马昊新
摘 要:本文在分析了小位移测量仪测杆驱动原理的基础上提出了一种检测测杆上升高度的测杆控制方法。并通过对处理器控制大功率器件时所受干扰的具体分析,研究了硬件抗干扰措施和软件抗干扰方法,消除了测杆运动过程中大功率器件产生的干扰对测量过程的影响。
关键词:小位移测量仪 测杆运动 自动控制 抗干扰
中图分类号:TH741 文献标识码:A 文章编号:1672-3791(2014)03(b)-0007-02
随着现代传感技术和微纳米测量技术的迅速发展和广泛应用,国内外对小量程高精度位移测量仪器的研究与设计越来越多。现在市场上的该类仪器大都价格昂贵且和具体应用领域不相适应,所以笔者自主研发了一台用于测量微小零件尺寸和升降台位移的小位移测量仪,其量程为10 mm。采用的位移传感器为长光栅,其分辨率为10 mm。
小位移测量仪的测量过程可以分解为两个子过程:测杆运动过程和测量数据读取并处理过程。测杆运动的目的之一是使测杆能够平稳可靠地和各种不同的被测对象接触以实现对该被测对象竖向位置信息的读取;另一个目的则是通过测杆运动实现多次测量多次读数,以便通过对多个测量数据求平均值来消除随机误差对测量结果的影响。
1 测杆运动控制方法研究
1.1 测杆驱动方法
测杆的运动需要在驱动机构的作用下才能实现,小位移测量仪的驱动机构主要是直流电机和电磁离合器,如图1所示。对测杆升降的控制可通过控制电磁离合器来实现。
将电磁离合器的电源接通会使电磁离合器吸合,向上的驱动力作用在测杆上便可将测杆提升;当测杆需要下降时,将电磁离合器的电源断开会使电磁离合器断开,这时驱动力消失,测杆便可在自身重力的作用下降落。
控制电磁离合器电源的通断有两种方法:一种是通过连接在电源线上的按钮开关进行手动控制;另一种是使用处理器芯片通过编程实现自动控制。
手动控制需要操作者亲临仪器旁并在测杆运动的过程中实时观察自主判断何时接通或断开离合器电源,这种方法不方便操作,是落后的不被提倡的。
采用自动控制后,测杆运动控制完全由电路和软件实现,这样就减小了操作者的工作强度,也避免了由于操作者的误判断和误操作而导致的测量流程紊乱及测量结果错误。所以本论文采用自动控制的方法来控制测杆升降。
由于电磁离合器属于大功率器件,所以处理器对电磁离合器的控制需要借助继电器来实现。这样,测杆运动控制的控制链为:处理器引脚输出的控制信号输入继电器的控制端,继电器的两个触点接入电磁离合器的电源线路,继电器触点的通断决定了电磁离合器电源线的通断。
1.2 监测测杆上升高度的控制方法
本论文在控制测杆升降运动时采用了一种监测测杆上升高度的控制方法。
具体来说,就是在测杆上升阶段采用某种位置传感器对测杆的上升高度进行监测,当测杆上升到预定高度时位置传感器的输出信号会发生跳变,处理器感知到该信号跳变后就采取控制措施将测杆降落。
处理器会在测杆降落并和被测件表面稳定接触后从光栅信号处理板中读取测量数据。测杆降落的耗时是确定的,由实验知从测杆开始降落时刻算起的8 min之后测杆必定会与被测件稳定接触,所以在测杆开始降落之时开启了一个定时时间为八秒的定时器,处理器会在八秒定时时间到时进行测量数据的读取、保存与处理。
监测测杆上升高度的控制方法中提到的位置传感器可以是很多种传感器,鉴于光电开关(即红外反射式传感器)具有非接触触发且便于安装的优点,本论文选用光电开关作为位置传感器。
处理器对光电开关输出的跳变信号的检测是通过中断机制中的“外部中断”实现的,光电开关信号作为外部中断源输入处理器的外部中断引脚。当处理器检测到外部中断输入信号产生了下降沿跳变时,就会认为光电开关发出了中断请求,从而在外部中断的中断处理函数中将测杆降落。
2 大功率器件抗干扰方法研究
2.1 干扰的产生及其影响
分析1.1节所论述的控制链可以发现:电磁离合器和处理器之间存在间接的联系,大功率器件电磁离合器可能会对处理器产生干扰。
实际情况确实是这样,电磁离合器在工作时会将干扰信号通过连接线路耦合进处理器电路板中。这种干扰信号一般在电磁离合器进行电源切换和状态跳变时产生,用示波器对其进行观察,发现这种干扰信号是电压幅值大持续时间短的瞬间剧烈脉冲。
