“角平分线性质、线段的垂直平分线性质”重、难点突破

2014-11-04 17:48程林林
初中生世界·八年级 2014年10期
关键词:逆定理平分垂线

程林林

突破1:对角平分线性质的再认识

例1 如图1,在△ABC中,AD平分∠BAC,∠C=90°,DE⊥AB,交AB于点E,DE=3,BD=4,求BC的长度.

【再认识】角平分线性质是说明线段相等的一种重要方法. 解题时,注意抓住图形的特征,从已知条件中找到角平分线的点及这点到角两边的垂线段,利用角平分线性质得到两条垂线段相等.

【分析】欲求BC的长,已知BD,且BC=BD+CD,进而将问题转化为求CD的长. 由AD平分∠BAC,∠C=90°,DE⊥AB,根据角平分线性质,可得CD=DE,从而求出BC的长度.

解:∵ AD平分∠BAC,∠C=90°,DE⊥AB,

∴ CD=DE=3,

∴ BC=CD+BD=3+4=7.

【变式】如图2,AB//CD,O为∠A、∠C的平分线的交点,OE⊥AC于点E,且OE=2,求AB与CD之间的距离.

【分析】要求AB与CD之间的距离,首先过点O作直线OM⊥AB于点M,交CD于点N,则线段MN的长度即为AB与CD之间的距离. 因为AO、CO分别是∠BAC、∠ACD的角平分线,所以OE=OM=ON,则AB与CD之间的距离可求.

突破2:角平分线性质定理逆定理的再认识

例2 如图3,BD是∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD,PN⊥CD,垂足分别为M、N. 试说明PM=PN.

【再认识】角平分线性质定理的逆定理是判定角平分线的一种重要方法. 在平面内找到一个点,通过这一点到角两边的距离相等来确定该点在角平分线上. 再根据两点确定一条直线,确定角平分线.

【分析】欲说明的是PM=PN,已知PM⊥AD,PN⊥CD,利用角平分线性质定理的逆定理,可猜测BD平分∠ADC. 已知BD是

【变式】如图9,某地有两个村庄和两条相交叉的公路(点P、Q表示村庄,l1、l2表示公路). 现计划修建一座水库,要求水库到两村庄的距离相等,到两条公路的距离也相等. 你能确定水库应该建在什么位置吗?在所给图形中画出你的设计方案. (要求保留作图痕迹)

【分析】此题是作图题,解决此类问题的关键是要熟练掌握角平分线性质和垂直平分线性质. 到P、Q的距离相等,则连接PQ,根据线段垂直平分线的性质作出线段PQ的垂直平分线,到l1、l2相等,则作出l1、l2相交所形成的一组邻补角的角平分线,两线相交的一点即为所求.

(作者单位:江苏省无锡市天一实验学校)

突破1:对角平分线性质的再认识

例1 如图1,在△ABC中,AD平分∠BAC,∠C=90°,DE⊥AB,交AB于点E,DE=3,BD=4,求BC的长度.

【再认识】角平分线性质是说明线段相等的一种重要方法. 解题时,注意抓住图形的特征,从已知条件中找到角平分线的点及这点到角两边的垂线段,利用角平分线性质得到两条垂线段相等.

【分析】欲求BC的长,已知BD,且BC=BD+CD,进而将问题转化为求CD的长. 由AD平分∠BAC,∠C=90°,DE⊥AB,根据角平分线性质,可得CD=DE,从而求出BC的长度.

解:∵ AD平分∠BAC,∠C=90°,DE⊥AB,

∴ CD=DE=3,

∴ BC=CD+BD=3+4=7.

【变式】如图2,AB//CD,O为∠A、∠C的平分线的交点,OE⊥AC于点E,且OE=2,求AB与CD之间的距离.

【分析】要求AB与CD之间的距离,首先过点O作直线OM⊥AB于点M,交CD于点N,则线段MN的长度即为AB与CD之间的距离. 因为AO、CO分别是∠BAC、∠ACD的角平分线,所以OE=OM=ON,则AB与CD之间的距离可求.

突破2:角平分线性质定理逆定理的再认识

例2 如图3,BD是∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD,PN⊥CD,垂足分别为M、N. 试说明PM=PN.

