伴随饱和感染率和分布时滞并具有体液免疫的病毒感染模型的全局动力学研究

2014-10-23 12:19王蓉

王蓉

摘要提出并研究了伴随体液反应且带有两个分布时滞的病毒感染模型. 通过构造合适的Lyapunov函数得出了该模型的全局稳定性是由两个基本再生数R0和R1决定的, 并且当R0≤1时, 无感染平衡点E0是全局渐近稳定的. 此时, 病毒会被清除. 当R1≤11时, 携带B细胞感染平衡点E2是全局渐近稳定的. 在这种情况下, 感染为慢性的且伴随持久的B细胞反应. 最后, 利用数值仿真来证实以上结论分析的正确性.

关键词全局稳定性; 体液免疫; 饱和感染率; 分布时滞

中图分类号O29文献标识码A文章编号10002537(2014)04007705

体液免疫是一种以B淋巴细胞产生抗体来达到保护目的的免疫机制, 对于疟疾等一些传染病,体液免疫比细胞免疫更加有效[16], 国内外许多文章为体液免疫构造了一些数学模型[711]. Wang[12]提出了一个带有两个确定时滞并伴随体液免疫的感染模型.

2平衡点的存在性分析

3全局稳定性

4数值模拟

5结论

参考文献:

[1]〖ZK(#〗NOWAK M A, BANGHAM C R M. Population dynamics of immune responses to persistent viruses [J].Science, 1996,272(5258):7479.

[2]ZHU H, ZOU X. Dynamics of a HIV1 Infection model with cellmediated immune response and intracellular delay [J]. Discrete Continuous Dyn Syst Ser, 2009,B12(2):511524.

[3]WANG X, TAO Y. Lyapunov function and global properties of virus dynamics with CTL immune response[J]. Int J Biomath, 2008,1(4):443448.

[4]WANG K, WANG W, PANG H, et al. Complex dynamic behavior in a viral model with delayed immune response [J]. Phys D, 2007,226(2):197208.

[5]ANDERSON R, MAY R, GUPTA S. Nonlinear phenomena in hostparasite interactions [J]. Parasitology, 1989(Suppl),99:5979.

[6]MURASE A, SASAKI T, KAJIWARA T. Stability analysis of pathogenimmune interaction dynamics [J]. J Math Biol, 2005,51(3):247267.

[7]WODARZ D, MAY R, NOWAK M. The role of antigenindependent persistence of memory cytotoxic T lymphocytes [J]. Int Immunol, 2000,12(4):467477.

[8]CHIYAKA C, GARIRA W, DUBE S. Modelling immune response and drug therapy in human malaria infection[J]. Comput Math Method, 2008,9(2):143163.

[9]PERELSON A. Modelling viral and immune system dynamics [J]. Nature Rev Immunol, 2002,2(1):2836.〖ZK)〗

[10]〖ZK(#〗BONHOEFFER S, MAY R, SHAW G, et al. Global dynamics of a cell mediated immunity in viral infection models with distributed delays [J]. J Math Anal Appl, 2011,375(1):1427.

[11]KOROBEINIKOV A. Global properties of basic virus dynamics models [J]. Bull Math Biol, 2004,66(4):879883.

[12]WANG S, ZOU D. Global stability of inhost viral models with humoral immunity and intracellular delays[J]. Appl Math Modelling, 2012,36(3):13131322.

[13]KUANG Y. Delay differential equations with applications in population dynamics[M].London: Academic Press, 1993.

[14]XU R. Global dynamics of an HIV1 infection model with distributed intracellular delays [J]. Comput Math Appl, 2011,61(9):27992805.

摘要提出并研究了伴随体液反应且带有两个分布时滞的病毒感染模型. 通过构造合适的Lyapunov函数得出了该模型的全局稳定性是由两个基本再生数R0和R1决定的, 并且当R0≤1时, 无感染平衡点E0是全局渐近稳定的. 此时, 病毒会被清除. 当R1≤11时, 携带B细胞感染平衡点E2是全局渐近稳定的. 在这种情况下, 感染为慢性的且伴随持久的B细胞反应. 最后, 利用数值仿真来证实以上结论分析的正确性.

关键词全局稳定性; 体液免疫; 饱和感染率; 分布时滞

中图分类号O29文献标识码A文章编号10002537(2014)04007705

体液免疫是一种以B淋巴细胞产生抗体来达到保护目的的免疫机制, 对于疟疾等一些传染病,体液免疫比细胞免疫更加有效[16], 国内外许多文章为体液免疫构造了一些数学模型[711]. Wang[12]提出了一个带有两个确定时滞并伴随体液免疫的感染模型.

2平衡点的存在性分析

3全局稳定性

4数值模拟

5结论

参考文献:

[1]〖ZK(#〗NOWAK M A, BANGHAM C R M. Population dynamics of immune responses to persistent viruses [J].Science, 1996,272(5258):7479.

[2]ZHU H, ZOU X. Dynamics of a HIV1 Infection model with cellmediated immune response and intracellular delay [J]. Discrete Continuous Dyn Syst Ser, 2009,B12(2):511524.

[3]WANG X, TAO Y. Lyapunov function and global properties of virus dynamics with CTL immune response[J]. Int J Biomath, 2008,1(4):443448.

