黄江+刘翔
摘要利用分束器和探测技术研究了在两体混合压缩态条件下蒸馏性与纠缠的关系问题,利用负度和对数负度测量蒸馏前后的纠缠变化.研究结果表明,压缩参数的取值是影响纠缠的一个重要因素.文中还研究了光子扣除分束器的透射系数对纠缠的影响.
关键词纠缠; 蒸馏; 压缩态; 对数负度
[1]〖ZK(#〗BENNETT C H, BRASSARD G, CREPEAU C, et al. An unknow quantum state via dual classical and EinsteninPodolskyRosen channels [J]. Phys Rev Lett,1993,70(13):18951899.
[2]YEO Y, CHUA W K. Teleportation and dense coding with genuine multipartite entanglement[J]. Phys Rev Lett, 2006,96(6):060502.
[3]DEUTSCH D, EKERT A, JOZSA R, et al. Quantum privacy amplification and the security of quantum cryptography over noisy channels[J]. Phys Rev Lett,1996,77(15):28182821.
[4]BENNETT C H, WIESNER S J. Communication via one and twoparticle operators on EinsteinPodolskyRosen states[J]. Phys Rev Lett, 1992,69(20):28812884.
[5]BENNETT C H, FUCHS C A, SMOLIN J A. Quantum communication, computing and measurement[M]. New York: Plenum, 1980.
[6]BENNETT C H, SHOR P W, SMOLIN J A, et al. Entanglementassisted classical capacity of noisy quantum channels[J]. Phys Rev Lett, 1999,83(21):30813084.
[7]SHOR P W. Scheme for reducing decoherence in quantum computer memory[J]. Phys Rev A, 1995,52(4):R2493R2497.
[8]CLEVE R, BUHRMAN H. Substituting quantum entanglement for communication [J]. Phys Rev A 1997,56(2):12011204.
[9]HUANG J, FANG M F, LIU X. The population and decay evolution of a qubit under the timeconvolutionless master equation[J]. Chin Phys B , 2012,21(1):014205.
[10]〖ZK(#〗LI Y L, FANG M F. High entanglement generation and high fidelity quantum state transfer in a nonMarkovian enviroment[J]. Chin Phys B, 2011,20(10):100312.
[11]DING B F, WANG X Y, TANT Y F, et al. Nonmarkovian dynamitic of a qubitin a reservoir: different colutions of nonMarkovian master equation [J]. Chin Phys B, 2011,20(6):060304.
[12]HUANG L Y, FANG M F. Protecting entanglement by detuning: in Markovian environments vs in nonMarkovian environments[J] . Chin Phys B, 2010,19(9):090318.
[13]BENNETT C H, BERNSTEIN H J, POPESCU S, et al. Concentrating partial entanglement by local operations [J]. Phys Rev A, 1996,53(4):20462052.
[14]SONG W, CHEN L, ZHU S L. Sudden death of distillability in qutritqutrit systems[J]. Phys Rev A, 2010,80(1):012331.
[15]MAZHAR A. Distillability sudden death in qutritqutrit systems under global and multilocal dephasing[J]. Phys Rev A, 2010,80(4):042303.
[16]LUKASZ D. Delayed birth of distillable entanglement in the evolution of bound entangled states[J]. Phys Rev A, 2010,82(2):022312.
[17]MANDEL L, WOLF E. Optical coherence and quantum optics[M] . New York: Cambridge University Press, 1995.
[18]KITAGAWA A, TAKEOKA M, SASAKI M, et al. Entanglement evaluation of nonGaussian states generated by photon subtraction from squeezed states[J]. Phys Rev A, 2006,73(4):042310.
[19]ZHANG S L, PETER V L. Local Gaussian operations can enhance continuousvariable entanglement distillation[J]. Phys Rev A , 2011,84(6):062309.
摘要利用分束器和探测技术研究了在两体混合压缩态条件下蒸馏性与纠缠的关系问题,利用负度和对数负度测量蒸馏前后的纠缠变化.研究结果表明,压缩参数的取值是影响纠缠的一个重要因素.文中还研究了光子扣除分束器的透射系数对纠缠的影响.
关键词纠缠; 蒸馏; 压缩态; 对数负度
[1]〖ZK(#〗BENNETT C H, BRASSARD G, CREPEAU C, et al. An unknow quantum state via dual classical and EinsteninPodolskyRosen channels [J]. Phys Rev Lett,1993,70(13):18951899.
[2]YEO Y, CHUA W K. Teleportation and dense coding with genuine multipartite entanglement[J]. Phys Rev Lett, 2006,96(6):060502.
[3]DEUTSCH D, EKERT A, JOZSA R, et al. Quantum privacy amplification and the security of quantum cryptography over noisy channels[J]. Phys Rev Lett,1996,77(15):28182821.
[4]BENNETT C H, WIESNER S J. Communication via one and twoparticle operators on EinsteinPodolskyRosen states[J]. Phys Rev Lett, 1992,69(20):28812884.
[5]BENNETT C H, FUCHS C A, SMOLIN J A. Quantum communication, computing and measurement[M]. New York: Plenum, 1980.
[6]BENNETT C H, SHOR P W, SMOLIN J A, et al. Entanglementassisted classical capacity of noisy quantum channels[J]. Phys Rev Lett, 1999,83(21):30813084.
[7]SHOR P W. Scheme for reducing decoherence in quantum computer memory[J]. Phys Rev A, 1995,52(4):R2493R2497.
[8]CLEVE R, BUHRMAN H. Substituting quantum entanglement for communication [J]. Phys Rev A 1997,56(2):12011204.
