徐庆彩等
摘要采用干灰化法与离子交换树脂色谱法联用,建立了植物中氯的分离方法,消除了有机质对氯同位素测定的影响,能够满足氯同位素正热电离质谱法测定的需求,没有造成氯的损失和氯同位素的分馏。结果表明,青藏高原和山东两个地区的5种植物组织器官的δ
1引言
氯是植物生长必需的一种微量营养元素,氯在维持植物细胞的膨压及电荷平衡方面起着重要作用。氯参与植物光合作用中水的光解反应,促进光合磷酸化作用和三磷酸腺苷(ATP)的合成;氯能维持细胞液的缓冲性及液泡的渗透调节,激活质子泵ATP酶;通过气孔开闭,氯能间接影响植物的光合作用和生长。氯与其它微量的阳离子结合,可保持植物体电荷平衡,同时还能促进碳水化合物的合成\[1~4\]。
在植物吸收利用氯的过程中,由于氯的迁移、转化和生物生理作用,可能产生与其生长环境相关的同位素(35Cl和37Cl)组成变化。随着植物组织器官的凋落,引起植物区域生长环境中氯同位素平衡和氯循环的改变。因此,研究陆生植物和海洋植物对氯的吸收利用,对重新认识全球氯同位素平衡变化和氯循环改变具有重要意义。
氯的分离是影响氯同位素地球化学应用研究的关键。有两种常用的氯分离方法能够满足其同位素质谱分析需求。其一是Xiao等\[5\]建立的基于Cs2Cl+离子正热电离质谱法,采用离子交换色谱法进行氯分离,将样品溶液分别通过H+型、Ba2+型和Cs+型强阳离子交换树脂后,溶液中CsCl用于同位素质谱分析\[6~8\]。其二为基于CH3Cl+离子的气体质谱法分析氯同位素组成\[9~11\]所采用的方法,该方法首先采用Ag+沉淀Cl
Symbolm@@ ,然后AgCl在暗处与CH3I反应,转化成CH3Cl后,用于氯同位素的质谱分析。第二种方法比较耗时,尤其是无机态氯向有机态氯的转化过程,操作繁琐。结合这两种方法的特点,孙爱德等\[12,13\]建立了低氯含量样品中氯的分离方法,先用Ag+型树脂将氯富集,然后用氨水洗脱,再通过Ba2+和Cs+型树脂,有效去除SO2-4、NO-3对氯同位素测试的影响,实现了雨水和雪水等样品中Cl同位素质谱分析。
而对于植物样品而言,植物中存在的大量有机质是限制植物氯同位素应用研究的瓶颈问题,因为有机质的存在能够抑制质谱测定过程中Cs2Cl+离子流的发射,导致其强度在短时间内大幅衰减,同时引起氯同位素分馏。传统去除有机质的方法是采用HNO3/H2O2湿法消解,这种方法能够有效去除植物中大量有机质,但是容易引起氯损失,导致氯同位素分馏。
本实验在文献\[12,13\]基础上,建立能够满足正热电离质谱法需求的氯的分离方法,能有效消除了植物中大量有机质对氯同位素质谱测定的影响,并对植物中氯同位素的分馏及其应用前景进行了探讨。
2实验部分
21样品采集
本实验选取青藏高原地区的两种植物川西獐芽菜、花锚和山东地区的两种植物红王子锦带、紫松果菊为研究对象。川西獐芽菜为龙胆科獐芽菜属两年生草本植物,可以全草入药,花果期为7~10月,主要生于海拔1900~3800 m的山坡、河谷、林下、灌丛、水边。花锚为龙胆科、花锚属一年生草本植物,主要生长于中性或偏碱性的壤土或灌丛草甸土中,花果期为7~9月\[14\]。这两种植物分别采自青海省玉树和斑马县,采样时间为2012年8月。紫松果菊为菊科紫松果菊属多年生草本植物,花期为6~7月,喜生于温暖向阳处,喜肥沃、深厚、富含有机质的土壤。红王子锦带为忍冬科锦带花属落叶灌木植物,花期为4~6月。这两种植物分别采自山东省临沂市平邑县和兰山区,采样时间为2012年6月。
氯同位素组成的测定在中国科学院青海盐湖研究所盐湖地质与环境实验室进行。采用Xiao等\[5\]建立的基于Cs2Cl+离子的正热电离质谱法测定氯同位素组成。钽带(075 cm× 0076 cm× 00025 cm)在3 A电流下真空去气1 h。涂样时,先将1 μL石墨悬浮液涂于钽带表面,在12 A电流下蒸至近干,再加入1 μL样品溶液,蒸发至近干,用于质谱测定。
3结果与讨论
31分离过程氯的回收
植物样品干灰化过程氯的挥发或损失将造成氯同位素的分馏,因此要保证在干灰化过程中没有氯损失。干灰化后样品用HNO3溶解后,采用离子色谱法进行氯含量测定,用以检测回收率。一般认为,氯在植物体内以Cl
Symbolm@@ 的形式存在\[17\],因此以准确称量的基准试剂NaCl作为参考试剂,采用称重法,比较在干灰化过程前后其质量变化,估算Cl的回收率。5次平行实验中,NaCl回收率变化为999%~1002%,表明干灰化过程中不会引起Cl-损失\[15\]。
孙爱德等\[12\]认为,由于Ag+型树脂粒径非常小,其树脂床能够阻止AgCl沉淀的渗漏,同时将NO-3完全去除,Ba2+型树脂能够去除SO2-4,因为在氯同位素的质谱测定过程中,当\[NO-3\]/\[Cl-\]>10、\[SO2-4\]/\[Cl-\]>30时,NO-3和SO2-4将影响到质谱中Cs2Cl+的发射强度\[8,19\]。孙爱德等\[12,13\]对低氯含量雨水等样品中氯的研究结果表明,采用Ag+型、Ba2+型Cs+型离子交换树脂色谱过程对氯的回收率能达到100%,没有造成氯的损失和氯同位素的分馏的产生。干灰化过程和整个分离过程的样品氯的回收率见表1。从表1可见,干灰化过程和全流程过程中氯的回收率变化范围为960%~1059%,这说明在干灰化过程和全流程未造成氯的损失,也不会造成氯同位素分馏。
32分离过程中的氯同位素分馏
引起氯同位素比值变化的因素可能是分离过程中空白的引入和分离过程中氯同位素的分馏\[20\]。以基准试剂NaCl溶液通过全流程,分别测定过程之前和之后氯同位素组成的变化,相对ISL 354 NaCl同位素标准,其δ37Cl分别为+042‰和+041‰,说明在整个分离过程中未出现氯同位素的分馏。
采用标准加入法和同位素稀释法测定全流程空白的Cl-,全流程中空白氯的量小于16 ng,空白氯的影响是可以忽略的。总之,干灰化能够完全去除植物中大量有机质对氯同位素质谱测定的影响,干灰化和离子交换树脂色谱联用对氯的回收能达到95%以后,没有造成氯损失,不会引起氯同位素分馏。
33植物样品中氯同位素组成测定