【再认识】角平分线性质定理的逆定理是判定角平分线的一种重要方法. 在平面内找到一个点,通过这一点到角两边的距离相等来确定该点在角平分线上. 再根据两点确定一条直线,确定角平分线.

【分析】欲说明的是PM=PN,已知PM⊥AD,PN⊥CD,利用角平分线性质定理的逆定理,可猜测BD平分∠ADC. 已知BD是

【变式】如图9,某地有两个村庄和两条相交叉的公路(点P、Q表示村庄,l1、l2表示公路). 现计划修建一座水库,要求水库到两村庄的距离相等,到两条公路的距离也相等. 你能确定水库应该建在什么位置吗?在所给图形中画出你的设计方案. (要求保留作图痕迹)

【分析】此题是作图题,解决此类问题的关键是要熟练掌握角平分线性质和垂直平分线性质. 到P、Q的距离相等,则连接PQ,根据线段垂直平分线的性质作出线段PQ的垂直平分线,到l1、l2相等,则作出l1、l2相交所形成的一组邻补角的角平分线,两线相交的一点即为所求.

(作者单位:江苏省无锡市天一实验学校)

突破1:对角平分线性质的再认识

例1 如图1,在△ABC中,AD平分∠BAC,∠C=90°,DE⊥AB,交AB于点E,DE=3,BD=4,求BC的长度.

【再认识】角平分线性质是说明线段相等的一种重要方法. 解题时,注意抓住图形的特征,从已知条件中找到角平分线的点及这点到角两边的垂线段,利用角平分线性质得到两条垂线段相等.

【分析】欲求BC的长,已知BD,且BC=BD+CD,进而将问题转化为求CD的长. 由AD平分∠BAC,∠C=90°,DE⊥AB,根据角平分线性质,可得CD=DE,从而求出BC的长度.

解:∵ AD平分∠BAC,∠C=90°,DE⊥AB,

∴ CD=DE=3,

∴ BC=CD+BD=3+4=7.

【变式】如图2,AB//CD,O为∠A、∠C的平分线的交点,OE⊥AC于点E,且OE=2,求AB与CD之间的距离.

【分析】要求AB与CD之间的距离,首先过点O作直线OM⊥AB于点M,交CD于点N,则线段MN的长度即为AB与CD之间的距离. 因为AO、CO分别是∠BAC、∠ACD的角平分线,所以OE=OM=ON,则AB与CD之间的距离可求.

突破2:角平分线性质定理逆定理的再认识

例2 如图3,BD是∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD,PN⊥CD,垂足分别为M、N. 试说明PM=PN.

【再认识】角平分线性质定理的逆定理是判定角平分线的一种重要方法. 在平面内找到一个点,通过这一点到角两边的距离相等来确定该点在角平分线上. 再根据两点确定一条直线,确定角平分线.

【分析】欲说明的是PM=PN,已知PM⊥AD,PN⊥CD,利用角平分线性质定理的逆定理,可猜测BD平分∠ADC. 已知BD是

【变式】如图9,某地有两个村庄和两条相交叉的公路(点P、Q表示村庄,l1、l2表示公路). 现计划修建一座水库,要求水库到两村庄的距离相等,到两条公路的距离也相等. 你能确定水库应该建在什么位置吗?在所给图形中画出你的设计方案. (要求保留作图痕迹)

【分析】此题是作图题,解决此类问题的关键是要熟练掌握角平分线性质和垂直平分线性质. 到P、Q的距离相等,则连接PQ,根据线段垂直平分线的性质作出线段PQ的垂直平分线,到l1、l2相等,则作出l1、l2相交所形成的一组邻补角的角平分线,两线相交的一点即为所求.

(作者单位:江苏省无锡市天一实验学校)

猜你喜欢
逆定理平分垂线
平分比萨
勾股定理及其逆定理
平分气球
平分气球
多角度思维实现平面与立体的转化——学习微专题《明修栈道(作垂线)、暗度陈仓(找垂足)》有感
画垂线的方法
近岸悬沙垂线分布多元线性回归分析
勾股定理的逆定理及其应用
不听话把你卖了
勾股定理逆定理生活馆