[9]HUANG J, FANG M F, LIU X. The population and decay evolution of a qubit under the timeconvolutionless master equation[J]. Chin Phys B , 2012,21(1):014205.
[10]〖ZK(#〗LI Y L, FANG M F. High entanglement generation and high fidelity quantum state transfer in a nonMarkovian enviroment[J]. Chin Phys B, 2011,20(10):100312.
[11]DING B F, WANG X Y, TANT Y F, et al. Nonmarkovian dynamitic of a qubitin a reservoir: different colutions of nonMarkovian master equation [J]. Chin Phys B, 2011,20(6):060304.
[12]HUANG L Y, FANG M F. Protecting entanglement by detuning: in Markovian environments vs in nonMarkovian environments[J] . Chin Phys B, 2010,19(9):090318.
[13]BENNETT C H, BERNSTEIN H J, POPESCU S, et al. Concentrating partial entanglement by local operations [J]. Phys Rev A, 1996,53(4):20462052.
[14]SONG W, CHEN L, ZHU S L. Sudden death of distillability in qutritqutrit systems[J]. Phys Rev A, 2010,80(1):012331.
[15]MAZHAR A. Distillability sudden death in qutritqutrit systems under global and multilocal dephasing[J]. Phys Rev A, 2010,80(4):042303.
[16]LUKASZ D. Delayed birth of distillable entanglement in the evolution of bound entangled states[J]. Phys Rev A, 2010,82(2):022312.
[17]MANDEL L, WOLF E. Optical coherence and quantum optics[M] . New York: Cambridge University Press, 1995.
[18]KITAGAWA A, TAKEOKA M, SASAKI M, et al. Entanglement evaluation of nonGaussian states generated by photon subtraction from squeezed states[J]. Phys Rev A, 2006,73(4):042310.
[19]ZHANG S L, PETER V L. Local Gaussian operations can enhance continuousvariable entanglement distillation[J]. Phys Rev A , 2011,84(6):062309.
摘要利用分束器和探测技术研究了在两体混合压缩态条件下蒸馏性与纠缠的关系问题,利用负度和对数负度测量蒸馏前后的纠缠变化.研究结果表明,压缩参数的取值是影响纠缠的一个重要因素.文中还研究了光子扣除分束器的透射系数对纠缠的影响.
关键词纠缠; 蒸馏; 压缩态; 对数负度
[1]〖ZK(#〗BENNETT C H, BRASSARD G, CREPEAU C, et al. An unknow quantum state via dual classical and EinsteninPodolskyRosen channels [J]. Phys Rev Lett,1993,70(13):18951899.
[2]YEO Y, CHUA W K. Teleportation and dense coding with genuine multipartite entanglement[J]. Phys Rev Lett, 2006,96(6):060502.
[3]DEUTSCH D, EKERT A, JOZSA R, et al. Quantum privacy amplification and the security of quantum cryptography over noisy channels[J]. Phys Rev Lett,1996,77(15):28182821.
[4]BENNETT C H, WIESNER S J. Communication via one and twoparticle operators on EinsteinPodolskyRosen states[J]. Phys Rev Lett, 1992,69(20):28812884.
[5]BENNETT C H, FUCHS C A, SMOLIN J A. Quantum communication, computing and measurement[M]. New York: Plenum, 1980.
[6]BENNETT C H, SHOR P W, SMOLIN J A, et al. Entanglementassisted classical capacity of noisy quantum channels[J]. Phys Rev Lett, 1999,83(21):30813084.
[7]SHOR P W. Scheme for reducing decoherence in quantum computer memory[J]. Phys Rev A, 1995,52(4):R2493R2497.
[8]CLEVE R, BUHRMAN H. Substituting quantum entanglement for communication [J]. Phys Rev A 1997,56(2):12011204.
[9]HUANG J, FANG M F, LIU X. The population and decay evolution of a qubit under the timeconvolutionless master equation[J]. Chin Phys B , 2012,21(1):014205.
[10]〖ZK(#〗LI Y L, FANG M F. High entanglement generation and high fidelity quantum state transfer in a nonMarkovian enviroment[J]. Chin Phys B, 2011,20(10):100312.
[11]DING B F, WANG X Y, TANT Y F, et al. Nonmarkovian dynamitic of a qubitin a reservoir: different colutions of nonMarkovian master equation [J]. Chin Phys B, 2011,20(6):060304.
[12]HUANG L Y, FANG M F. Protecting entanglement by detuning: in Markovian environments vs in nonMarkovian environments[J] . Chin Phys B, 2010,19(9):090318.
[13]BENNETT C H, BERNSTEIN H J, POPESCU S, et al. Concentrating partial entanglement by local operations [J]. Phys Rev A, 1996,53(4):20462052.
[14]SONG W, CHEN L, ZHU S L. Sudden death of distillability in qutritqutrit systems[J]. Phys Rev A, 2010,80(1):012331.
[15]MAZHAR A. Distillability sudden death in qutritqutrit systems under global and multilocal dephasing[J]. Phys Rev A, 2010,80(4):042303.
[16]LUKASZ D. Delayed birth of distillable entanglement in the evolution of bound entangled states[J]. Phys Rev A, 2010,82(2):022312.
[17]MANDEL L, WOLF E. Optical coherence and quantum optics[M] . New York: Cambridge University Press, 1995.
[18]KITAGAWA A, TAKEOKA M, SASAKI M, et al. Entanglement evaluation of nonGaussian states generated by photon subtraction from squeezed states[J]. Phys Rev A, 2006,73(4):042310.
[19]ZHANG S L, PETER V L. Local Gaussian operations can enhance continuousvariable entanglement distillation[J]. Phys Rev A , 2011,84(6):062309.