陈云 吕西林 蒋欢军
摘要:鉴于传统连梁在震时破坏后修复比较困难,近年来部分学者研究在连梁的跨中设置可更换耗能部件,使其在中震或大震时耗能,震后便于修复更换.本文基于ABAQUS有限元程序,建立一片带可更换连梁的大比例双肢剪力墙试件的精细有限元模型,阐述了其材料本构模型和建模过程,对其进行精细仿真分析.计算与试验结果均表明,可更换连梁能够将破坏位置集中在保险丝,而且模拟的初始刚度和峰值承载力与试验结果比较接近,模型可较好地预测试件各部分的屈服顺序,该模拟方法对类似联肢剪力墙结构的数值模拟具有较好的借鉴意义.
关键词:连梁;剪力墙;仿真分析
中图分类号:TU375; P315.952 文献标识码:A
Abstract:As it is difficult to repair the damaged conventional coupling beams, the concept of providing an energy dissipation fuse in a coupling beam has been developed and investigated over the past few years. The energy dissipation fuse is designed to dissipate seismic energy in moderate earthquakes or rare earthquakes, and can be replaced easily after the earthquake. Based on the ABAQUS procedure, a refined analytical model of large scale coupled shear wall specimen with replaceable coupling beams was established to conduct static pushover analysis. The material constitutive model and modeling approach were also introduced. By comparing the computational and experiment results, it can be found that the replaceable coupling beams can make the damage and energy dissipation concentrate in the replaceable fuse, and the simulation methods can precisely predict the initial stiffness and peak bearing capacity of the new shear wall. In addition, the simulation can well predict the yield sequence of shear wall specimen. It is hoped that the proposed simulation methods can be widely used to simulate similar shear wall structures in future.
Key words:coupling beams; shear wall; simulation analysis
传统联肢剪力墙结构在中震或大震下通常连梁遭到不同程度的破坏,修复比较困难.鉴于此,部分中外学者研究在连梁的跨中设置一个耗能部件,震时仅使耗能部件屈服耗能,连梁其余部分尽量不产生破坏,震后仅需对受损的耗能部件进行更换即可,耗能部件也称之为连梁“保险丝”.目前的研究主要集中在不同类型连梁保险丝的研究开发,对带有保险丝的整体结构研究较少.
ABAQUS程序是国际上先进的大型通用有限元分析软件之一,拥有世界上最大的非线性力学用户群,ABAQUS可以解决从相对简单的线性分析到复杂的非线性模拟等各种问题\[1-3\].因此本文拟采用ABAQUS程序进行新型剪力墙结构的精细仿真分析.
在已有研究的基础上\[4-9\],本文针对这种带有可更换连梁的新型剪力墙结构,阐述了新型剪力墙精细有限元模型的单元类型选择、材料模型参数定义以及建模方法,重点通过精细仿真分析研究了新型剪力墙的变形特点、各部分的屈服顺序、墙肢的损伤状况和骨架曲线,并与试验结果进行了对比分析.
在本模型中墙体开门洞,所以连梁的刚度较小,若开窗洞则连梁的刚度较大,连梁的刚度大则整体性较好,但刚度过大也会造成震时受压墙肢的轴压力过大,因此设计时在建筑上允许的情况下应选择合适的连梁与墙肢耦合比.
2ABAQUS有限元模型
2.1单元类型选择
剪力墙墙肢、连梁、底座和加载梁均采用8节点减缩积分实体单元C3D8R来模拟.减缩积分单元由于比完全积分单元在每个方向上少用一个积分点,即使存在扭曲变形时,分析精度不会受到大的影响,在弯曲荷载下也不容易发生剪切自锁.建模时利用高级网格划分技巧,绝大部分实体单元采用六面体单元,尽量避免五面体和四面体单元.这样不但能够控制单元数量,还可以减少由于单元退化带来的计算误差.
