锌胁迫对4种紫花苜蓿叶片生理特性的影响

2014-09-22 11:20曹婷代惠萍
湖北农业科学 2014年10期
关键词:胁迫紫花苜蓿生理特性

曹婷+代惠萍

摘要:以紫花苜蓿品种敖汉、金皇后、三得利和隆西为材料,采用土培试验方法,研究了Zn2+胁迫对4种紫花苜蓿叶片酶促防御系统的保护酶SOD、CAT 和APX活性和H2O2、MDA含量及生物量的影响。结果表明,随着Zn2+胁迫程度的加剧,4种紫花苜蓿叶片H2O2、MDA含量均呈增加趋势,这说明它们分别遭受了Zn2+所造成的氧化胁迫,且Zn2+胁迫程度越大其遭受的氧化胁迫也越大。不同浓度Zn2+胁迫下,4种苜蓿叶片抗氧化酶活性与生物量积累相比较,敖汉的SOD、CAT、APX活性和生物量含量显著高于其他3种苜蓿,且差异显著。综合评价表明,敖汉的抗氧化能力最强,其次为金皇后和三得利,隆西的抗氧化能力最差。

关键词:紫花苜蓿;Zn2+胁迫;生理特性

中图分类号:X171.5文献标识码:A文章编号:0439-8114(2014)10-2365-03

Biochemical Characteristics of Different Alfalfa Leaves under Zinc Stress

CHAO Ting,DAI Hui-ping

(College of Biological Science & Engineering,Shaanxi University of Technology,Hanzhong 723000,Shaanxi,China)

Abstract: Effects of Zn2+ stress on four alfalfa(Medikageo staival L.) including Aohan,Golden Empress,Sanditi,and Longxi were studied with soil culture. The indexes including the protective enzymes activities of SOD,CAT,APX,the content ofperoxidation and MDA,and biomass contents were determined. The results showed that the MDA and H2O2 contents in the leaves of four alfalfa species increased with the increasing levels of Zn2+ stress. All alfalfa suffered oxidative damage under different levels of Zn2+ stress. The oxidative damage became more serious with increasing levels ofZn2+ stress. Under different levels of Zn2+ stress,Aohan had the highest activities of SOD,CAT,APX and biomass contents, significantly different with other species.The order of antioxidant capacity of the four alfalfa species was Aohan,Golden Empress,Sanditi and Longxi.

Key words: alfalfa(Medikageo staival L.); zinc stress; biochemical characteristics

基金项目:陕西省自然科学基金项目(2013JQ3015);陕西理工学院人才启动项目(SLGQD13-16);陕西省重点学科专项建设经费资助

随着矿产资源的大量开发利用,各种化学产品、农药、化肥及城市污泥、污水在农业生产中的广泛使用,重金属对土壤的污染越来越严重[1-5]。锌(Zn2+)作为植物生长的必需元素,在植物体内的生化过程中相当活跃,但作为重金属元素加之在植物代谢过程中易于转移,当其过量时会对植物的正常生长造成伤害[6-9]。前人研究表明,植物在重金属胁迫下产生超氧阴离子自由基、羟自由基等活性氧[10,11],能引起细胞脂质过氧化,破坏光合系统和加速植物衰老[12]。而植物体内存在酶促与非酶促两类活性氧清除系统,消除活性氧自由基,降低其对植物的伤害[13]。关于重金属锌胁迫下紫花苜蓿叶片保护酶活性及膜脂过氧化的研究还鲜见报道。本试验以锌为胁迫因子,以紫花苜蓿(Medikago sativa L.)为材料,研究锌胁迫对4种紫花苜蓿叶片保护酶活性及膜脂过氧化的影响,为培育抗Zn2+苜蓿新品种探索新的途径。

