姜岚+李争宁
摘要:指出了过渡金属催化醛酮的亲核加成反应是一种重要的形成碳碳键的反应。综述了在过渡金属-NHC配合物催化下,有机硼酸和醛酮的亲核加成反应。包括有机硼酸和醛的1,2-加成反应,有机硼酸和α,β-不饱和酮的1,4-加成反应。
关键词:过渡金属;NHC;有机硼酸;醛酮;催化反应
中图分类号:O653.3文献标识码:A文章编号:1674—9944(2014)09—0263—03
1引言
在过渡金属催化下,醛、酮等羰基化合物与亲核试剂的加成反应是一类经典的形成碳碳键的反应[1]。尽管有许多高活性的有机镁、有机锂、有机锌、有机铜、有机锡等金属有机试剂可以与醛、酮反应,但是因为其对空气和水汽敏感、制备和操作繁琐、对底物官能团兼容性差、毒性高等原因,在许多合成环境中受到制约。自从1998年Miyaura小组报道了铑催化的有机硼酸与芳醛的加成反应以来,这类反应就一直为研究者所关注[2]。主要因为有机硼酸对水和空气稳定,对各类官能团有较好的容忍性,毒性低而且易操作等优点。
在传统的过渡金属催化反应中,一般采用有机膦为配体。1991年,Arduengo小组首次合成并分离出了游离的N-杂环卡宾化合物(NHC),NHC就以其独特的分子结构和电子效应引起了研究者极大的兴趣。NHC化合物是强σ-电子供体,与金属络合时,可以形成稳定的C-M键,在催化反应中不需要加入过量的配体;结构多变易修饰;其前体咪唑盐对空气、水和热稳定,易操作和储存等。近年来,NHC作为一类新型配体,在过渡金属催化的有机反应中发挥越来越重要的作用。本文综述了近十年过渡金属-NHC催化的有机硼酸和醛酮的加成反应。包括有机硼酸与醛的1,2-加成反应,有机硼酸与共轭烯酮的1,4-加成反应。
2过渡金属-NHC催化有机硼酸和醛的1,2-加成反应
2001年,Fürstner研究小组首次报道了铑催化的芳基硼酸与芳醛的加成反应(反应1)[3]。反应在强碱作用下,原位条件3mol% RhCl3·3H2O与3mol%咪唑盐1络合,催化苯基硼酸与对甲氧基苯甲醛的亲核加成反应,反应0.2h收率达93%。研究发现,NHC的前体咪唑盐1侧链N原子连有芳基取代基比连有脂肪族取代基催化反应产率更高,所需反应时间更短。反应需要碱在原位下对咪唑盐脱质子,因此采用叔丁醇钾等强碱(85%,1h)比三乙胺等弱碱(11%,8h)的效果更好。催化剂有很高的催化活性,对底物醛和取代芳基硼酸的官能团兼容性很好,取代芳醛或脂肪醛均可顺利的发生反应。当底物中同时含有醛羰基和酮羰基时,会选择性的与醛羰基进行加成。当芳基硼酸连有强吸电基团时,反应不进行,这主要是因为亲核性降低会使催化剂的转金属化过程更加困难。
Gois等也采用Rh2(OAc)4/咪唑(啉)盐原位条件下,在DME/H2O中90℃下催化反应1,并发现了与Fürstner研究小组相似的结果[4]。当使用咪唑盐1为配体时,反应0.5h产率94%。但是咪唑盐侧链N原子连有位阻过大的基团时,反应时间会延长,甚至不反应。改换溶剂为质子型溶剂叔戊醇,Rh2(pfb)4/咪唑盐1原位催化下,反应条件更加温和,40℃时反应0.5h产率可达90%。
手性醇特别是二芳基手性醇类化合物是许多天然药物、生物活性物质的重要片段结构[5]。以手性NHC化合物为配体催化芳基硼酸与芳醛的加成反应是合成二芳基手性醇化合物的重要方法。Miyaura小组曾以手性膦配体(S)-MeO-MOP/[Rh(acac)(CH2=CH2)]催化α-萘醛与苯基硼酸反应,反应36h得到(R)-α-萘基-苯基甲醇,收率78%,ee值为41%(反应2)[2]。2010年,Ma等人合成了一系列基于面手性[2,2]环仿为骨架的新型咪唑三氟甲磺酸盐2和盐酸盐和3。研究表明以[Rh(OAc)2]2为金属源,咪唑盐2a为配体,原位下催化反应2,反应2h收率达99%,但是ee值没有明显的提升,而且阴离子的类型会显著影响收率和ee值[6]。最近,该小组在原合成咪唑盐方法基础上,对咪唑盐2的结构改进,将R基变为烷氧基,使得产物的对映体选择性进一步提高(52%)[7]。
zdemir小组报道了以溶胶-凝胶法制备二氧化硅负载的RhCl(COD)(NHC)配合物4,催化取代苯基硼酸与取代苯甲醛的亲核加成反应[8]。以2,4,6-三甲氧基苯甲醛为底物,反应2h,收率最高达82%。催化剂循环使用4次,催化活性没有明显降低。