混凝土中钢筋的模拟有两种方法,即直接定义REBAR和使用嵌入单元.这里用三维一次桁架单元T3D2来模拟钢筋,钢筋通过*EMBEDDED ELEMENT命令植入混凝土,即将钢筋单元嵌入到混凝土实体单元之中,不考虑二者之间的粘结滑移关系.
保险丝和预埋型钢也采用实体单元C3D8R来模拟,预埋型钢的模型建好后,通过*EMBEDDED ELEMENT命令直接将型钢嵌入到连梁的非屈服段和墙肢里面,因为型钢翼缘焊接了较多的栓钉,不考虑预埋型钢与混凝土之间的粘结滑移.
2.2材料模型
钢筋的材料模型选用各向同性等向强化模型,ABAQUS自带的混凝土本构模型有Concrete Smeared Cracking模型和Concrete Damaged Plasticity模型.第1种模型比较适用于低围压下单调变形的混凝土构件.第2种模型仍然比较适用于低围压下的混凝土构件,其特点是由于考虑了损伤效应,更适合模拟往复甚至地震作用下的混凝土结构行为 \[10\].本文选用第2种材料模型即混凝土损伤塑性模型,其能够考虑混凝土材料拉压强度差异、刚度及强度退化以及拉压循环裂缝闭合呈现的刚度恢复等性质
3.2构件屈服顺序
通过钢筋和保险丝的等效塑性应变来判断结构的各部分的屈服顺序,取不同荷载步下结构等效塑性应变如图5所示.可更换连梁理想的屈服顺序是连梁的保险丝先产生屈服进行耗能,然后剪力墙的脚部产生屈服耗能.水平加载共分307个子步,提取在水平加载过程中,不同荷载步下的构件关键受力部位的等效塑性应变云图.通过等效塑性应变云图来判断构件的屈服顺序.
在第7子步时,一层和二层连梁保险丝首先产生屈服,剪力墙的墙脚纵筋处于弹性状态;在第20子步时剪力墙受拉侧墙脚纵筋也产生了屈服;在第23子步时,墙脚受压侧纵筋开始屈服;由保险丝与预埋型钢以及非屈服段纵筋最终的等效塑性应变云图可知(第306子步),保险丝的塑性应变发展较为充分,保险丝腹板大部分屈服,这与试验完全一致.
非屈服段的纵筋、箍筋和预埋型钢均处于弹性状态,这也与试验结果一致,进一步证明了可更换连梁能够将破坏位置集中在保险丝,这非常有利于震后对保险丝更换.最终二层处的暗柱纵筋没有发生屈服,这也与试验结果完全一致.
总体来讲,带有可更换连梁的新型剪力墙试件实现了理想的屈服顺序,即保险丝首先屈服耗能,然后墙脚纵筋屈服耗能,模拟与试验结果一致.
3.3混凝土损伤分析
通过提取混凝土受拉损伤变量DAMAGET,比较图6和图7混凝土的损伤可以直观地反应混凝土开裂比较严重的部位.观察模拟的墙肢混凝土部分的受拉损伤分布可以发现(如图6所示),受拉墙肢开裂比较严重,连梁的损伤较轻,而且受压墙肢的受拉侧混凝土开裂也比较严重,墙肢顶部由于应力集中影响开裂也比较严重.图7所示为试验中单侧墙肢的损伤裂缝分布,墙肢产生了大量的受拉损伤裂缝,与模拟结果相似;图8所示为试验中连梁的裂缝分布,连梁的裂缝都细微,试验后残余变形也很小,与模拟结果基本一致.因此模拟基本能够反映墙肢和连梁混凝土的损伤状况.