1材料与方法

1.1材料

选用陕西主栽苜蓿品种AH(敖汉)、GE(金皇后)、SDI(三得利)和LX(隆西) 4品种。

1.2试验设计

试验于2013年3月在陕西理工学院生工学院植物学实验室进行。选饱满、无病虫害的苜蓿种子,用0.1%的HgCl2消毒10 min,以蛭石和草炭为栽培基质,用Hoagland作为营养液在阳光充足的不透明盆内培养。苜蓿幼苗生长2个月后,选生长一致的幼苗,向盆内加入ZnSO4,使Zn2+浓度分别达到300、600和900 μmol/L,设对照组(CK)不作处理。每个处理设置6次重复,pH调至6.5。在胁迫23 d时进行收获,每个处理收获6盆。

1.2.1 测定项目的方法H2O2含量、MDA含量、抗氧化酶SOD活性、CAT活性和APX活性均参照Dai等[2]的方法测定。

1.2.2生物量的测定分别在胁迫23 d后进行收获,每个处理收获6株,将每株叶片分开,105 ℃杀青后,70 ℃烘干,称量干重。

1.3数据分析

所有数据均采用平均值计算,用统计软件SPSS 12进行统计分析。One-Way ANOVA方差分析比较不同处理间各项指标的差异,通过LSD法进行差异显著性(P<0.05)分析。

2结果与分析

2.1 Zn2+胁迫对4种紫花苜蓿叶片生物量积累的影响

由图1表明,不同浓度Zn2+胁迫下敖汉苜蓿叶片的生物量显著高于对照(P<0.05)。结果表明,不同浓度Zn2+胁迫下可促进敖汉苜蓿叶片生物量积累,而金皇后、三得利和隆西叶片生物量呈降低的趋势。

2.2Zn2+胁迫对4种紫花苜蓿H2O2和MDA含量的影响

由图2可知,随着Zn2+胁迫的加剧,4种苜蓿叶片的H2O2和MDA含量分别呈增加趋势。在不同Zn2+胁迫条件下,敖汉叶片的H2O2和MDA含量均最低,隆西叶片的H2O2和MDA含量均最高,且隆西叶片的H2O2和MDA含量分别显著高于其他3种苜蓿(P<0.05),金皇后和三得利叶片的H2O2和MDA含量显著高于敖汉(P<0.05)。研究表明,Zn2+胁迫可以对4种苜蓿造成不同程度的氧化胁迫,其中敖汉所遭受的氧化胁迫程度最低,隆西所遭受的氧化胁迫程度最高。

2.2Zn2+胁迫对4种紫花苜蓿SOD、CAT和APX活性的影响

由图3a可知,随着Zn2+胁迫程度的加剧,4种紫花苜蓿叶片SOD活性均呈先增加后降低的变化趋势,在300 μmol/L Zn2+和600 μmol/L Zn2+条件下,敖汉叶片SOD活性分别比对照增加23.8%和57.4%,金皇后叶片SOD活性分别比对照增加5.5%和22.0%,三得利叶片SOD活性分别比对照增加16.1%和6.7%,隆西叶片SOD活性分别比对照增加14.9%和0.2%;在900 μmol/L Zn2+条件下,敖汉的SOD活性显著高于其他3种苜蓿(P<0.05)。

由图3b表明,随着Zn2+胁迫程度的加剧,4种紫花苜蓿叶片CAT活性呈先增加后降低的变化趋势,在300 μmol/L Zn2+条件下,4种紫花苜蓿叶片的CAT活性显著高于对照,在600 μmol/L Zn2+条件下,敖汉叶片的CAT活性比对照增加了71.2%,金皇后叶片的CAT活性分别比对照增加了36.7%,三得利叶片的CAT活性比对照增加了5.3%,但隆西叶片CAT活性比对照降低了17.7%;在900 μmol/L Zn2+条件下,敖汉和金皇后的CAT活性显著高于对照47.1%和6.1%(P<0.05),但三得利和隆西分别低于对照(P<0.05)。

由图3c可知,敖汉具有较高的APX活性,其次为金皇后和三得利,隆西APX活性最低。随着Zn2+胁迫的加剧,在300 μmol/L和600 μmol/L Zn2+条件下,4种紫花苜蓿叶片APX活性分别高于对照;在900 μmol/L Zn2+条件下,敖汉的APX活性比对照增加了24.7%,而金皇后、三得利和隆西叶片的APX活性分别比对照降低了4.3%、8.2%和9.3%。