孙爱德, 肖应凯, 王庆忠, 张崇耿, 魏海珍, 廖步勇 分析化学, 2004, 32(10): 1362-1364
13Sun A D, Xiao Y K, Wang Q Z, Zhang C G, Wei H Z BCEIA, 2003: B121-B122
14YANG YongChang Flora of Tibetan Medicine, Qinghai People Press, Xining, 1991: 110-114
杨永昌 藏药志, 青海人民出版社,西宁,1991: 110-114
15Kashparov V, Colle C, Zvarich S, Yoschenko V, Levchuk S, Lundin S J Environ Radioactiv, 2005, 79(3): 233-253
16JIANG RongRong, GU YaZhong, YAO ZhenQin. Heilongjiang Envorin J, 2005, 29(4): 47-48
蒋荣荣, 顾亚中, 姚振琴 黑龙江环境通报, 2005, 29(4): 47-48
17White P J, Broadley M R. Chloride in Soil and its Uptake and Movement within the Plant: a Review, Ann Bot, 2001, 88(Suppl): 967-988
18IAEA Reference Products for Environment and Trade, ISL354, Sodium Chloride, Material with Known 37Cl/35Cl Isotopic Composition Website: http://nucleusiaeaorg/rpst/ReferenceProducts/ReferenceMaterials/Stable_Isotopes/37Cl35l/ISL354htm Accessed 12/2013
19LU Hai, XIAO YingKai. J Salt Lake Res, 2001, 9(2): 7-12
逯 海, 肖应凯 盐湖研究, 2001, 9(2): 7-12
20Rosner M, Pritzkow W, Vog J, Voerkelius S Anal Chem, 2011, 83(7): 2562-2568
21LIU CongQiang, LANG YunChao. Bull Mineral Petrol Geochem, 2006, 25(Suppl): 101-103
刘丛强, 郎赟超 矿物岩石地球化学通报, 2006, 25(增刊): 101-103
AbstractA method using dry ashing combined with triplephase ionexchange chromatography was developed to enrich chlorine in the plant, which could eliminate the effect of organic impurities on the determination of chlorine isotope by thermal ionization mass spectrometry In the procedure, the recoveries indicated that there was no loss of chlorine and no fractionation of chlorine isotopes occur The results showed that the composition of chlorine isotope in the tissues of plants in QinghaiTibet Plateau area and Shandong area ranged from
Symbolm@@ 179‰ to +477‰ with an average of 120‰ δ37Cl values of the two plant samples in Shandong area not more than 0‰ indicated that 35Cl was enriched in the organs of the two plants and δ37Cl values in QinghaiTibet Plateau area more than 0‰ indicated the deficiency of 35Cl Chlorine isotope composition fractionated significantly in the plant samples or in different tissues of a plant This may be caused by the differences of the medium where the plants grow, the transport of chlorine or the physiological effect in the uptake of chlorine by plants, which put forward a new insight for the further investigation of chlorine behavior in plant and the global cycling of chlorine in the biogeochemistry
KeywordsChlorine isotope; Thermal ionization mass spectrometry; Plant; Tissue
采用标准加入法和同位素稀释法测定全流程空白的Cl-,全流程中空白氯的量小于16 ng,空白氯的影响是可以忽略的。总之,干灰化能够完全去除植物中大量有机质对氯同位素质谱测定的影响,干灰化和离子交换树脂色谱联用对氯的回收能达到95%以后,没有造成氯损失,不会引起氯同位素分馏。