从图10可以看出,模拟的初始刚度和峰值承载力与试验基本一致,但屈服承载力的计算值与试验稍有差异.总之,用ABAQUS模拟联肢剪力墙的骨架曲线能够得到较好的结果,特别是对剪力墙的初始刚度和峰值承载力的模拟能够得到较好的结果,不足之处是骨架曲线的下降段较难模拟,而且较难模拟剪力墙的滞回反应.因此这里又采用近年来美国休斯顿大学的Mansour和Hsu提出的一种新的剪力墙非线性模型-循环软化膜模型\[16\]来模拟剪力墙的滞回反应,该模型由Mo等\[17\]通过编程开发添加到OpenSEES程序中.该模型可以较好地模拟剪力墙的滞回反应,但不能够得到剪力墙的应力、应变云图以及损伤云图,模拟结果如图11所示.OpenSEES模拟的试件滞回曲线与试验结果有一定差别,原因是在模拟的过程中,试件的底端是完全固定的,没有任何滑移,但在试验加载的过程中试件的底座产生了较大的滑移,因此导致试验的滞回曲线很不对称.但模拟的峰值承载力、初始刚度以及“捏拢”效应与试验结果比较接近,骨架曲线与ABAQUS模拟的结果是类似的.总之,用ABAQUS模拟试件的变形、屈服顺序、应力应变云图以及损伤状况具有较好的效果,而OpenSEES程序中的剪力墙循环软化膜模型可以补充进行剪力墙滞回反应计算.
顶点位移/mm
4结论
本文基于ABAQUS有限元程序,建立一片带可更换连梁的大比例双肢剪力墙试件的精细有限元模型,阐述了其材料本构模型和建模过程,对其进行了精细仿真分析,计算与试验结果对比研究表明,计算模型可以较好地模拟试件的变形、构件的关键受力部位屈服顺序、墙肢与连梁混凝土部分的损伤分布以及试件的骨架曲线,因此,该模拟方法对类似联肢剪力墙结构的数值模拟具有较好的借鉴意义.此外,利用OpenSEES程序中的剪力墙循环软化膜模型补充模拟了剪力墙的滞回反应并与试验结果进行了对比,取得了较好的模拟效果.总之,经过合理设计的新型剪力墙能够得到理想的屈服顺序,即连梁保险丝先屈服,然后墙肢脚部纵筋屈服,可更换连梁能够将破坏位置集中在保险丝部分,便于震后更换.
参考文献
[1]庄茁,由小川,廖剑晖,等. 基于ABAQUS的有限元分析和应用\[M\].北京:清华大学出版社,2009:4-15.
ZHUANG Zhuo, YOU Xiaochuan, LIAO Jianhui, et al. Finite element analysis and applications based on ABAQUS \[M\]. Beijing: Tsinghua University Press, 2009:4-15.(In Chinese)
[2]庄茁译. ABAQUS/Standard有限元软件入门指南\[M\].北京:清华大学出版社,1998:2-25.
ZHUANG Zhuo,Translation. ABAQUS/Standard finite element software starter guide \[M\]. Beijing: Tsinghua University Press, 1998:2-25. (In Chinese)
[3]ABAQUS Inc. ABAQUS user manual(V6.9.1)[M].USA, 2009:1-30.
[4]吕西林,陈云,蒋欢军. 可更换连梁保险丝抗震性能试验研究\[J\]. 同济大学学报:自然科学版,2013,41(9):1318-1325,1332.
LV Xilin, CHEN Yun, JIANG Huanjun. Experimental study on seismic behavior of “fuse” of replaceable coupling beam \[J\]. Journal of Tongji University :Natural Science Edition, 2013, 41(9): 1318-1325,1332. (In Chinese)
[5]LV Xilin, MAO Yuanjun, CHEN Yun. Test and analysis on shear walls with replaceable devices under cyclic loading for earthquake resilient structures \[C\] // Proceedings of 9th International Conference on Urban Earthquake Engineering/4th Asia Conference on Earthquake Engineering. Tokyo, Japan,2012:08-116.