实验发现,干扰信号耦合进处理器电路板后,主要是对处理器中的“外部中断”部分产生不利影响,使处理器产生对外部中断输入信号的误判断和误触发。表1为大功率器件产生干扰的分析。
在正常情况下,输入外部中断引脚的跳变信号是由光电开关产生的,但是在表现为瞬间剧烈脉冲的干扰信号耦合进处理器电路板之后,输入外部中断引脚的跳变信号则有可能是干扰信号。当处理器检测到并响应了实际为干扰信号的外部中断信号时,就会发生测杆升降错误。
2.2 硬件抗干扰措施
本论文使用的处理器STM32F103ZET6是产品系列中最强大的,其抗干扰能力也比一般的处理器好很多。实验发现若选用51内核单片机STC12C5A60S2作为处理器,电磁离合器产生的干扰则可能会使处理器重启或者死机。所以通过更换处理器来消除干扰信号影响的方法是不可行的。
在干扰信号的耦合通道中进行信号隔离是抗干扰的一种主要方法,所以本论文在处理器的引脚和继电器的控制端之间加入了光电耦合器6N137。光电耦合器的输入级和输出级使用完全不同的两个电源供电,输入级的地线和输出级的地线亦相互独立,起到了对处理器电路和继电器电路进行信号隔离的作用。
大幅度延长干扰信号的耦合线路,使干扰信号在电线中发生损耗是抗干扰的另一种方法,所以本论文在处理器的引脚和光电耦合器的输入端之间以及继电器的触点和电磁离合器之间配置了超过15 m的电线。endprint
另外,本论文还采用了对处理器电路板正反面覆铜的抗干扰方法。
实验证明,以上三种硬件抗干扰措施在很大程度上抑制了干扰,但是干扰并没有完全消除,在偶尔几次电磁离合器进行电源状态切换时处理器仍会产生中断误触发。
为了完全消除干扰的影响,本论文在采用以上硬件抗干扰措施的同时,设计了一种通过软件来抗干扰的方法。
2.3 软件抗干扰方法的实现
由于电磁离合器进行电源切换和状态跳变的时刻是可知的,即产生干扰的时间点是固定的,所以可以采用在产生干扰的时间点上不去检测外部中断信号的方法来避免“外部中断”被干扰信号所触发。具体来说就是在干扰产生时间点所在的一段时间内通过编程将外部中断检测功能关闭(即关中断)。这种通过在测杆升降过程中选择合适的时刻关中断和开中断来抗干扰的思路就是软件抗干扰方法的实现思路。
具有软件抗干扰功能的测杆运动控制流程图如图2所示。对该流程图和1.2节所论述的监测测杆上升高度的控制方法进行比较后可以发现:新方法中加入了一个定时时间为两秒的定时器。这两秒是从测杆开始提升的瞬间干扰发生到开启外部中断的时间间隔。也就是说在此干扰发生时刻之后的两秒内,外部中断是关闭的。
而在此干扰发生时刻之前的一段时间内,外部中断也是关闭的。具体来说,这一段时间是指从仪器开机到此干扰第一次发生时刻之间的时间段,以及上次测杆开始降落时刻到此干扰发生时刻之间的时间段。
可见,在测杆开始提升瞬间干扰发生时刻所在的前后一段时间内,外部中断是关闭的。
而由于在测杆提升到预定高度时处理器先关闭外部中断再降落测杆,所以在测杆开始降落瞬间干扰发生时外部中断也已经关闭。
所以在测杆整个运动过程中的干扰产生时间点上外部中断检测功能都是关闭的,这就避免了处理器检测并响应实际为干扰信号的外部中断信号。
3 结语
在小位移测量仪测杆升降运动过程中,通过采用硬件抗干扰措施和软件抗干扰方法,完全消除了大功率器件由于线路耦合而对处理器产生的信号干扰,保证了测杆自动升降过程的正常进行。该方法对含有大功率执行器的自动控制系统具有普遍适用性。
参考文献
[1] 喻金钱,喻斌.ARM Cortrx-M3核微控制器开发与应用[M].北京:清华大学出版社,2011.endprint
另外,本论文还采用了对处理器电路板正反面覆铜的抗干扰方法。
实验证明,以上三种硬件抗干扰措施在很大程度上抑制了干扰,但是干扰并没有完全消除,在偶尔几次电磁离合器进行电源状态切换时处理器仍会产生中断误触发。
为了完全消除干扰的影响,本论文在采用以上硬件抗干扰措施的同时,设计了一种通过软件来抗干扰的方法。