Luo等人将2,4,6-三甲基苯基咪唑与交联的氯甲基聚苯乙烯反应,与[Rh(COD)Cl]2络合合成聚合物负载的Rh-NHC配合物5[9]。研究发现溶剂中水的含量对苯基硼酸和取代苯甲醛反应的收率有很大影响,作者认为这可能是因为水使聚合物发生溶胀,溶胀的体积越大,会使聚合物表面负载有更多的催化剂基团的原因。底物中苯甲醛具有硝基、氰基等吸电基团有利于反应的进行,缩短反应时间。
与大量的铑催化芳醛加成反应的研究成果相比,由于钯催化该反应的活性较低,研究相对比较少。Shi小组实现了以具有C2对称性的Pd-苯并咪唑型配合物6催化不对称合成二芳基甲醇[10]。在4分子筛存在下,KOH为碱,收率最高达99%,得到了中等的ee值(65%)。但是研究发现该反应适用于缺电子芳醛,当底物为富电子芳醛时,产物的立体选择性急剧下降为0~1%ee。
2008年,Kuriyama和Shirai小组开发了一类苯基硫醚型咪唑盐7,原位条件下,以碱CsF对咪唑盐7脱质子,与[Pd(allyl)Cl]2形成配合物催化反应3[11]。与典型的咪唑盐SIPr·HCl相比,7表现出了更高的催化活性。包括芳基硼酸、烯基硼酸、芳香杂环硼酸等在内的硼酸均可高产率的完成反应,苯基硼酸连有吸电基团或供电基团时,产物收率都很高。大位阻的2,6-二甲氧基苯甲醛与苯基硼酸反应3h收率达到98%。随后该小组报道了以更加稳定的芳基三氟硼酸钾替代芳基硼酸与芳醛反应,也得到了较高的收率[12]。2012年,Kuriyama和Onomura小组以环境友好的、更加低廉的H2O替代1,4-二氧六环为溶剂,以CsCO3为碱,咪唑盐7/[Pd(allyl)Cl]2原位下催化取代芳醛或脂肪醛与取代芳基硼酸的反应,得到了中等到优异的收率[13]。催化剂有较好的选择性,在100℃下4-氯苯甲醛与苯基硼酸反应未发现有Suzuki偶联产物生成。endprint
3过渡金属-NHC催化有机硼酸和α,β-不饱和酮的1,4-加成反应
2008年,Shi小组首次报道了Pd-轴对称手性双齿NHC配合物8不对称催化苯基硼酸和环己(戊)烯酮的1,4-加成反应,是Pd催化此类反应的突破性进展[14]。该反应条件温和,可在室温下进行。环己烯酮无论与富电子或缺电子的芳基硼酸反应,都收到了很高的收率和对映体选择性,但是环戊烯酮与苯基硼酸只得到了中等的收率和ee值。
2011年,Nolan等人报道了富电子NHC-Rh配合物[Rh(COD)(ICy)(OH)]9催化五元环至七元环共轭烯酮与芳基硼酸反应(反应4),在微波条件下反应30min,最高收率99%[15]。研究表明,该催化剂活性很高,当催化剂含量为0.001mol%时,反应12h可转化完全,TON值最高可达100000,TOF 值最高为6600h-1。
铑催化的有机硼酸与α,β-不饱和酮的共轭加成反应,一般需要有少量水存在才能进行。主要有两个原因,一是水可加速烯醇中间体的水解过程,二是促进有机硼化合物的转金属过程[16]。2012年,Yus小组合成咪唑环侧链含有羟基官能团的Rh-NHC配合物10,可在无水溶剂中催化开链、环状α,β-不饱和酮与芳基硼酸的1,4-加成反应(反应5,6)[17]。如果采用与配合物10骨架相同的、不含羟基的配合物11催化反应,则反应根本不进行,作者认为NHC配体中的醇羟基可以起到水的作用。
4结语
自从1995年,Herrmann首次报道N-杂环卡宾的过渡金属配合物在催化反应中的应用以来,N-杂环卡宾-金属配合物在均相和多相催化方面一直是人们研究的热点内容。发现一个高收率、高立体选择性的反应需要配体、底物、反应条件等因素的完美结合。相信随着研究的进一步拓展,将会不断发现更加高效、适用性更广、成本更加低廉的催化剂。
2014年9月绿色科技第9期参考文献:
[1] Suzuki A.Organoborates in new synthetic reactions[J].Accounts of Chemical Research,1982,15(6):178~184.
[2] Sakai M,Ueda M,Miyaura N.Rhodium-catalyzed addition of organoboronic acids to aldehydes[J].Angewandte Chemie International Edition,1998,37(23):3279~3281.