[6]吕西林,陈云,毛苑君. 结构抗震设计的新概念可恢复功能结构\[J\].同济大学学报:自然科学版, 2011,39(7):941-948.
LV Xilin, CHEN Yun, MAO Yuanjun. New concept of structural seismic design: earthquake resilient structures \[J\]. Journal of Tongji University:Natural Science Edition, 2011, 39(7): 941-948. (In Chinese)
[7]吕西林,陈云. 一种可更换连系梁: 中国, ZL 2010 2 0217583.0\[P\]. 2011-01-19.
LV Xilin, CHEN Yun. A kind of replaceable coupling beam: China, ZL 2010 2 0217583.0\[P\]. 2011-01-19. (In Chinese)
[8]吕西林,陈云,蒋欢军. 新型可更换连梁研究进展\[J\]. 地震工程与工程振动, 2013,33(1):8-15.
LV Xilin, CHEN Yun, JIANG Huanjun. Research progress of new replaceable coupling beams \[J\]. Earthquake Engineering and Engineering Vibration, 2013, 33(1):8-15. (In Chinese)
[9]CHEN Yun, LV Xilin. New replaceable coupling beams for shear wall structures\[C\] // 15WCEE. Lisbon, 2012:2583.
[10]陆新征,叶列平,缪志伟. 建筑抗震弹塑性分析原理、模型与在ABAQUS,MSC.MARC和SAP2000上的实践\[M\].北京:中国建筑工业出版社,2009:117-125.
LU Xinzheng, YE Lieping, MIU Zhiwei. Elastoplastic analysis of buildings against earthquaketheory, model and implementation on ABAQUS, MSC.MARC, and SAP2000 \[M\]. Beijing: China Building Industry Press, 2009:117-125. (In Chinese)
[11]LUBLINER J, OLIVER J, OLLER S, et al. A plasticdamage model for concrete \[J\]. International Journal of Solids Structures, 1989, 25(3):299-326.
[12]LEE J, FENVES G L. A plasticdamage model for cyclic loading of concrete structures \[J\]. Journal of Engineering Mechanics, 1998, 124(8):892-900.
[13]江见鲸,陆新征,叶列平. 混凝土结构有限元分析\[M\]. 北京:清华大学出版社,2005:47-48.
JIANG Jianjing, LU Xinzheng, YE Lieping. Finite element analysis of concrete structures \[M\]. Beijing: Tsinghua University Press, 2005:47-48. (In Chinese)
[14]张劲,王庆扬,胡守营,等. ABAQUS混凝土损伤塑性模型参数验证\[J\].建筑结构,2008,38(8):127-130.
ZHANG Jin, WANG Qingyang, HU Shouying, et al.Parameters verification of concrete damaged plastic model of ABAQUS \[J\].Building Structure, 2008, 38(8):127-130. (In Chinese)
[15]BIRTEL V, MARK P. Parameterized finite element modeling of RC beam shear failure\[C\]//ABAQUS Users Conference. Cambridge, USA:2006.
[16]MANSOUR M, HSU T T C. Behavior of reinforced concrete elements under cyclic shear: Part 2theoretical model \[J\].Journal of Structural Engineering, 2005, 131(1): 54-65.
[17]MO Y L, ZHONG J X, HSU T T C. Seismic simulation of RC walltype structures \[J\]. Engineering Structures, 2008, 30(11):3167-3175.
[4]吕西林,陈云,蒋欢军. 可更换连梁保险丝抗震性能试验研究\[J\]. 同济大学学报:自然科学版,2013,41(9):1318-1325,1332.
LV Xilin, CHEN Yun, JIANG Huanjun. Experimental study on seismic behavior of “fuse” of replaceable coupling beam \[J\]. Journal of Tongji University :Natural Science Edition, 2013, 41(9): 1318-1325,1332. (In Chinese)
[5]LV Xilin, MAO Yuanjun, CHEN Yun. Test and analysis on shear walls with replaceable devices under cyclic loading for earthquake resilient structures \[C\] // Proceedings of 9th International Conference on Urban Earthquake Engineering/4th Asia Conference on Earthquake Engineering. Tokyo, Japan,2012:08-116.
