关于有界线性算子的几个不等式

2014-10-23 12:23黄介武

黄介武

摘要通过利用一个算子恒等式和关于多个算子的Bohr不等式,得到了关于有界线性算子的几个不等式,所得结果是同行前期结果的改进.同时,通过利用改进的几何算术平均值不等式,得到了关于算子几何均值和算术均值的一个不等式,所得结果推广了现有的一个不等式.

关键词有界线性算子;Bohr不等式;几何算术平均值不等式

中图分类号O15121文献标识码A文章编号10002537(2014)04009204

1主要结果

参考文献:

[1]〖ZK(#〗BHATIA R. Positive denite matrices[M]. Princeton:Princeton University Press, 2007.

[2]FUJII J I, KAMEI E. Relative operator entropy in noncommutative information theory [J]. Math Japon, 1989,34(3):341348.

[3]BOHR H. Zur Theorie der fastperiodischen funktionen I[J]. Acta Math, 1924,45(1):29127.

[4]HIRZALLAH O. Noncommutative operator Bohr inequality[J]. J Math Anal Appl, 2003,282(2):578583.

[5]CHEUNG W, PECARIC J. Bohrs inequalities for Hilbert space operators[J]. J Math Anal Appl, 2006,323(1):403412.

[6]ZHANG F. On the Bohr inequality of operators[J]. J Math Anal Appl, 2007, 333(2):12641271.

[7]CHANSANGIAM P, HEMCHOTE P, PANTARAGPHONG P. Generalizations of Bohr inequality for Hilbert space operators[J]. J Math Anal Appl, 2009,356(2):525536.

[8]ABRAMOVICH S, BARIC J, PECARIC J. A new proof of an inequality of Bohr for Hilbert space operators[J].Linear Algebra Appl, 2009,430(4):14321435.

[9]FUJII M, ZUO H. Matrix order in Bohr inequality for operators[J]. Banach J Math Anal, 2010,4(1):2127.

[10]ZOU L, HE C. On operator Bohr type inequalities[J]. Math Inequal Appl, 2014,17(3):11611169.

[11]MERRIS R, PIERCE S. Monotonicity of positive semidenite Hermitian matrices[J]. Proc Amer Math Soc, 1972,31(2):437440.

摘要通过利用一个算子恒等式和关于多个算子的Bohr不等式,得到了关于有界线性算子的几个不等式,所得结果是同行前期结果的改进.同时,通过利用改进的几何算术平均值不等式,得到了关于算子几何均值和算术均值的一个不等式,所得结果推广了现有的一个不等式.

关键词有界线性算子;Bohr不等式;几何算术平均值不等式

中图分类号O15121文献标识码A文章编号10002537(2014)04009204

1主要结果

参考文献:

[1]〖ZK(#〗BHATIA R. Positive denite matrices[M]. Princeton:Princeton University Press, 2007.

[2]FUJII J I, KAMEI E. Relative operator entropy in noncommutative information theory [J]. Math Japon, 1989,34(3):341348.

[3]BOHR H. Zur Theorie der fastperiodischen funktionen I[J]. Acta Math, 1924,45(1):29127.

[4]HIRZALLAH O. Noncommutative operator Bohr inequality[J]. J Math Anal Appl, 2003,282(2):578583.

[5]CHEUNG W, PECARIC J. Bohrs inequalities for Hilbert space operators[J]. J Math Anal Appl, 2006,323(1):403412.

[6]ZHANG F. On the Bohr inequality of operators[J]. J Math Anal Appl, 2007, 333(2):12641271.

[7]CHANSANGIAM P, HEMCHOTE P, PANTARAGPHONG P. Generalizations of Bohr inequality for Hilbert space operators[J]. J Math Anal Appl, 2009,356(2):525536.

[8]ABRAMOVICH S, BARIC J, PECARIC J. A new proof of an inequality of Bohr for Hilbert space operators[J].Linear Algebra Appl, 2009,430(4):14321435.

[9]FUJII M, ZUO H. Matrix order in Bohr inequality for operators[J]. Banach J Math Anal, 2010,4(1):2127.

[10]ZOU L, HE C. On operator Bohr type inequalities[J]. Math Inequal Appl, 2014,17(3):11611169.

[11]MERRIS R, PIERCE S. Monotonicity of positive semidenite Hermitian matrices[J]. Proc Amer Math Soc, 1972,31(2):437440.

摘要通过利用一个算子恒等式和关于多个算子的Bohr不等式,得到了关于有界线性算子的几个不等式,所得结果是同行前期结果的改进.同时,通过利用改进的几何算术平均值不等式,得到了关于算子几何均值和算术均值的一个不等式,所得结果推广了现有的一个不等式.

关键词有界线性算子;Bohr不等式;几何算术平均值不等式

中图分类号O15121文献标识码A文章编号10002537(2014)04009204

1主要结果

参考文献:

[1]〖ZK(#〗BHATIA R. Positive denite matrices[M]. Princeton:Princeton University Press, 2007.

[2]FUJII J I, KAMEI E. Relative operator entropy in noncommutative information theory [J]. Math Japon, 1989,34(3):341348.

[3]BOHR H. Zur Theorie der fastperiodischen funktionen I[J]. Acta Math, 1924,45(1):29127.

[4]HIRZALLAH O. Noncommutative operator Bohr inequality[J]. J Math Anal Appl, 2003,282(2):578583.

[5]CHEUNG W, PECARIC J. Bohrs inequalities for Hilbert space operators[J]. J Math Anal Appl, 2006,323(1):403412.

[6]ZHANG F. On the Bohr inequality of operators[J]. J Math Anal Appl, 2007, 333(2):12641271.

[7]CHANSANGIAM P, HEMCHOTE P, PANTARAGPHONG P. Generalizations of Bohr inequality for Hilbert space operators[J]. J Math Anal Appl, 2009,356(2):525536.

[8]ABRAMOVICH S, BARIC J, PECARIC J. A new proof of an inequality of Bohr for Hilbert space operators[J].Linear Algebra Appl, 2009,430(4):14321435.

[9]FUJII M, ZUO H. Matrix order in Bohr inequality for operators[J]. Banach J Math Anal, 2010,4(1):2127.

[10]ZOU L, HE C. On operator Bohr type inequalities[J]. Math Inequal Appl, 2014,17(3):11611169.

[11]MERRIS R, PIERCE S. Monotonicity of positive semidenite Hermitian matrices[J]. Proc Amer Math Soc, 1972,31(2):437440.