3小结与讨论

在正常情况下,植物细胞内自由基的产生和清除处于动态平衡状态,自由基水平低,不会伤害细胞。但在逆境条件下,平衡被打破,从而使活性氧产生加剧而过剩,活性氧不仅会引发或加剧膜脂过氧化作用,而且还会使蛋白质脱氢而产生蛋白质自由基,使蛋白质发生链式聚合反应,从而使细胞膜系统损伤[14-18]。因此,H2O2和MDA含量是衡量氧化胁迫程度的重要指标[2]。在本研究中,敖汉、金皇后、三得利和隆西在Zn2+胁迫条件下其叶片H2O2和MDA含量均增加,这说明Zn2+胁迫均导致4种紫花苜蓿遭受了氧化胁迫,且随着Zn2+胁迫程度的加剧,4种紫花苜蓿遭受的氧化胁迫均加重。在900 μmol/L Zn2+水平下,隆西叶片的H2O2和MDA含量均显著高于其他3种苜蓿,说明隆西在胁迫条件下比其他苜蓿遭受了更为严重的氧化胁迫伤害,敖汉叶片的H2O2和MDA含量均显著低于其他3种苜蓿,这与其具有较强的抗氧化能力有关,同时,它们的抗氧化特性存在一定的共性,在900 μmol/L Zn2+胁迫下,4种紫花苜蓿均可以通过增强抗氧化酶SOD、CAT和APX活性来抵御氧化胁迫的伤害。4种紫花苜蓿抗氧化能力的综合评价结果表明,敖汉的抗氧化能力最强,其次为金皇后和三得利的,隆西的抗氧化能力最差。因此,这对于评价敖汉苜蓿的抗锌品种的选育具有一定的理论和实践意义。

参考文献:

[1] DAI H P ,WEI Y ,YANG T X,et al.Influence of cadmium stress on chlorophyll fluorescence characteristics in Populus×canescens[J]. Journal of Food,Agriculture & Environment,2012, 10(2):1281-1283.

[2] DAI H P,SHAN C J,LU C,et al.Response of antioxidant enzymes in populus × canescens under cadmium stress[J].Pakistan Journal of Botany,2012,44(6): 1943-1949.

[3] DAI H P,SHAN C J,JIA G L,et al.Cadmium detoxification in Populus × canescens[J]. Turkish Journal of Botany,2013,37: 950-955.

[4] DAI H P,SHAN C J,JIA G L,et al. Responses to cadmium tolerance, accumulation and translocation in Populus × canescens[J]. Water,Air,& Soil Pollution,2013,224:1504.

[5] DAI H P,WEI A Z,YANG T X,et al.Cadmium uptake,localization and detoxification in Populus × canescens[J]. Journal of Food,Agriculture & Environment,2013,11(1):875-877.

[6] CHANG J,YOON I,KIM K.Heavy metal and arsenic accumulating fern species as potential ecological indicators in as-contaminated abandoned mines[J]. Ecological Indicators,2009,9(6):1275-1279.

[7] EMILY H.Zinc deficiency,DNA damage and cancer risk[J].Journal of Nutritional Biochemistry,2004,15:572-578.

[8] 杨红飞,王友保,李建龙.铜、锌污染对水稻土中油菜(Brassica chinensis L.)生长的影响及累积效应研究[J].生态环境学报,2011,20(10):1470-1477.

[9] CAKMAK Ismail.Possible roles of zinc in protecting plant cells from damage by reactive oxygen species[J]. New Phytologist,2000,146:185-205.

[10] YEON-OK K,MASAKAZU H,TORU K.Response of an active oxygen scavenging system to cadmium in cadmium-tolerant cell of carrot[J]. Plant Biotechology,2001,18:39-43.