[6]吕西林,陈云,毛苑君. 结构抗震设计的新概念可恢复功能结构\[J\].同济大学学报:自然科学版, 2011,39(7):941-948.
LV Xilin, CHEN Yun, MAO Yuanjun. New concept of structural seismic design: earthquake resilient structures \[J\]. Journal of Tongji University:Natural Science Edition, 2011, 39(7): 941-948. (In Chinese)
[7]吕西林,陈云. 一种可更换连系梁: 中国, ZL 2010 2 0217583.0\[P\]. 2011-01-19.
LV Xilin, CHEN Yun. A kind of replaceable coupling beam: China, ZL 2010 2 0217583.0\[P\]. 2011-01-19. (In Chinese)
[8]吕西林,陈云,蒋欢军. 新型可更换连梁研究进展\[J\]. 地震工程与工程振动, 2013,33(1):8-15.
LV Xilin, CHEN Yun, JIANG Huanjun. Research progress of new replaceable coupling beams \[J\]. Earthquake Engineering and Engineering Vibration, 2013, 33(1):8-15. (In Chinese)
[9]CHEN Yun, LV Xilin. New replaceable coupling beams for shear wall structures\[C\] // 15WCEE. Lisbon, 2012:2583.
[10]陆新征,叶列平,缪志伟. 建筑抗震弹塑性分析原理、模型与在ABAQUS,MSC.MARC和SAP2000上的实践\[M\].北京:中国建筑工业出版社,2009:117-125.
LU Xinzheng, YE Lieping, MIU Zhiwei. Elastoplastic analysis of buildings against earthquaketheory, model and implementation on ABAQUS, MSC.MARC, and SAP2000 \[M\]. Beijing: China Building Industry Press, 2009:117-125. (In Chinese)
[11]LUBLINER J, OLIVER J, OLLER S, et al. A plasticdamage model for concrete \[J\]. International Journal of Solids Structures, 1989, 25(3):299-326.
[12]LEE J, FENVES G L. A plasticdamage model for cyclic loading of concrete structures \[J\]. Journal of Engineering Mechanics, 1998, 124(8):892-900.
[13]江见鲸,陆新征,叶列平. 混凝土结构有限元分析\[M\]. 北京:清华大学出版社,2005:47-48.
JIANG Jianjing, LU Xinzheng, YE Lieping. Finite element analysis of concrete structures \[M\]. Beijing: Tsinghua University Press, 2005:47-48. (In Chinese)
[14]张劲,王庆扬,胡守营,等. ABAQUS混凝土损伤塑性模型参数验证\[J\].建筑结构,2008,38(8):127-130.
ZHANG Jin, WANG Qingyang, HU Shouying, et al.Parameters verification of concrete damaged plastic model of ABAQUS \[J\].Building Structure, 2008, 38(8):127-130. (In Chinese)
[15]BIRTEL V, MARK P. Parameterized finite element modeling of RC beam shear failure\[C\]//ABAQUS Users Conference. Cambridge, USA:2006.
[16]MANSOUR M, HSU T T C. Behavior of reinforced concrete elements under cyclic shear: Part 2theoretical model \[J\].Journal of Structural Engineering, 2005, 131(1): 54-65.
[17]MO Y L, ZHONG J X, HSU T T C. Seismic simulation of RC walltype structures \[J\]. Engineering Structures, 2008, 30(11):3167-3175.
[4]吕西林,陈云,蒋欢军. 可更换连梁保险丝抗震性能试验研究\[J\]. 同济大学学报:自然科学版,2013,41(9):1318-1325,1332.