33植物样品中氯同位素组成测定
孙爱德, 肖应凯, 王庆忠, 张崇耿, 魏海珍, 廖步勇 分析化学, 2004, 32(10): 1362-1364
13Sun A D, Xiao Y K, Wang Q Z, Zhang C G, Wei H Z BCEIA, 2003: B121-B122
14YANG YongChang Flora of Tibetan Medicine, Qinghai People Press, Xining, 1991: 110-114
杨永昌 藏药志, 青海人民出版社,西宁,1991: 110-114
15Kashparov V, Colle C, Zvarich S, Yoschenko V, Levchuk S, Lundin S J Environ Radioactiv, 2005, 79(3): 233-253
16JIANG RongRong, GU YaZhong, YAO ZhenQin. Heilongjiang Envorin J, 2005, 29(4): 47-48
蒋荣荣, 顾亚中, 姚振琴 黑龙江环境通报, 2005, 29(4): 47-48
17White P J, Broadley M R. Chloride in Soil and its Uptake and Movement within the Plant: a Review, Ann Bot, 2001, 88(Suppl): 967-988
18IAEA Reference Products for Environment and Trade, ISL354, Sodium Chloride, Material with Known 37Cl/35Cl Isotopic Composition Website: http://nucleusiaeaorg/rpst/ReferenceProducts/ReferenceMaterials/Stable_Isotopes/37Cl35l/ISL354htm Accessed 12/2013
19LU Hai, XIAO YingKai. J Salt Lake Res, 2001, 9(2): 7-12
逯 海, 肖应凯 盐湖研究, 2001, 9(2): 7-12
20Rosner M, Pritzkow W, Vog J, Voerkelius S Anal Chem, 2011, 83(7): 2562-2568
21LIU CongQiang, LANG YunChao. Bull Mineral Petrol Geochem, 2006, 25(Suppl): 101-103
刘丛强, 郎赟超 矿物岩石地球化学通报, 2006, 25(增刊): 101-103
AbstractA method using dry ashing combined with triplephase ionexchange chromatography was developed to enrich chlorine in the plant, which could eliminate the effect of organic impurities on the determination of chlorine isotope by thermal ionization mass spectrometry In the procedure, the recoveries indicated that there was no loss of chlorine and no fractionation of chlorine isotopes occur The results showed that the composition of chlorine isotope in the tissues of plants in QinghaiTibet Plateau area and Shandong area ranged from
Symbolm@@ 179‰ to +477‰ with an average of 120‰ δ37Cl values of the two plant samples in Shandong area not more than 0‰ indicated that 35Cl was enriched in the organs of the two plants and δ37Cl values in QinghaiTibet Plateau area more than 0‰ indicated the deficiency of 35Cl Chlorine isotope composition fractionated significantly in the plant samples or in different tissues of a plant This may be caused by the differences of the medium where the plants grow, the transport of chlorine or the physiological effect in the uptake of chlorine by plants, which put forward a new insight for the further investigation of chlorine behavior in plant and the global cycling of chlorine in the biogeochemistry
KeywordsChlorine isotope; Thermal ionization mass spectrometry; Plant; Tissue