[11] KAVITA S,TITAMBHARA C,KUMAR,et al.Effect of cadmium on lipid peroxidation,superoxide anion generation activities or antioxidant enzymes in growing rice seedings[J]. Plant Science,2001,161(6):1135-1141.

[12] LI X N,YANG Y L,JIA L Y.Zinc-induced antioxidant enzyme response and proline metabolism in roots and leaves of wheat plants[J]. Ecotoxicology and Environmental Safety,2013,89(1):150-157.

[13] MARIA A I,Abrizio P,LUCIA F.Antioxidant response to cadmium in Phragmites australis plants[J]. Plant Physiology Biochemistry,2002,40(11):977-982

[14] ORACZ K,BAILLY C,GNIAZDOWSKA A,et al. Indution of oxidative stress by sunflower phytotoxins in germinating mustard seeds[J].Journal of Chemical Ecology,2007,33:251-264.

[15] LIN C W,LIN C Y,CHANG C C ,et al. Early signalling pathways in rice roots under vanadate stress [J].Plant Physiology and Biochemistry 2009,47(5):369-376.

[16] PANDEY V,DIXIT V, SHYAM R. Chromium(VI) induced changes in growth and root plasma membrane redox activities in pea plants[J].Protoplasma,2009,235(1-4):49-55.

[17] AVU O LU K,ERGENE A,YALCIN E,et al. Cytotoxic effects of lead and mercury ions on root tip cells of Cicer arietinum L.[J]. Fresenius Environmental Bulletin,2009,18(9):1654-1661.

[18] TIWARI KK,DWIVEDI S,SINGH NK,et al. Chromium (VI) induced phytotoxicity and oxidative stress in pea (Pisum sativum L.): biochemical changes and translocation of essential nutrients[J]. Journal of Environmental Biology,2009,30(3):389-394.

[5] DAI H P,WEI A Z,YANG T X,et al.Cadmium uptake,localization and detoxification in Populus × canescens[J]. Journal of Food,Agriculture & Environment,2013,11(1):875-877.

[6] CHANG J,YOON I,KIM K.Heavy metal and arsenic accumulating fern species as potential ecological indicators in as-contaminated abandoned mines[J]. Ecological Indicators,2009,9(6):1275-1279.

[7] EMILY H.Zinc deficiency,DNA damage and cancer risk[J].Journal of Nutritional Biochemistry,2004,15:572-578.

[8] 杨红飞,王友保,李建龙.铜、锌污染对水稻土中油菜(Brassica chinensis L.)生长的影响及累积效应研究[J].生态环境学报,2011,20(10):1470-1477.

[9] CAKMAK Ismail.Possible roles of zinc in protecting plant cells from damage by reactive oxygen species[J]. New Phytologist,2000,146:185-205.

[10] YEON-OK K,MASAKAZU H,TORU K.Response of an active oxygen scavenging system to cadmium in cadmium-tolerant cell of carrot[J]. Plant Biotechology,2001,18:39-43.

[11] KAVITA S,TITAMBHARA C,KUMAR,et al.Effect of cadmium on lipid peroxidation,superoxide anion generation activities or antioxidant enzymes in growing rice seedings[J]. Plant Science,2001,161(6):1135-1141.

[12] LI X N,YANG Y L,JIA L Y.Zinc-induced antioxidant enzyme response and proline metabolism in roots and leaves of wheat plants[J]. Ecotoxicology and Environmental Safety,2013,89(1):150-157.

[13] MARIA A I,Abrizio P,LUCIA F.Antioxidant response to cadmium in Phragmites australis plants[J]. Plant Physiology Biochemistry,2002,40(11):977-982

[14] ORACZ K,BAILLY C,GNIAZDOWSKA A,et al. Indution of oxidative stress by sunflower phytotoxins in germinating mustard seeds[J].Journal of Chemical Ecology,2007,33:251-264.

[15] LIN C W,LIN C Y,CHANG C C ,et al. Early signalling pathways in rice roots under vanadate stress [J].Plant Physiology and Biochemistry 2009,47(5):369-376.

