薄互层自然伽马曲线反褶积校正

2015-01-14 07:29胡志敏陈洁莹
科技视界 2015年11期
关键词:响应函数反褶积伽马

胡志敏 陈洁莹

(长江大学油气资源与勘探技术教育部重点实验室,湖北 武汉430100)

1 反褶积法原理

根据测井理论分析,测井值与所测的岩石上下围岩、钻井条件以及测井仪性能有关。从信号原理的角度分析,可将测井曲线看作是仪器探测范围地层综合响应信号的叠加。自然伽马测井信号可以看成是地层真值与自然伽马测井系统响应函数的褶积滤波输入。即:某一个深度点测井曲线数值并不是该点处真实物理量的反映,而是该点及其附近的地层的该物理量的加权平均值[1],在不考虑噪声情况下,测井响应信号可以表示为:

式中:H(z)为地层z处的真信号,K(z)为测井仪器响应函数,S(z)为实际测井值。

经查阅相关文献,自然伽马测井仪的系统响应函数,一般可用一个指数衰减函数表示:

其中,α为地质特征参数,也称为地质脉冲参数,它决定指数函数的衰减速度,并取决矿物放射性元素的含量。可直接通过实验室测定或实测曲线确定[2]。

如果能够直接计算出反褶积因子,则可以在深度域上直接褶积,而不必做傅立叶变换到频率域。对于自然伽马测井曲线的反褶积因子进行推导可得:

其中,GR3为某点处自然伽马测井校正值;α为地质特征参数;Δz为测井采样间距;GR( zi-1) 、GR( zi)、GR( zi+1) 分别为相邻三个采样点处的自然伽马测井值。

同理,可推导出自然伽马测井五点反褶积校正公式:

其中,M,N,GR(zi)意义同上,GR( zi+2),2GR( zi+1),GR( zi),GR( zi-1),GR( zi-2) 分别为 处 相邻五点的自然伽马测井值。

2 薄互层处反褶积校正前后曲线分别计算泥质含量的对比分析

图1为XX-1井3005—3015.5m井段分别应用自然伽马测井曲线GR、三点反褶自然伽马测井曲线GR3以及五点反褶积自然伽马测井曲线GR5及分别用三条曲线计算泥质含量和分层情况的横向对比图。GR曲线中3007—3007.9m井段对应着一个0.9m厚的薄砂层,经过反褶积处理后,该薄层的层界面在GR3和GR5曲线中反映的更加清晰,其中GR3、GR5曲线还划分出0.4m和0.6m的薄层,并且由反褶积处理后的自然伽马值计算出的泥质含量在薄砂层处更小,相邻围岩处泥质含量大幅度增加,薄层厚度划分更加准确,更加符合砂泥岩薄互层的实际情况。此外,通过观察XX-1井3005—3015.5m井段录井资料对应深度有三段砂岩层。由此可见,经过反褶积校正,根据自然伽马曲线划分薄层更加精细,细微变化得以“放大”,计算的泥质含量更加符合砂泥岩薄互层沉积实际情况。

图1 XX-1井3005—3015.5m井段反褶积处理前后泥质分析对比图

3 结论

利用反褶积法对自然伽马曲线进行处理,能够消除围岩、测井速度及采样间隔等因素的影响,对测井曲线中低幅度的变化产生特征“放大”作用,这种作用在薄层、薄互层处表现的尤其明显。对比处理前后自然伽马曲线的频谱曲线说明这种方法对高频段进行了能量补偿,使得高频段对应的薄层能量增强,提高了薄层识别能力。通过岩心录井资料的检验,进一步验证了自然伽马曲线的反褶积处理结果的合理性。

[1]牛超群,安丰全,牛华,等.测井曲线高分辨率处理[M].北京:地质出版社,1999.

[2]黄作华,杨方伟,李恩铎.自然伽马测井曲线的反褶积[J].测井技术,1982(1):38-47.

[3]张宪国,林承焰,张涛.测井盲反褶积及在储层构型界面识别中的应用[J].西南石油大学学报:自然科学版,2010,32(2):63-67.

[4]朱振宇,刘洪.稀疏反褶积方法及其应用[J].石油大学学报:自然科学版,2005,29(6):20-22.

猜你喜欢
响应函数反褶积伽马
宇宙中最剧烈的爆发:伽马暴
基于车载伽马能谱仪的土壤放射性元素识别研究
一类具有Beddington-DeAngelis响应函数的阶段结构捕食模型的稳定性
Understanding Gamma 充分理解伽马
相机响应函数定标的正则化方法
克服动态问题影响的相机响应函数标定
反褶积试井技术在计算低渗储层渗透率中的应用
保持信噪比的相位分解反褶积方法研究
基于反褶积与编码激励的长输管道损伤检测
随钻伽马能谱仪在录井中的应用研究