[3] Fürstner A,Krause H.Practical method for the rhodium-catalyzed addition of aryl-and alkenylboronic acids to aldehydes[J].Advanced Synthesis & Catalysis,2001,343(4):343~350.
[4] Gois P M P,Trindade A F,Veiros L F,André V,Duarte M T,Afonso C A M,Caddick S,Cloke F G N.Tuning the reactivity of dirhodium(II) complexes with axial N-heterocyclic carbene ligands:the arylation of aldehydes[J].Angewandte Chemie International Edition,2007,46(30):5750~5753.
[5] Schmidt F,Stemmler R T,Rudolph J,Bolm C.Catalytic asymmetric approaches towards enantiomerically enriched diarylmethanols and diarylmethylamines[J].Chemical Society Reviews,2006,35:454~470.
[6] Ma Q,Ma Y,Liu X,Duan W,Qu B,Song C.Planar chiral imidazolium salts based on [2.2]paracyclophane in the asymmetric rhodium-catalyzed 1,2-addition of arylboronic acids to aldehydes[J].Tetrahedron:Asymmetry,2010,21(3):292~298.
[7] Duan W,Ma Y,Qu B,Zhao L,Chen J,Song C.Synthesis of new alkoxy/sulfonate-substituted carbene precursors derived from [2.2]paracyclophane and their application in the asymmetric arylation of aldehydes[J].Tetrahedron:Asymmetry,2012,23(18-19):1369~1375.
[8] zdemir I,Gürbüz N,Se?kin T,?etinkaya B.Synthesis of silica-supported rhodium carbine complex as efficient catalyst for the addition of phenylboronic acid to aldehydes[J].Applied Organometallic Chemistry,2005,19(5):633~638.endprint
[9] Yan C,Zeng X,Zhang W,Luo M.Polymer-supported N-heterocyclic carbene-rhodium complex catalyst for the addition of arylboronic acids to aldehydes[J].Journal of Organometallic Chemistry,2006,691(15):3391~3396.
[10] Zhang R,Xu Q,Zhang X,Zhang T,Shi M.Axially chiral C2-symmetric N-heterocyclic carbene (NHC) palladium complexes-catalyzed asymmetric arylation of aldehydes with arylboronic acids[J].Tetrahedron:Asymmetry,2010,21(15):1928~1935.