[16] PANDEY V,DIXIT V, SHYAM R. Chromium(VI) induced changes in growth and root plasma membrane redox activities in pea plants[J].Protoplasma,2009,235(1-4):49-55.

[17] AVU O LU K,ERGENE A,YALCIN E,et al. Cytotoxic effects of lead and mercury ions on root tip cells of Cicer arietinum L.[J]. Fresenius Environmental Bulletin,2009,18(9):1654-1661.

[18] TIWARI KK,DWIVEDI S,SINGH NK,et al. Chromium (VI) induced phytotoxicity and oxidative stress in pea (Pisum sativum L.): biochemical changes and translocation of essential nutrients[J]. Journal of Environmental Biology,2009,30(3):389-394.

[5] DAI H P,WEI A Z,YANG T X,et al.Cadmium uptake,localization and detoxification in Populus × canescens[J]. Journal of Food,Agriculture & Environment,2013,11(1):875-877.

[6] CHANG J,YOON I,KIM K.Heavy metal and arsenic accumulating fern species as potential ecological indicators in as-contaminated abandoned mines[J]. Ecological Indicators,2009,9(6):1275-1279.

[7] EMILY H.Zinc deficiency,DNA damage and cancer risk[J].Journal of Nutritional Biochemistry,2004,15:572-578.

[8] 杨红飞,王友保,李建龙.铜、锌污染对水稻土中油菜(Brassica chinensis L.)生长的影响及累积效应研究[J].生态环境学报,2011,20(10):1470-1477.

[9] CAKMAK Ismail.Possible roles of zinc in protecting plant cells from damage by reactive oxygen species[J]. New Phytologist,2000,146:185-205.

[10] YEON-OK K,MASAKAZU H,TORU K.Response of an active oxygen scavenging system to cadmium in cadmium-tolerant cell of carrot[J]. Plant Biotechology,2001,18:39-43.

[11] KAVITA S,TITAMBHARA C,KUMAR,et al.Effect of cadmium on lipid peroxidation,superoxide anion generation activities or antioxidant enzymes in growing rice seedings[J]. Plant Science,2001,161(6):1135-1141.

[12] LI X N,YANG Y L,JIA L Y.Zinc-induced antioxidant enzyme response and proline metabolism in roots and leaves of wheat plants[J]. Ecotoxicology and Environmental Safety,2013,89(1):150-157.

[13] MARIA A I,Abrizio P,LUCIA F.Antioxidant response to cadmium in Phragmites australis plants[J]. Plant Physiology Biochemistry,2002,40(11):977-982

[14] ORACZ K,BAILLY C,GNIAZDOWSKA A,et al. Indution of oxidative stress by sunflower phytotoxins in germinating mustard seeds[J].Journal of Chemical Ecology,2007,33:251-264.

[15] LIN C W,LIN C Y,CHANG C C ,et al. Early signalling pathways in rice roots under vanadate stress [J].Plant Physiology and Biochemistry 2009,47(5):369-376.

[16] PANDEY V,DIXIT V, SHYAM R. Chromium(VI) induced changes in growth and root plasma membrane redox activities in pea plants[J].Protoplasma,2009,235(1-4):49-55.

[17] AVU O LU K,ERGENE A,YALCIN E,et al. Cytotoxic effects of lead and mercury ions on root tip cells of Cicer arietinum L.[J]. Fresenius Environmental Bulletin,2009,18(9):1654-1661.

[18] TIWARI KK,DWIVEDI S,SINGH NK,et al. Chromium (VI) induced phytotoxicity and oxidative stress in pea (Pisum sativum L.): biochemical changes and translocation of essential nutrients[J]. Journal of Environmental Biology,2009,30(3):389-394.

猜你喜欢
胁迫紫花苜蓿生理特性
不同品种番茄幼苗在弱光条件下对亚适温的适应性研究
灰水对黄杨生理特性的影响
干旱胁迫对金花茶幼苗光合生理特性的影响
园林植物对汽车尾气的生理反应及抗性研究