LV Xilin, CHEN Yun, JIANG Huanjun. Experimental study on seismic behavior of “fuse” of replaceable coupling beam \[J\]. Journal of Tongji University :Natural Science Edition, 2013, 41(9): 1318-1325,1332. (In Chinese)
[5]LV Xilin, MAO Yuanjun, CHEN Yun. Test and analysis on shear walls with replaceable devices under cyclic loading for earthquake resilient structures \[C\] // Proceedings of 9th International Conference on Urban Earthquake Engineering/4th Asia Conference on Earthquake Engineering. Tokyo, Japan,2012:08-116.
[6]吕西林,陈云,毛苑君. 结构抗震设计的新概念可恢复功能结构\[J\].同济大学学报:自然科学版, 2011,39(7):941-948.
LV Xilin, CHEN Yun, MAO Yuanjun. New concept of structural seismic design: earthquake resilient structures \[J\]. Journal of Tongji University:Natural Science Edition, 2011, 39(7): 941-948. (In Chinese)
[7]吕西林,陈云. 一种可更换连系梁: 中国, ZL 2010 2 0217583.0\[P\]. 2011-01-19.
LV Xilin, CHEN Yun. A kind of replaceable coupling beam: China, ZL 2010 2 0217583.0\[P\]. 2011-01-19. (In Chinese)
[8]吕西林,陈云,蒋欢军. 新型可更换连梁研究进展\[J\]. 地震工程与工程振动, 2013,33(1):8-15.
LV Xilin, CHEN Yun, JIANG Huanjun. Research progress of new replaceable coupling beams \[J\]. Earthquake Engineering and Engineering Vibration, 2013, 33(1):8-15. (In Chinese)
[9]CHEN Yun, LV Xilin. New replaceable coupling beams for shear wall structures\[C\] // 15WCEE. Lisbon, 2012:2583.
[10]陆新征,叶列平,缪志伟. 建筑抗震弹塑性分析原理、模型与在ABAQUS,MSC.MARC和SAP2000上的实践\[M\].北京:中国建筑工业出版社,2009:117-125.
LU Xinzheng, YE Lieping, MIU Zhiwei. Elastoplastic analysis of buildings against earthquaketheory, model and implementation on ABAQUS, MSC.MARC, and SAP2000 \[M\]. Beijing: China Building Industry Press, 2009:117-125. (In Chinese)
[11]LUBLINER J, OLIVER J, OLLER S, et al. A plasticdamage model for concrete \[J\]. International Journal of Solids Structures, 1989, 25(3):299-326.
[12]LEE J, FENVES G L. A plasticdamage model for cyclic loading of concrete structures \[J\]. Journal of Engineering Mechanics, 1998, 124(8):892-900.
[13]江见鲸,陆新征,叶列平. 混凝土结构有限元分析\[M\]. 北京:清华大学出版社,2005:47-48.
JIANG Jianjing, LU Xinzheng, YE Lieping. Finite element analysis of concrete structures \[M\]. Beijing: Tsinghua University Press, 2005:47-48. (In Chinese)
[14]张劲,王庆扬,胡守营,等. ABAQUS混凝土损伤塑性模型参数验证\[J\].建筑结构,2008,38(8):127-130.
ZHANG Jin, WANG Qingyang, HU Shouying, et al.Parameters verification of concrete damaged plastic model of ABAQUS \[J\].Building Structure, 2008, 38(8):127-130. (In Chinese)
[15]BIRTEL V, MARK P. Parameterized finite element modeling of RC beam shear failure\[C\]//ABAQUS Users Conference. Cambridge, USA:2006.
[16]MANSOUR M, HSU T T C. Behavior of reinforced concrete elements under cyclic shear: Part 2theoretical model \[J\].Journal of Structural Engineering, 2005, 131(1): 54-65.
[17]MO Y L, ZHONG J X, HSU T T C. Seismic simulation of RC walltype structures \[J\]. Engineering Structures, 2008, 30(11):3167-3175.