余露
中图分类号:G623.5 文献标识码:A 文章编号:1002-7661(2014)13-0084-02
究竟怎样引导学生学好数学,会用数学方法解决实际问题,既教给学生知识,又培养和发展他们的思维能力,提高他们的素质?怎样“揭趣、引活、巧练”,达到提高课堂教学效果这一目的呢?在此谈谈本人多年来在新授课教学上的几点认识。
一、以“揭趣”为前提,让学生自觉参与教学过程
教学过程是促进儿童“自我发展”的变化过程。教学的对象是人,是具有潜在智能、充满着情感和个性差异的活生生的人,教学的目的只有通过学习者本身的积极参与、内化、吸收才能实现。教学的这一本质属性决定了学生是学习活动的主体,能否主动地投入成为教学的成败的关键。一般来说,激发学习动机在导入新课时进行,这是学习新课的重要一步,根据不同的教材,采用不同的形式。
1.用故事导入新授内容。例如在教学“比的基本性质”这一课时,我一上课讲了一个引人入胜的故事:同学们,你们想知道神算“小精灵”吗?一天,“小精灵”去小明家玩,见他正在做一道题:1800€?5=?“小精灵”看了后马上答道:比值等于72。小明用约分方法果真也是这个得数,他惊讶极了,问道“你怎么会这么快知道得数呢?”“小精灵”笑着说:“我用的是比的基本性质呀?”同学们,你们想掌握这种本领吗?通过用故事导入,新颖、自然,能立刻引起学生的好奇心,集中了学生的注意力,有利于课堂教学的顺利进行。
2.创设问题情境,造成悬念,让儿童因好奇而要学。一位教育家说过:“思维是从惊讶和问题开始的。”有经验的老师常常先提出能激发学生积极思维的问题,然后引导分析、思考、探究问题。例如:教学小数乘法前,可以出一道设疑题:“不用计算,谁知道2.235€?.4的积有几位小数?”让学生从惊讶中产生悬念,在急于探求问题的情境中兴趣盎然地学习新知。
3.揭示事物,在观察中引起思考,因探究而要学。例如,教学圆柱的表面积时,让学生观察油桶,思考:工人师傅做这只油桶前如何预算材料?让学生产生求知的欲望,从而进行新授课。
4.联系小学生已有的生活经验,产生亲切感,因贴近生活受到关注而要学。例如:教学“时、分的认识”。出示实物钟问:“今天,老师带来了一件东西,你们看,是什么?钟表有什么作用呢?”出示幻灯片问:“这位小朋友叫明明,你们能从这三幅图中,看出明明一天的作息时间吗?”这样的导入新课,既近学生生活实际,又引起学生学习的兴趣。
二、以“引活”为手段,培养学生数学思维能力
当前无论是国内还是国外学者都认为数学思维能力的主要成份是掌握数学的思考方法。因此,我们首先要改变对数学教学的传统看法,树立新的教学观点:(1)数学教学主要是数学活动(即思维方法)的教学,而不单单是数学知识的教学。(2)数学教学现代化是指数学教学中充分运用多媒体教学手段进行教学,用现代教育理论改革数学教育。(3)数学教师的任务不单纯是教数学知识,而且要教学生怎样学。总之,课堂教学以“引活”为手段,体现学生学习主动性和学生主体的地位,增加学生实际活动,重视学习方法的指导,培养学生创新意识和数学思维能力。因此,小学数学课堂教学要突出下面几个方面。
1.以“引活”为手段,培养学生的一般思维
以学生为主体的核心是以学生的“思维”为主体。这就要求我们教师要重视知识的形成过程,很好地把这个过程展现出来。让学生在我们展开的过程中去交流、探索和解决,让学生在学习中体验、感悟和内化的过程,就是培养学生创新精神和实践能力的过程。例如:教学“带分数乘除法”时,先出示一组算式,学生练完后说出计算法则,再出示例题:引导学生观察并讨论:与过去学的分数乘法有什么不同?这样老师只在疑点上提出疑问,学生经过议论、思考,就能正确地掌握计算方法。又如教学例题时,让学生小组讨论:能化成的分数乘法计算吗?学生通过议论总结出带分数除法的计算方法。通过这样的质疑、点拨,激发了学生求知的欲望,启迪了学生的思维。
2.以“引活”为手段,培养学生的求异思维
求异思维是从不同的角度,不同的思路去解决问题。它不拘泥于常规,追求事物新颖的设想,在解决问题的过程中要大力提倡学生发表与众不同的见解,别出心裁,勇于标新立异,寻找与众不同的途径和方法。例如教学“20以内的退位减法”,除用“做减法想加法”外,还允许鼓励学生用“破十法”或“凑十法”求差。如:12-5=?算法1,因为7+5=12所以12-5=7。算法2,12-5=2+(10-5)=7。这样教学,既使学生掌握了新知识,又发展了求异思维的能力。
3.以“引活”为手段,培养学生的逆向思维
正向思维是人们最常用的思维方式,这种思维方式对解决一些问题起到了一定的作用。这种习惯的思维方式往往只会侧重问题的一方面而忽视另一方面。在教学中,不妨引导学生向相反的方向去思考,进行逆向思维,以求得问题的解决。例如:在竞试题里有这样一道题:“有16人参加象棋冠军争夺赛,采用负一场就退出比赛的单淘汰制。为了决出冠军1人,共要比赛多少场?”
此题多数学生都按一般的思路解答:因为两人比赛一场,每场淘汰1人,所以第一轮应比16€?=8(场),第二轮应比8€?=4(场)……最后冠军决赛场,所以共应比赛8+4+2+1=15(场)。老师给予肯定后,要决出冠军,就必须淘1人,这就需要比赛多少场呢?如何解答呢?于是学生纷纷列出算式:16-1=15(场)。此法不仅简单,而且构思巧妙,思维独特,这便是创新思维。
三、以“巧练”为主线,在教学“双基”的训练中发展思维
新授课的练习设计要得体精当,新颖,要采用合理的教学方法,可以从以下几个方面来考虑。
1.要围绕教学的知识面设计层次清楚的复习题,为新课作好铺垫。例如教学“较复杂的求平均数应用题”时,先让学生做“某钢铁厂一星期生产钢材2.8万吨,这星期平均每天生产钢材多少万吨?”让学生回答数量关系式是怎样的(平均数=总数量€髯芊菔?,后出示新课例题:“某钢铁厂一星期前3天生产钢材1.2万吨,后4天平均每天生产0.4万吨。这星期平均每天生产钢材多少万吨?”先让学生比较两题的异同点,再解答。
2.要围绕教学的重点、难点、疑点设计有针对性的练习,这样可分散难点。例如:为了让学生正确理解百分率,可以出示这样一题:“一个商店,同时出售了两件商品,现价都是50元,一件赚了20%,一件赔了20%,这个商店是赚还是赔?”通过实例计算,分析错误原因,得出正确结论。
3.练习设计要有明确的分工。例如,在讲“行程问题的应用题”时,通过不同的启发使一题多解:“甲乙两地相距144千米,甲骑车从甲地到乙地,需8小时,乙步行从乙地到甲地速度是甲的1/3,问甲乙两地相向出发几小时后相遇?”让学生用基本解法列出144€鳎?44€?+144€?€?/3)这个算式之后,可出如下启发题(1)依据甲行驶的路程及其速度,乙应走的路程及其速度各应如何解答?(2)从工程问题角度考虑,根据总路程及甲乙的速度和甲乙各应行驶的路程及其对应速度,又应如何解答?
(责任编辑 刘凌芝)endprint