[4]WANG K, WANG W, PANG H, et al. Complex dynamic behavior in a viral model with delayed immune response [J]. Phys D, 2007,226(2):197208.

[5]ANDERSON R, MAY R, GUPTA S. Nonlinear phenomena in hostparasite interactions [J]. Parasitology, 1989(Suppl),99:5979.

[6]MURASE A, SASAKI T, KAJIWARA T. Stability analysis of pathogenimmune interaction dynamics [J]. J Math Biol, 2005,51(3):247267.

[7]WODARZ D, MAY R, NOWAK M. The role of antigenindependent persistence of memory cytotoxic T lymphocytes [J]. Int Immunol, 2000,12(4):467477.

[8]CHIYAKA C, GARIRA W, DUBE S. Modelling immune response and drug therapy in human malaria infection[J]. Comput Math Method, 2008,9(2):143163.

[9]PERELSON A. Modelling viral and immune system dynamics [J]. Nature Rev Immunol, 2002,2(1):2836.〖ZK)〗

[10]〖ZK(#〗BONHOEFFER S, MAY R, SHAW G, et al. Global dynamics of a cell mediated immunity in viral infection models with distributed delays [J]. J Math Anal Appl, 2011,375(1):1427.

[11]KOROBEINIKOV A. Global properties of basic virus dynamics models [J]. Bull Math Biol, 2004,66(4):879883.

[12]WANG S, ZOU D. Global stability of inhost viral models with humoral immunity and intracellular delays[J]. Appl Math Modelling, 2012,36(3):13131322.

[13]KUANG Y. Delay differential equations with applications in population dynamics[M].London: Academic Press, 1993.

[14]XU R. Global dynamics of an HIV1 infection model with distributed intracellular delays [J]. Comput Math Appl, 2011,61(9):27992805.

摘要提出并研究了伴随体液反应且带有两个分布时滞的病毒感染模型. 通过构造合适的Lyapunov函数得出了该模型的全局稳定性是由两个基本再生数R0和R1决定的, 并且当R0≤1时, 无感染平衡点E0是全局渐近稳定的. 此时, 病毒会被清除. 当R1≤11时, 携带B细胞感染平衡点E2是全局渐近稳定的. 在这种情况下, 感染为慢性的且伴随持久的B细胞反应. 最后, 利用数值仿真来证实以上结论分析的正确性.

关键词全局稳定性; 体液免疫; 饱和感染率; 分布时滞

中图分类号O29文献标识码A文章编号10002537(2014)04007705

体液免疫是一种以B淋巴细胞产生抗体来达到保护目的的免疫机制, 对于疟疾等一些传染病,体液免疫比细胞免疫更加有效[16], 国内外许多文章为体液免疫构造了一些数学模型[711]. Wang[12]提出了一个带有两个确定时滞并伴随体液免疫的感染模型.

2平衡点的存在性分析

3全局稳定性

4数值模拟

5结论

参考文献:

[1]〖ZK(#〗NOWAK M A, BANGHAM C R M. Population dynamics of immune responses to persistent viruses [J].Science, 1996,272(5258):7479.

[2]ZHU H, ZOU X. Dynamics of a HIV1 Infection model with cellmediated immune response and intracellular delay [J]. Discrete Continuous Dyn Syst Ser, 2009,B12(2):511524.

[3]WANG X, TAO Y. Lyapunov function and global properties of virus dynamics with CTL immune response[J]. Int J Biomath, 2008,1(4):443448.

[4]WANG K, WANG W, PANG H, et al. Complex dynamic behavior in a viral model with delayed immune response [J]. Phys D, 2007,226(2):197208.

[5]ANDERSON R, MAY R, GUPTA S. Nonlinear phenomena in hostparasite interactions [J]. Parasitology, 1989(Suppl),99:5979.

[6]MURASE A, SASAKI T, KAJIWARA T. Stability analysis of pathogenimmune interaction dynamics [J]. J Math Biol, 2005,51(3):247267.

[7]WODARZ D, MAY R, NOWAK M. The role of antigenindependent persistence of memory cytotoxic T lymphocytes [J]. Int Immunol, 2000,12(4):467477.

[8]CHIYAKA C, GARIRA W, DUBE S. Modelling immune response and drug therapy in human malaria infection[J]. Comput Math Method, 2008,9(2):143163.

[9]PERELSON A. Modelling viral and immune system dynamics [J]. Nature Rev Immunol, 2002,2(1):2836.〖ZK)〗

[10]〖ZK(#〗BONHOEFFER S, MAY R, SHAW G, et al. Global dynamics of a cell mediated immunity in viral infection models with distributed delays [J]. J Math Anal Appl, 2011,375(1):1427.

[11]KOROBEINIKOV A. Global properties of basic virus dynamics models [J]. Bull Math Biol, 2004,66(4):879883.

[12]WANG S, ZOU D. Global stability of inhost viral models with humoral immunity and intracellular delays[J]. Appl Math Modelling, 2012,36(3):13131322.

[13]KUANG Y. Delay differential equations with applications in population dynamics[M].London: Academic Press, 1993.

[14]XU R. Global dynamics of an HIV1 infection model with distributed intracellular delays [J]. Comput Math Appl, 2011,61(9):27992805.