金玉荣
同学们在学习二次根式时经常会用到一些常见的数学思想方法,如分类讨论、数形结合、方程、转化等思想,在学习过程中同学们要注意总结归纳,学会运用,这对知识的掌握与解题能力的提高有着至关重要的作用. 下面,针对部分数学思想在二次根式中的运用做一些分析,供同学们参考.
一、 转化思想
转化不仅是一种解题思想,也是一种思维策略,更是一种有效的数学思维方式.所谓的转化思想方法,是把复杂的问题通过变换转化为简单问题;将难解的问题通过变换转化成容易求解的问题;将未知的问题通过变换转化为已知的问题,以达到解决问题的目的.
二次根式中常用以下两种转化方法:
1. 确定二次根式中字母的取值范围,可用方程或方程组解决问题. 如:已知在实数范围内有意义,则x的取值范围是_______. 本题要考虑两个方面:一是对于二次根式来说被开方数要为非负数,二是作为分母来说要不等于零,所以,可列方程组
二、 整体思想
整体思想就是从问题的整体出发,突出对问题的整体结构的分析,发现问题的整体特征. 在本章的学习中常把某些式子或图形看成一个整体,把握它们之间的关联,进行有目的、有意识的整体处理,从而使得问题简单化、明晰化.
以上是以二次根式为例,总结的几种数学思想方法,在平时的学习过程中同学们还会遇到其他的思想方法,大家要充分掌握,这对提高思考能力、解题能力有事半功倍的作用.
(作者单位:江苏省盐城市城北中学)
同学们在学习二次根式时经常会用到一些常见的数学思想方法,如分类讨论、数形结合、方程、转化等思想,在学习过程中同学们要注意总结归纳,学会运用,这对知识的掌握与解题能力的提高有着至关重要的作用. 下面,针对部分数学思想在二次根式中的运用做一些分析,供同学们参考.
一、 转化思想
转化不仅是一种解题思想,也是一种思维策略,更是一种有效的数学思维方式.所谓的转化思想方法,是把复杂的问题通过变换转化为简单问题;将难解的问题通过变换转化成容易求解的问题;将未知的问题通过变换转化为已知的问题,以达到解决问题的目的.
二次根式中常用以下两种转化方法:
1. 确定二次根式中字母的取值范围,可用方程或方程组解决问题. 如:已知在实数范围内有意义,则x的取值范围是_______. 本题要考虑两个方面:一是对于二次根式来说被开方数要为非负数,二是作为分母来说要不等于零,所以,可列方程组
二、 整体思想
整体思想就是从问题的整体出发,突出对问题的整体结构的分析,发现问题的整体特征. 在本章的学习中常把某些式子或图形看成一个整体,把握它们之间的关联,进行有目的、有意识的整体处理,从而使得问题简单化、明晰化.
以上是以二次根式为例,总结的几种数学思想方法,在平时的学习过程中同学们还会遇到其他的思想方法,大家要充分掌握,这对提高思考能力、解题能力有事半功倍的作用.
(作者单位:江苏省盐城市城北中学)
同学们在学习二次根式时经常会用到一些常见的数学思想方法,如分类讨论、数形结合、方程、转化等思想,在学习过程中同学们要注意总结归纳,学会运用,这对知识的掌握与解题能力的提高有着至关重要的作用. 下面,针对部分数学思想在二次根式中的运用做一些分析,供同学们参考.
一、 转化思想
转化不仅是一种解题思想,也是一种思维策略,更是一种有效的数学思维方式.所谓的转化思想方法,是把复杂的问题通过变换转化为简单问题;将难解的问题通过变换转化成容易求解的问题;将未知的问题通过变换转化为已知的问题,以达到解决问题的目的.
二次根式中常用以下两种转化方法:
1. 确定二次根式中字母的取值范围,可用方程或方程组解决问题. 如:已知在实数范围内有意义,则x的取值范围是_______. 本题要考虑两个方面:一是对于二次根式来说被开方数要为非负数,二是作为分母来说要不等于零,所以,可列方程组
二、 整体思想
整体思想就是从问题的整体出发,突出对问题的整体结构的分析,发现问题的整体特征. 在本章的学习中常把某些式子或图形看成一个整体,把握它们之间的关联,进行有目的、有意识的整体处理,从而使得问题简单化、明晰化.
以上是以二次根式为例,总结的几种数学思想方法,在平时的学习过程中同学们还会遇到其他的思想方法,大家要充分掌握,这对提高思考能力、解题能力有事半功倍的作用.
(作者单位:江苏省盐城市城北中学)