2.3 软件抗干扰方法的实现
由于电磁离合器进行电源切换和状态跳变的时刻是可知的,即产生干扰的时间点是固定的,所以可以采用在产生干扰的时间点上不去检测外部中断信号的方法来避免“外部中断”被干扰信号所触发。具体来说就是在干扰产生时间点所在的一段时间内通过编程将外部中断检测功能关闭(即关中断)。这种通过在测杆升降过程中选择合适的时刻关中断和开中断来抗干扰的思路就是软件抗干扰方法的实现思路。
具有软件抗干扰功能的测杆运动控制流程图如图2所示。对该流程图和1.2节所论述的监测测杆上升高度的控制方法进行比较后可以发现:新方法中加入了一个定时时间为两秒的定时器。这两秒是从测杆开始提升的瞬间干扰发生到开启外部中断的时间间隔。也就是说在此干扰发生时刻之后的两秒内,外部中断是关闭的。
而在此干扰发生时刻之前的一段时间内,外部中断也是关闭的。具体来说,这一段时间是指从仪器开机到此干扰第一次发生时刻之间的时间段,以及上次测杆开始降落时刻到此干扰发生时刻之间的时间段。
可见,在测杆开始提升瞬间干扰发生时刻所在的前后一段时间内,外部中断是关闭的。
而由于在测杆提升到预定高度时处理器先关闭外部中断再降落测杆,所以在测杆开始降落瞬间干扰发生时外部中断也已经关闭。
所以在测杆整个运动过程中的干扰产生时间点上外部中断检测功能都是关闭的,这就避免了处理器检测并响应实际为干扰信号的外部中断信号。
3 结语
在小位移测量仪测杆升降运动过程中,通过采用硬件抗干扰措施和软件抗干扰方法,完全消除了大功率器件由于线路耦合而对处理器产生的信号干扰,保证了测杆自动升降过程的正常进行。该方法对含有大功率执行器的自动控制系统具有普遍适用性。
参考文献
[1] 喻金钱,喻斌.ARM Cortrx-M3核微控制器开发与应用[M].北京:清华大学出版社,2011.endprint
另外,本论文还采用了对处理器电路板正反面覆铜的抗干扰方法。
实验证明,以上三种硬件抗干扰措施在很大程度上抑制了干扰,但是干扰并没有完全消除,在偶尔几次电磁离合器进行电源状态切换时处理器仍会产生中断误触发。
为了完全消除干扰的影响,本论文在采用以上硬件抗干扰措施的同时,设计了一种通过软件来抗干扰的方法。
2.3 软件抗干扰方法的实现
由于电磁离合器进行电源切换和状态跳变的时刻是可知的,即产生干扰的时间点是固定的,所以可以采用在产生干扰的时间点上不去检测外部中断信号的方法来避免“外部中断”被干扰信号所触发。具体来说就是在干扰产生时间点所在的一段时间内通过编程将外部中断检测功能关闭(即关中断)。这种通过在测杆升降过程中选择合适的时刻关中断和开中断来抗干扰的思路就是软件抗干扰方法的实现思路。
具有软件抗干扰功能的测杆运动控制流程图如图2所示。对该流程图和1.2节所论述的监测测杆上升高度的控制方法进行比较后可以发现:新方法中加入了一个定时时间为两秒的定时器。这两秒是从测杆开始提升的瞬间干扰发生到开启外部中断的时间间隔。也就是说在此干扰发生时刻之后的两秒内,外部中断是关闭的。
而在此干扰发生时刻之前的一段时间内,外部中断也是关闭的。具体来说,这一段时间是指从仪器开机到此干扰第一次发生时刻之间的时间段,以及上次测杆开始降落时刻到此干扰发生时刻之间的时间段。
可见,在测杆开始提升瞬间干扰发生时刻所在的前后一段时间内,外部中断是关闭的。
而由于在测杆提升到预定高度时处理器先关闭外部中断再降落测杆,所以在测杆开始降落瞬间干扰发生时外部中断也已经关闭。
所以在测杆整个运动过程中的干扰产生时间点上外部中断检测功能都是关闭的,这就避免了处理器检测并响应实际为干扰信号的外部中断信号。
3 结语
在小位移测量仪测杆升降运动过程中,通过采用硬件抗干扰措施和软件抗干扰方法,完全消除了大功率器件由于线路耦合而对处理器产生的信号干扰,保证了测杆自动升降过程的正常进行。该方法对含有大功率执行器的自动控制系统具有普遍适用性。
参考文献
[1] 喻金钱,喻斌.ARM Cortrx-M3核微控制器开发与应用[M].北京:清华大学出版社,2011.endprint