing is deemed to be the most accurate and reliable method for species identification of MABC. Clarithromycin plays a role of cornerstone in the treatment of MABC diseases. Recently, one of the greatest progress of the discovery of erythromycin ribosome methylase (erm(41)) which is associated with inducing resistance to clarithromycin.M.abscessusandM.bolletiiboth have an intacterm(41) gene whileM.massiliensehas two deletions inerm(41) gene.M.abscessusstrains have a T/C polymorphism at the 28th nucleotide: T28 strains demonstrates inducible clarithromycin resistance, while C28 strains are susceptible. For the purpose of detecting induced resistance to clarithromycin ofMycobacteriumabscessus, it’s advised to prolong the incubation from 3 days to 14 days. In addition, recent evidences had raised the possibility that person-to-person transmission could occur among highly susceptible individuals, so it is necessary to study the genotyping of MABC.
Mycobacterium; Nontuberculous mycobacteria; Drug resistance, bacterial; Genotype
10.3969/j.issn.1000-6621.2015.06.017
100853 北京,解放军总医院南楼呼吸科(张智健、刘长庭);中国疾病预防控制中心 国家结核病参比实验室(逄宇、赵雁林)
刘长庭,Email:liuchangting301@163.com;赵雁林,Email:zhaoyanlin@chinatb.org
2015-04-16)