[11] Kuriyama M,Shimazawa R,Shirai R.Efficient 1,2-addition of aryl-and alkenylboronic acids to aldehydes catalyzed by the palladium/thioether-imidazolinium chloride system[J].The Journal of Organic Chemistry,2008,73(4):1597~1600.
[12] Kuriyama M,Shimazawa R,Enomoto T,Shirai R.Palladium-catalyzed 1,2-addition of potassium aryl-and alkenyltrifluoroborates to aldehydes using thioether-imidazolinium carbene ligands[J].The Journal of Organic Chemistry,2008,73(17):6939~6942.
[13] Kuriyama M,Ishiyama N,Shimazawa R,Onomura O.Palladium-imidazolinium carbene-catalyzed arylation of aldehydes with arylboronic acids in water[J].Tetrahedron,2010,66(34):6814~6819.
[14] Zhang T,Shi M.Chiral bidentate bis(N-heterocyclic carbene)-based palladium complexes bearing carboxylate ligands:highly effective catalysts for the enantioselective conjugate addition of arylboronic acids to cyclic enones[J].Chemistry-A European Journal,2008,14(12):3759~3764.
[15] Truscott B J,Fortman G C,Slawin A M Z,Nolan S P.Well-defined [Rh(NHC)(OH)] complexes enabling the conjugate addition of arylboronic acids to α,β-unsaturated ketones[J].Organic & Biomolecular Chemistry,2011,9:7038~7041.
[16] (a) Hayashi T,Takahashi M,Takaya Y,Ogasawara M.Catalytic cycle of rhodium-catalyzed asymmetric 1,4-addition of organoboronic acids.arylrhodium,oxa-π-allylrhodium,and hydroxorhodium intermediates[J].Journal of the American Chemical Society,2002,124(18):5052~5058.(b) Fagnou K,Lautens M.Rhodium-catalyzed carbon?carbon bond forming reactions of organometallic compounds[J].Chemical Reviews,2003,103(1):169~196.
[17] Penafiel I,Pastor I M,Yus M,Esteruelas M A,Oliva?n M.Preparation,hydrogen bonds,and catalytic activity in metalpromoted addition of arylboronic acids to enones of a rhodium complex containing an NHC ligand with an alcohol function[J].Organometallics,2012,31(17):6154~6161.endprint
[9] Yan C,Zeng X,Zhang W,Luo M.Polymer-supported N-heterocyclic carbene-rhodium complex catalyst for the addition of arylboronic acids to aldehydes[J].Journal of Organometallic Chemistry,2006,691(15):3391~3396.
[10] Zhang R,Xu Q,Zhang X,Zhang T,Shi M.Axially chiral C2-symmetric N-heterocyclic carbene (NHC) palladium complexes-catalyzed asymmetric arylation of aldehydes with arylboronic acids[J].Tetrahedron:Asymmetry,2010,21(15):1928~1935.
[11] Kuriyama M,Shimazawa R,Shirai R.Efficient 1,2-addition of aryl-and alkenylboronic acids to aldehydes catalyzed by the palladium/thioether-imidazolinium chloride system[J].The Journal of Organic Chemistry,2008,73(4):1597~1600.
[12] Kuriyama M,Shimazawa R,Enomoto T,Shirai R.Palladium-catalyzed 1,2-addition of potassium aryl-and alkenyltrifluoroborates to aldehydes using thioether-imidazolinium carbene ligands[J].The Journal of Organic Chemistry,2008,73(17):6939~6942.
[13] Kuriyama M,Ishiyama N,Shimazawa R,Onomura O.Palladium-imidazolinium carbene-catalyzed arylation of aldehydes with arylboronic acids in water[J].Tetrahedron,2010,66(34):6814~6819.
[14] Zhang T,Shi M.Chiral bidentate bis(N-heterocyclic carbene)-based palladium complexes bearing carboxylate ligands:highly effective catalysts for the enantioselective conjugate addition of arylboronic acids to cyclic enones[J].Chemistry-A European Journal,2008,14(12):3759~3764.