采用标准加入法和同位素稀释法测定全流程空白的Cl-,全流程中空白氯的量小于16 ng,空白氯的影响是可以忽略的。总之,干灰化能够完全去除植物中大量有机质对氯同位素质谱测定的影响,干灰化和离子交换树脂色谱联用对氯的回收能达到95%以后,没有造成氯损失,不会引起氯同位素分馏。
33植物样品中氯同位素组成测定
孙爱德, 肖应凯, 王庆忠, 张崇耿, 魏海珍, 廖步勇 分析化学, 2004, 32(10): 1362-1364
13Sun A D, Xiao Y K, Wang Q Z, Zhang C G, Wei H Z BCEIA, 2003: B121-B122
14YANG YongChang Flora of Tibetan Medicine, Qinghai People Press, Xining, 1991: 110-114
杨永昌 藏药志, 青海人民出版社,西宁,1991: 110-114
15Kashparov V, Colle C, Zvarich S, Yoschenko V, Levchuk S, Lundin S J Environ Radioactiv, 2005, 79(3): 233-253
16JIANG RongRong, GU YaZhong, YAO ZhenQin. Heilongjiang Envorin J, 2005, 29(4): 47-48
蒋荣荣, 顾亚中, 姚振琴 黑龙江环境通报, 2005, 29(4): 47-48
17White P J, Broadley M R. Chloride in Soil and its Uptake and Movement within the Plant: a Review, Ann Bot, 2001, 88(Suppl): 967-988
18IAEA Reference Products for Environment and Trade, ISL354, Sodium Chloride, Material with Known 37Cl/35Cl Isotopic Composition Website: http://nucleusiaeaorg/rpst/ReferenceProducts/ReferenceMaterials/Stable_Isotopes/37Cl35l/ISL354htm Accessed 12/2013
19LU Hai, XIAO YingKai. J Salt Lake Res, 2001, 9(2): 7-12
逯 海, 肖应凯 盐湖研究, 2001, 9(2): 7-12
20Rosner M, Pritzkow W, Vog J, Voerkelius S Anal Chem, 2011, 83(7): 2562-2568
21LIU CongQiang, LANG YunChao. Bull Mineral Petrol Geochem, 2006, 25(Suppl): 101-103
刘丛强, 郎赟超 矿物岩石地球化学通报, 2006, 25(增刊): 101-103
AbstractA method using dry ashing combined with triplephase ionexchange chromatography was developed to enrich chlorine in the plant, which could eliminate the effect of organic impurities on the determination of chlorine isotope by thermal ionization mass spectrometry In the procedure, the recoveries indicated that there was no loss of chlorine and no fractionation of chlorine isotopes occur The results showed that the composition of chlorine isotope in the tissues of plants in QinghaiTibet Plateau area and Shandong area ranged from
Symbolm@@ 179‰ to +477‰ with an average of 120‰ δ37Cl values of the two plant samples in Shandong area not more than 0‰ indicated that 35Cl was enriched in the organs of the two plants and δ37Cl values in QinghaiTibet Plateau area more than 0‰ indicated the deficiency of 35Cl Chlorine isotope composition fractionated significantly in the plant samples or in different tissues of a plant This may be caused by the differences of the medium where the plants grow, the transport of chlorine or the physiological effect in the uptake of chlorine by plants, which put forward a new insight for the further investigation of chlorine behavior in plant and the global cycling of chlorine in the biogeochemistry
KeywordsChlorine isotope; Thermal ionization mass spectrometry; Plant; Tissue