[15] Truscott B J,Fortman G C,Slawin A M Z,Nolan S P.Well-defined [Rh(NHC)(OH)] complexes enabling the conjugate addition of arylboronic acids to α,β-unsaturated ketones[J].Organic & Biomolecular Chemistry,2011,9:7038~7041.
[16] (a) Hayashi T,Takahashi M,Takaya Y,Ogasawara M.Catalytic cycle of rhodium-catalyzed asymmetric 1,4-addition of organoboronic acids.arylrhodium,oxa-π-allylrhodium,and hydroxorhodium intermediates[J].Journal of the American Chemical Society,2002,124(18):5052~5058.(b) Fagnou K,Lautens M.Rhodium-catalyzed carbon?carbon bond forming reactions of organometallic compounds[J].Chemical Reviews,2003,103(1):169~196.
[17] Penafiel I,Pastor I M,Yus M,Esteruelas M A,Oliva?n M.Preparation,hydrogen bonds,and catalytic activity in metalpromoted addition of arylboronic acids to enones of a rhodium complex containing an NHC ligand with an alcohol function[J].Organometallics,2012,31(17):6154~6161.endprint
[9] Yan C,Zeng X,Zhang W,Luo M.Polymer-supported N-heterocyclic carbene-rhodium complex catalyst for the addition of arylboronic acids to aldehydes[J].Journal of Organometallic Chemistry,2006,691(15):3391~3396.
[10] Zhang R,Xu Q,Zhang X,Zhang T,Shi M.Axially chiral C2-symmetric N-heterocyclic carbene (NHC) palladium complexes-catalyzed asymmetric arylation of aldehydes with arylboronic acids[J].Tetrahedron:Asymmetry,2010,21(15):1928~1935.
[11] Kuriyama M,Shimazawa R,Shirai R.Efficient 1,2-addition of aryl-and alkenylboronic acids to aldehydes catalyzed by the palladium/thioether-imidazolinium chloride system[J].The Journal of Organic Chemistry,2008,73(4):1597~1600.
[12] Kuriyama M,Shimazawa R,Enomoto T,Shirai R.Palladium-catalyzed 1,2-addition of potassium aryl-and alkenyltrifluoroborates to aldehydes using thioether-imidazolinium carbene ligands[J].The Journal of Organic Chemistry,2008,73(17):6939~6942.
[13] Kuriyama M,Ishiyama N,Shimazawa R,Onomura O.Palladium-imidazolinium carbene-catalyzed arylation of aldehydes with arylboronic acids in water[J].Tetrahedron,2010,66(34):6814~6819.
[14] Zhang T,Shi M.Chiral bidentate bis(N-heterocyclic carbene)-based palladium complexes bearing carboxylate ligands:highly effective catalysts for the enantioselective conjugate addition of arylboronic acids to cyclic enones[J].Chemistry-A European Journal,2008,14(12):3759~3764.
[15] Truscott B J,Fortman G C,Slawin A M Z,Nolan S P.Well-defined [Rh(NHC)(OH)] complexes enabling the conjugate addition of arylboronic acids to α,β-unsaturated ketones[J].Organic & Biomolecular Chemistry,2011,9:7038~7041.
[16] (a) Hayashi T,Takahashi M,Takaya Y,Ogasawara M.Catalytic cycle of rhodium-catalyzed asymmetric 1,4-addition of organoboronic acids.arylrhodium,oxa-π-allylrhodium,and hydroxorhodium intermediates[J].Journal of the American Chemical Society,2002,124(18):5052~5058.(b) Fagnou K,Lautens M.Rhodium-catalyzed carbon?carbon bond forming reactions of organometallic compounds[J].Chemical Reviews,2003,103(1):169~196.
[17] Penafiel I,Pastor I M,Yus M,Esteruelas M A,Oliva?n M.Preparation,hydrogen bonds,and catalytic activity in metalpromoted addition of arylboronic acids to enones of a rhodium complex containing an NHC ligand with an alcohol function[J].Organometallics,2012,31(17):6154~6161.endprint